Articles | Volume 11, issue 5
Ocean Sci., 11, 829–837, 2015
Ocean Sci., 11, 829–837, 2015

Research article 14 Oct 2015

Research article | 14 Oct 2015

Impacts of mean dynamic topography on a regional ocean assimilation system

C. Yan et al.

Related authors

Observed and simulated full-depth ocean heat-content changes for 1970–2005
Lijing Cheng, Kevin E. Trenberth, Matthew D. Palmer, Jiang Zhu, and John P. Abraham
Ocean Sci., 12, 925–935,,, 2016
Short summary
Limitations of ozone data assimilation with adjustment of NOx emissions: mixed effects on NO2 forecasts over Beijing and surrounding areas
Xiao Tang, Jiang Zhu, ZiFa Wang, Alex Gbaguidi, CaiYan Lin, JinYuan Xin, Tao Song, and Bo Hu
Atmos. Chem. Phys., 16, 6395–6405,,, 2016
Short summary
Towards a new multiscale air quality transport model using the fully unstructured anisotropic adaptive mesh technology of Fluidity (version 4.1.9)
J. Zheng, J. Zhu, Z. Wang, F. Fang, C. C. Pain, and J. Xiang
Geosci. Model Dev., 8, 3421–3440,,, 2015
Short summary
Global representation of tropical cyclone-induced short-term ocean thermal changes using Argo data
L. Cheng, J. Zhu, and R. L. Sriver
Ocean Sci., 11, 719–741,,, 2015
Short summary
Argo data assimilation into HYCOM with an EnOI method in the Atlantic Ocean
D. Mignac, C. A. S. Tanajura, A. N. Santana, L. N. Lima, and J. Xie
Ocean Sci., 11, 195–213,,, 2015

Related subject area

Depth range: All Depths | Approach: Data Assimilation | Geographical range: All Geographic Regions | Phenomena: Sea Level
Evaluation of sub-monthly oceanographic signal in GRACE “daily” swath series using altimetry
Jennifer A. Bonin and Himanshu Save
Ocean Sci., 16, 423–434,,, 2020
Short summary
The timescale and extent of thermal expansion of the global ocean due to climate change
S. Marčelja
Ocean Sci., 6, 179–184,,, 2010

Cited articles

Bertino, L. and Lisæter, K. A.: The TOPAZ monitoring and prediction system for the Atlantic and Arctic Oceans, J. Operat. Oceanogr., 2, 15–18, 2008.
Bleck, R.: An oceanic general circulation model framed in hybrid isopycnic-cartesian coordinates, Ocean Model., 4, 55–88, 2002.
Brasseur, P., Bahurel, P., Bertino, L., Birol, F., Brankart, J.-M., Ferry, N., Losa, S., Rémy, E., Schröter, J., Skachko, S., Testut, C.-E., Tranchant, B., van Leeuwen, P. J., and Verron, J.: Data Assimilation for marine monitoring and prediction: The Mercator operational assimilation systems and the MERSEA developments, Q. J. R. Met. Soc., 131, 3561–3582, 2005.
Carnes, M. R., Mitchell, J. L., and DeWitt, P. W.: Synthetic temperature profiles derived from geosat altimetry: comparison with air-dropped expendable bathythermograph profiles, J. Geophys. Res., 95, 17979–17992, 1990.
Carton, J. A., Giese, B. S., Cao, X., and Miller, L.: Impact of altimeter, thermistor, and expendable bathythermograph data on restrospective analyses of the tropical Pacific Ocean, J. Geophys. Res., 101, 14147–14159, 1996.
Short summary
The altimetry data assimilation requires the addition of the mean dynamic topography to the altimetric sea level anomaly to match the model sea surface height. The mean dynamic topography is usually computed from the model long-term mean sea surface height. In this study, the impact of different mean dynamic topographies on the sea level anomaly assimilation is examined. Results show that impacts of the mean dynamic topography cannot be neglected.