Articles | Volume 11, issue 2
https://doi.org/10.5194/os-11-287-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-11-287-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Tidal forcing, energetics, and mixing near the Yermak Plateau
Geophysical Institute, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
M. Müller
Norwegian Meteorological Institute, Oslo, Norway
A. K. Peterson
Geophysical Institute, University of Bergen, Bergen, Norway
Bjerknes Centre for Climate Research, Bergen, Norway
Related authors
Kjersti Kalhagen, Ragnheid Skogseth, Till M. Baumann, Eva Falck, and Ilker Fer
Ocean Sci., 20, 981–1001, https://doi.org/10.5194/os-20-981-2024, https://doi.org/10.5194/os-20-981-2024, 2024
Short summary
Short summary
Atlantic water (AW) is a key driver of change in the Barents Sea. We studied an emerging pathway through the Svalbard Archipelago that allows AW to enter the Barents Sea. We found that the Atlantic sector near the study site has warmed over the past 2 decades; that Atlantic-origin waters intermittently enter the Barents Sea through the aforementioned pathway; and that heat transport is driven by tides, wind events, and variations in the upstream current system.
Eivind H. Kolås, Ilker Fer, and Till M. Baumann
Ocean Sci., 20, 895–916, https://doi.org/10.5194/os-20-895-2024, https://doi.org/10.5194/os-20-895-2024, 2024
Short summary
Short summary
In the northwestern Barents Sea, we study the Barents Sea Polar Front formed by Atlantic Water meeting Polar Water. Analyses of ship and glider data from October 2020 to February 2021 show a density front with warm, salty water intruding under cold, fresh water. Short-term variability is linked to tidal currents and mesoscale eddies, influencing front position, density slopes and water mass transformation. Despite seasonal changes in the upper layers, the front remains stable below 100 m depth.
Ivan Kuznetsov, Benjamin Rabe, Alexey Androsov, Ying-Chih Fang, Mario Hoppmann, Alejandra Quintanilla-Zurita, Sven Harig, Sandra Tippenhauer, Kirstin Schulz, Volker Mohrholz, Ilker Fer, Vera Fofonova, and Markus Janout
Ocean Sci., 20, 759–777, https://doi.org/10.5194/os-20-759-2024, https://doi.org/10.5194/os-20-759-2024, 2024
Short summary
Short summary
Our research introduces a tool for dynamically mapping the Arctic Ocean using data from the MOSAiC experiment. Incorporating extensive data into a model clarifies the ocean's structure and movement. Our findings on temperature, salinity, and currents reveal how water layers mix and identify areas of intense water movement. This enhances understanding of Arctic Ocean dynamics and supports climate impact studies. Our work is vital for comprehending this key region in global climate science.
Eivind H. Kolås, Tore Mo-Bjørkelund, and Ilker Fer
Ocean Sci., 18, 389–400, https://doi.org/10.5194/os-18-389-2022, https://doi.org/10.5194/os-18-389-2022, 2022
Short summary
Short summary
A turbulence instrument was installed on a light autonomous underwater vehicle (AUV) and deployed in the Barents Sea in February 2021. We present the data quality and discuss limitations when measuring turbulence from the AUV. AUV vibrations contaminate the turbulence measurements, yet the measurements were sufficiently cleaned when the AUV operated in turbulent environments. In quiescent environments the noise from the AUV became relatively large, making the turbulence measurements unreliable.
Johannes S. Dugstad, Pål Erik Isachsen, and Ilker Fer
Ocean Sci., 17, 651–674, https://doi.org/10.5194/os-17-651-2021, https://doi.org/10.5194/os-17-651-2021, 2021
Short summary
Short summary
We quantify the mesoscale eddy field in the Lofoten Basin using Lagrangian model trajectories and aim to estimate the relative importance of eddies compared to the ambient flow in transporting warm Atlantic Water to the Lofoten Basin as well as modifying it. Water properties are largely changed in eddies compared to the ambient flow. However, only a relatively small fraction of eddies is detected in the basin. The ambient flow therefore dominates the heat transport to the Lofoten Basin.
Zoe Koenig, Eivind H. Kolås, and Ilker Fer
Ocean Sci., 17, 365–381, https://doi.org/10.5194/os-17-365-2021, https://doi.org/10.5194/os-17-365-2021, 2021
Short summary
Short summary
The Arctic Ocean is a major sink for heat and salt for the global ocean. Ocean mixing contributes to this sink by mixing the Atlantic and Pacific waters with surrounding waters. We investigate the drivers of ocean mixing north of Svalbard based on observations collected during two research cruises in 2018 as part of the Nansen Legacy project. We found that wind and tidal forcing are the main drivers and that 1 % of the Atlantic Water heat loss can be attributed to vertical turbulent mixing.
Ilker Fer, Anthony Bosse, and Johannes Dugstad
Ocean Sci., 16, 685–701, https://doi.org/10.5194/os-16-685-2020, https://doi.org/10.5194/os-16-685-2020, 2020
Short summary
Short summary
We analyzed 14-month-long observations from moored instruments to describe the average features and the variability of the Norwegian Atlantic Slope Current at the Lofoten Escarpment (13°E, 69°N). The slope current varies strongly with depth and in time. Pulses of strong current occur, lasting for 1 to 2 weeks, and extend as deep as 600 m. The average volume transport is 2 x 106 m3 s-1.
Erik M. Bruvik, Ilker Fer, Kjetil Våge, and Peter M. Haugan
Ocean Sci., 16, 291–305, https://doi.org/10.5194/os-16-291-2020, https://doi.org/10.5194/os-16-291-2020, 2020
Short summary
Short summary
A concept of small and slow ocean gliders or profiling floats with wings is explored. These robots or drones measure the ocean temperature and currents. Even if the speed is very slow, only 13 cm s1, it is possible to navigate the (simulated) ocean using a navigation method called Eulerian roaming. The slow speed and size conserve a lot of energy and enable scientific missions of years at sea.
Eivind Kolås and Ilker Fer
Ocean Sci., 14, 1603–1618, https://doi.org/10.5194/os-14-1603-2018, https://doi.org/10.5194/os-14-1603-2018, 2018
Short summary
Short summary
Measurements of ocean currents, stratification and microstructure collected northwest of Svalbard are used to characterize the evolution of the warm Atlantic current. The measured turbulent heat flux is too small to account for the observed cooling rate of the current. The estimated contribution of diffusion by eddies could be limited to one half of the observed heat loss. Mixing in the bottom boundary layer, driven by cross-slope flow of buoyant water, can be important.
Jenny E. Ullgren, Elin Darelius, and Ilker Fer
Ocean Sci., 12, 451–470, https://doi.org/10.5194/os-12-451-2016, https://doi.org/10.5194/os-12-451-2016, 2016
Short summary
Short summary
One-year long moored measurements of currents and hydrographic properties in the overflow region of the Faroe Bank Channel have provided a more accurate observational-based estimate of the volume transport, entrainment, and eddy diffusivities associated with the overflow plume. The data set resolves the temporal variability and covers the entire lateral and vertical extent of the plume.
E. Darelius, I. Fer, T. Rasmussen, C. Guo, and K. M. H. Larsen
Ocean Sci., 11, 855–871, https://doi.org/10.5194/os-11-855-2015, https://doi.org/10.5194/os-11-855-2015, 2015
Short summary
Short summary
Quasi-regular eddies are known to be generated in the outflow of dense water through the Faroe Bank Channel. One year long mooring records from the plume region show that (1) the energy associated with the eddies varies by a factor of 10 throughout the year and (2) the frequency of the eddies shifts between 3 and 6 days and is related to the strength of the outflow. Similar variability is shown by a high-resolution regional model and the observations agree with theory on baroclinic instability.
T. Vihma, R. Pirazzini, I. Fer, I. A. Renfrew, J. Sedlar, M. Tjernström, C. Lüpkes, T. Nygård, D. Notz, J. Weiss, D. Marsan, B. Cheng, G. Birnbaum, S. Gerland, D. Chechin, and J. C. Gascard
Atmos. Chem. Phys., 14, 9403–9450, https://doi.org/10.5194/acp-14-9403-2014, https://doi.org/10.5194/acp-14-9403-2014, 2014
M. Bakhoday Paskyabi and I. Fer
Nonlin. Processes Geophys., 21, 713–733, https://doi.org/10.5194/npg-21-713-2014, https://doi.org/10.5194/npg-21-713-2014, 2014
E. Støylen and I. Fer
Nonlin. Processes Geophys., 21, 87–100, https://doi.org/10.5194/npg-21-87-2014, https://doi.org/10.5194/npg-21-87-2014, 2014
Jean Rabault, Trygve Halsne, Ana Carrasco, Anton Korosov, Joey Voermans, Patrik Bohlinger, Jens Boldingh Debernard, Malte Müller, Øyvind Breivik, Takehiko Nose, Gaute Hope, Fabrice Collard, Sylvain Herlédan, Tsubasa Kodaira, Nick Hughes, Qin Zhang, Kai Haakon Christensen, Alexander Babanin, Lars Willas Dreyer, Cyril Palerme, Lotfi Aouf, Konstantinos Christakos, Atle Jensen, Johannes Röhrs, Aleksey Marchenko, Graig Sutherland, Trygve Kvåle Løken, and Takuji Waseda
EGUsphere, https://doi.org/10.48550/arXiv.2401.07619, https://doi.org/10.48550/arXiv.2401.07619, 2024
Short summary
Short summary
We observe strongly modulated waves-in-ice significant wave height using buoys deployed East of Svalbard. We show that these observations likely cannot be explained by wave-current interaction or tide-induced modulation alone. We also demonstrate a strong correlation between the waves height modulation, and the rate of sea ice convergence. Therefore, our data suggest that the rate of sea ice convergence and divergence may modulate wave in ice energy dissipation.
Kjersti Kalhagen, Ragnheid Skogseth, Till M. Baumann, Eva Falck, and Ilker Fer
Ocean Sci., 20, 981–1001, https://doi.org/10.5194/os-20-981-2024, https://doi.org/10.5194/os-20-981-2024, 2024
Short summary
Short summary
Atlantic water (AW) is a key driver of change in the Barents Sea. We studied an emerging pathway through the Svalbard Archipelago that allows AW to enter the Barents Sea. We found that the Atlantic sector near the study site has warmed over the past 2 decades; that Atlantic-origin waters intermittently enter the Barents Sea through the aforementioned pathway; and that heat transport is driven by tides, wind events, and variations in the upstream current system.
Eivind H. Kolås, Ilker Fer, and Till M. Baumann
Ocean Sci., 20, 895–916, https://doi.org/10.5194/os-20-895-2024, https://doi.org/10.5194/os-20-895-2024, 2024
Short summary
Short summary
In the northwestern Barents Sea, we study the Barents Sea Polar Front formed by Atlantic Water meeting Polar Water. Analyses of ship and glider data from October 2020 to February 2021 show a density front with warm, salty water intruding under cold, fresh water. Short-term variability is linked to tidal currents and mesoscale eddies, influencing front position, density slopes and water mass transformation. Despite seasonal changes in the upper layers, the front remains stable below 100 m depth.
Ivan Kuznetsov, Benjamin Rabe, Alexey Androsov, Ying-Chih Fang, Mario Hoppmann, Alejandra Quintanilla-Zurita, Sven Harig, Sandra Tippenhauer, Kirstin Schulz, Volker Mohrholz, Ilker Fer, Vera Fofonova, and Markus Janout
Ocean Sci., 20, 759–777, https://doi.org/10.5194/os-20-759-2024, https://doi.org/10.5194/os-20-759-2024, 2024
Short summary
Short summary
Our research introduces a tool for dynamically mapping the Arctic Ocean using data from the MOSAiC experiment. Incorporating extensive data into a model clarifies the ocean's structure and movement. Our findings on temperature, salinity, and currents reveal how water layers mix and identify areas of intense water movement. This enhances understanding of Arctic Ocean dynamics and supports climate impact studies. Our work is vital for comprehending this key region in global climate science.
Cyril Palerme, Thomas Lavergne, Jozef Rusin, Arne Melsom, Julien Brajard, Are Frode Kvanum, Atle Macdonald Sørensen, Laurent Bertino, and Malte Müller
The Cryosphere, 18, 2161–2176, https://doi.org/10.5194/tc-18-2161-2024, https://doi.org/10.5194/tc-18-2161-2024, 2024
Short summary
Short summary
Sea ice forecasts are operationally produced using physically based models, but these forecasts are often not accurate enough for maritime operations. In this study, we developed a statistical correction technique using machine learning in order to improve the skill of short-term (up to 10 d) sea ice concentration forecasts produced by the TOPAZ4 model. This technique allows for the reduction of errors from the TOPAZ4 sea ice concentration forecasts by 41 % on average.
Are Frode Kvanum, Cyril Palerme, Malte Müller, Jean Rabault, and Nick Hughes
EGUsphere, https://doi.org/10.5194/egusphere-2023-3107, https://doi.org/10.5194/egusphere-2023-3107, 2024
Short summary
Short summary
Recent studies have shown that machine learning models are effective at predicting sea ice concentration, yet few have explored the development of such models in an operational context. In this study, we present the development of a machine learning forecasting system which can predict sea ice concentration at 1 km resolution, up to 3 days ahead using real time operational data. The developed forecasts predict the sea ice edge position with a better accuracy than physical and baseline forecasts.
Eivind H. Kolås, Tore Mo-Bjørkelund, and Ilker Fer
Ocean Sci., 18, 389–400, https://doi.org/10.5194/os-18-389-2022, https://doi.org/10.5194/os-18-389-2022, 2022
Short summary
Short summary
A turbulence instrument was installed on a light autonomous underwater vehicle (AUV) and deployed in the Barents Sea in February 2021. We present the data quality and discuss limitations when measuring turbulence from the AUV. AUV vibrations contaminate the turbulence measurements, yet the measurements were sufficiently cleaned when the AUV operated in turbulent environments. In quiescent environments the noise from the AUV became relatively large, making the turbulence measurements unreliable.
Cyril Palerme and Malte Müller
The Cryosphere, 15, 3989–4004, https://doi.org/10.5194/tc-15-3989-2021, https://doi.org/10.5194/tc-15-3989-2021, 2021
Short summary
Short summary
Methods have been developed for calibrating sea ice drift forecasts from an operational prediction system using machine learning algorithms. These algorithms use predictors from sea ice concentration observations during the initialization of the forecasts, sea ice and wind forecasts, and some geographical information. Depending on the calibration method, the mean absolute error is reduced between 3.3 % and 8.0 % for the direction and between 2.5 % and 7.1 % for the speed of sea ice drift.
Johannes S. Dugstad, Pål Erik Isachsen, and Ilker Fer
Ocean Sci., 17, 651–674, https://doi.org/10.5194/os-17-651-2021, https://doi.org/10.5194/os-17-651-2021, 2021
Short summary
Short summary
We quantify the mesoscale eddy field in the Lofoten Basin using Lagrangian model trajectories and aim to estimate the relative importance of eddies compared to the ambient flow in transporting warm Atlantic Water to the Lofoten Basin as well as modifying it. Water properties are largely changed in eddies compared to the ambient flow. However, only a relatively small fraction of eddies is detected in the basin. The ambient flow therefore dominates the heat transport to the Lofoten Basin.
Zoe Koenig, Eivind H. Kolås, and Ilker Fer
Ocean Sci., 17, 365–381, https://doi.org/10.5194/os-17-365-2021, https://doi.org/10.5194/os-17-365-2021, 2021
Short summary
Short summary
The Arctic Ocean is a major sink for heat and salt for the global ocean. Ocean mixing contributes to this sink by mixing the Atlantic and Pacific waters with surrounding waters. We investigate the drivers of ocean mixing north of Svalbard based on observations collected during two research cruises in 2018 as part of the Nansen Legacy project. We found that wind and tidal forcing are the main drivers and that 1 % of the Atlantic Water heat loss can be attributed to vertical turbulent mixing.
Ilker Fer, Anthony Bosse, and Johannes Dugstad
Ocean Sci., 16, 685–701, https://doi.org/10.5194/os-16-685-2020, https://doi.org/10.5194/os-16-685-2020, 2020
Short summary
Short summary
We analyzed 14-month-long observations from moored instruments to describe the average features and the variability of the Norwegian Atlantic Slope Current at the Lofoten Escarpment (13°E, 69°N). The slope current varies strongly with depth and in time. Pulses of strong current occur, lasting for 1 to 2 weeks, and extend as deep as 600 m. The average volume transport is 2 x 106 m3 s-1.
Erik M. Bruvik, Ilker Fer, Kjetil Våge, and Peter M. Haugan
Ocean Sci., 16, 291–305, https://doi.org/10.5194/os-16-291-2020, https://doi.org/10.5194/os-16-291-2020, 2020
Short summary
Short summary
A concept of small and slow ocean gliders or profiling floats with wings is explored. These robots or drones measure the ocean temperature and currents. Even if the speed is very slow, only 13 cm s1, it is possible to navigate the (simulated) ocean using a navigation method called Eulerian roaming. The slow speed and size conserve a lot of energy and enable scientific missions of years at sea.
Eivind Kolås and Ilker Fer
Ocean Sci., 14, 1603–1618, https://doi.org/10.5194/os-14-1603-2018, https://doi.org/10.5194/os-14-1603-2018, 2018
Short summary
Short summary
Measurements of ocean currents, stratification and microstructure collected northwest of Svalbard are used to characterize the evolution of the warm Atlantic current. The measured turbulent heat flux is too small to account for the observed cooling rate of the current. The estimated contribution of diffusion by eddies could be limited to one half of the observed heat loss. Mixing in the bottom boundary layer, driven by cross-slope flow of buoyant water, can be important.
Jenny E. Ullgren, Elin Darelius, and Ilker Fer
Ocean Sci., 12, 451–470, https://doi.org/10.5194/os-12-451-2016, https://doi.org/10.5194/os-12-451-2016, 2016
Short summary
Short summary
One-year long moored measurements of currents and hydrographic properties in the overflow region of the Faroe Bank Channel have provided a more accurate observational-based estimate of the volume transport, entrainment, and eddy diffusivities associated with the overflow plume. The data set resolves the temporal variability and covers the entire lateral and vertical extent of the plume.
E. Darelius, I. Fer, T. Rasmussen, C. Guo, and K. M. H. Larsen
Ocean Sci., 11, 855–871, https://doi.org/10.5194/os-11-855-2015, https://doi.org/10.5194/os-11-855-2015, 2015
Short summary
Short summary
Quasi-regular eddies are known to be generated in the outflow of dense water through the Faroe Bank Channel. One year long mooring records from the plume region show that (1) the energy associated with the eddies varies by a factor of 10 throughout the year and (2) the frequency of the eddies shifts between 3 and 6 days and is related to the strength of the outflow. Similar variability is shown by a high-resolution regional model and the observations agree with theory on baroclinic instability.
T. Vihma, R. Pirazzini, I. Fer, I. A. Renfrew, J. Sedlar, M. Tjernström, C. Lüpkes, T. Nygård, D. Notz, J. Weiss, D. Marsan, B. Cheng, G. Birnbaum, S. Gerland, D. Chechin, and J. C. Gascard
Atmos. Chem. Phys., 14, 9403–9450, https://doi.org/10.5194/acp-14-9403-2014, https://doi.org/10.5194/acp-14-9403-2014, 2014
M. Bakhoday Paskyabi and I. Fer
Nonlin. Processes Geophys., 21, 713–733, https://doi.org/10.5194/npg-21-713-2014, https://doi.org/10.5194/npg-21-713-2014, 2014
E. Støylen and I. Fer
Nonlin. Processes Geophys., 21, 87–100, https://doi.org/10.5194/npg-21-87-2014, https://doi.org/10.5194/npg-21-87-2014, 2014
Related subject area
Approach: In situ Observations | Depth range: All Depths | Geographical range: Deep Seas: Arctic Ocean | Phenomena: Turbulence and Mixing
Hydrography, transport and mixing of the West Spitsbergen Current: the Svalbard Branch in summer 2015
Eivind Kolås and Ilker Fer
Ocean Sci., 14, 1603–1618, https://doi.org/10.5194/os-14-1603-2018, https://doi.org/10.5194/os-14-1603-2018, 2018
Short summary
Short summary
Measurements of ocean currents, stratification and microstructure collected northwest of Svalbard are used to characterize the evolution of the warm Atlantic current. The measured turbulent heat flux is too small to account for the observed cooling rate of the current. The estimated contribution of diffusion by eddies could be limited to one half of the observed heat loss. Mixing in the bottom boundary layer, driven by cross-slope flow of buoyant water, can be important.
Cited articles
Alford, M. H., Cronin, M. F., and Klymak, J. M.: Annual cycle and depth penetration of wind-generated near-inertial internal waves at Ocean Station Papa in the northeast Pacific, J. Phys. Oceanogr., 42, 889–909, 2012.
Allen, S. E. and Thomson, R. E.: Bottom-trapped subinertial motions over midocean ridges in a stratified rotating fluid, J. Phys. Oceanogr., 23, 566–581, 1993.
Amante, C. and Eakins, B.: ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis. NOAA Technical Memorandum NESDIS NGDC-24. National Geophysical Data Center, NOAA, 2009.
Brink, K. H.: The effect of stratification on seamount-trapped waves, Deep-Sea Res. A., 36, 825–844, 1989.
Chapman, D. C.: Enhanced subinertial diurnal tides over isolated topographic features, Deep-Sea Res., 36, 815–824, 1989.
Chen, C., Gao, G., Qi, J., Proshutinsky, A., Beardsley, R. C.and Kowalik, Z., Lin, H., and Cowles, G.: A new high-resolution unstructured-grid finite-volume Arctic Ocean model (AO-FVCOM): an application for tidal studies, J. Geophys. Res., 114, C08017, https://doi.org/10.1029/2008JC004941, 2009.
D'Asaro, E. A. and Morison, J. H.: Internal waves and mixing in the Arctic Ocean, Deep-Sea Res., 39, S459–S484, 1992.
Egbert, G. D. and Ray, R. D.: Significant dissipation of tidal energy in the deep ocean inferred from satellite altimeter data, Nature, 405, 775–778, 2000.
Eriksen, C. C.: Implications of ocean bottom reflection for internal wave spectra and mixing, J. Phys. Oceanogr., 15, 1145–1156, 1985.
Falahat, S. and Nycander, J.: On the generation of bottom-trapped internal tides, J. Phys. Oceanogr., 45, 526–545, https://doi.org/10.1175/JPO-D-14-0081.1, 2014.
Fer, I.: Scaling turbulent dissipation in an Arctic fjord, Deep-Sea Res. II, 53, 77–95, 2006.
Fer, I. and Sundfjord, A.: Observations of upper ocean boundary layer dynamics in the marginal ice zone, J. Geophys. Res., 112, C04012, https://doi.org/10.1029/2005JC003428, 2007.
Fer, I., Skogseth, R., and Geyer, F.: Internal waves and mixing in the Marginal Ice Zone near the Yermak Plateau, J. Phys. Oceanogr., 40, 1613–1630, 2010.
Foreman, M. G. G., Cherniawsky, J. Y., and Ballantyne, V. A.: Versatile harmonic tidal analysis: improvements and applications, J. Atmos. Ocean. Technol., 26, 806–817, https://doi.org/10.1175/2008jtecho615.1, 2009.
Garrett, C. and Kunze, E.: Internal tide generation in the deep ocean, Annu. Rev. Fluid Mech., 39, 57–87, 2007.
Gascard, J. C., Richez, C., and Roaualt, C.: New insights on large-scale oceanography in Fram Strait: the West Spitsbergen Current, in: Arctic oceanography, marginal ice zones and continental shelves, edited by: Smith Jr., W. O. and Grebmeier, J., vol. 49, chap. 5, 131–182, AGU, Washington D.C., USA, 1995.
Hunkins, K.: Anomalous diurnal tidal currents on the Yermak Plateau, J. Mar. Res., 44, 51–69, 1986.
Huthnance, J. M.: On the diurnal tidal currents over Rockall Bank, Deep-Sea Res., 21, 23–35, 1974.
Huthnance, J. M.: Large tidal currents near Bear Island and related tidal energy losses from the North Atlantic, Deep-Sea Res., 28A, 51–70, 1981.
Johnston, T. M. S. and Rudnick, D. L.: Trapped diurnal internal tides, propagating semidiurnal internal tides, and mixing estimates in the California Current System from sustained glider observations, 2006–2012, Deep-Sea Res. II, 112, 61–78, https://doi.org/10.1016/j.dsr2.2014.03.009, 2014.
Jungclaus, J. H., Keenlyside, N., Botzet, M., Haak, H., Luo, J. J., Latif, M., Marotzke, J., Mikolajewicz, U., and Roeckner, E.: Ocean circulation and tropical variability in the coupled model ECHAM5/MPI-OM, J. Clim., 19, 3952–3972, https://doi.org/10.1175/JCLI3827.1, 2006.
Kagan, B. A. and Sofina, E. V.: Surface and internal semidiurnal tides and tidally induced diapycnal diffusion in the Barents Sea: a numerical study, Cont. Shelf Res., 91, 158–170, https://doi.org/10.1016/j.csr.2014.09.010, 2014.
Kang, D. J. and Fringer, O.: Energetics of barotropic and baroclinic tides in the Monterey Bay area, J. Phys. Oceanogr., 42, 272–290, 2012.
Kelly, S. M., Nash, J. D., and Kunze, E.: Internal-tide energy over topography, J. Geophys. Res., 115, C06014, https://doi.org/10.1029/2009JC005618, 2010.
Klymak, J. M., Pinkel, R., and Rainville, L.: Direct breaking of the internal tide near topography: Kaena ridge, Hawaii, J. Phys. Oceanogr., 38, 380–399, 2008.
Kunze, E. and Toole, J. M.: Tidally driven vorticity, diurnal shear, and turbulence atop Fieberling Seamount, J. Phys. Oceanogr., 27, 2663–2693, 1997.
Kunze, E., Rosenfeld, L. K., Carter, G. S., and Gregg, M. C.: Internal waves in Monterey Submarine Canyon, J. Phys. Oceanogr., 32, 1890–1913, 2002.
Leaman, K. D. and Sanford, T. B.: Vertical energy propagation of inertial waves: A vector spectral analysis of velocity profiles, J. Geophys. Res., 80, 1975–1978, 1975.
McPhee, M. G., Kikuchi, T., Morison, J. H., and Stanton, T. P.: Ocean-to-ice heat flux at the North Pole environmental observatory, Geophys. Res. Lett., 30, 2274, https://doi.org/10.1029/2003GL018580, 2003.
Müller, M.: On the space- and time-dependence of barotropic-to-baroclinic tidal energy conversion, Ocean Model., 72, 242–252, https://doi.org/10.1016/j.ocemod.2013.09.007, 2013.
Müller, M., Cherniawsky, J. Y., Foreman, M. G. G., and von Storch, J. S.: Global M2 internal tide and its seasonal variability from high resolution ocean circulation and tide modeling, Geophys. Res. Lett., 39, L19607, https://doi.org/10.1029/2012gl053320, 2012.
Müller, M., Cherniawsky, J., Foreman, M. G., and von Storch, J.-S.: Seasonal variation of the M2 tide, Ocean Dyn., 64, 159–177, https://doi.org/10.1007/s10236-013-0679-0, 2014.
Nash, J. D., Alford, M. H., and Kunze, E.: Estimating internal wave energy fluxes in the ocean, J. Atmos. Ocean. Technol., 22, 1551–1570, 2005.
Nash, J. D., Kunze, E., Lee, C. M., and Sanford, T. B.: Structure of the baroclinic tide generated at Kaena Ridge, Hawaii, J. Phys. Oceanogr., 36, 1123–1135, 2006.
Niwa, Y. and Hibiya, T.: Estimation of baroclinic tide energy available for deep ocean mixing based on three-dimensional global numerical simulations, J. Oceanogr., 67, 493–502, 2011.
Nycander, J.: Generation of internal waves in the deep ocean by tides, J. Geophys. Res., 110, C10028, https://doi.org/10.1029/2004jc002487, 2005.
Osborn, T. R.: Estimates of the local rate of vertical diffusion from dissipation measurements, J. Phys. Oceanogr., 10, 83–89, 1980.
Padman, L. and Dillon, T.: Turbulent mixing near the Yermak Plateau during the coordinated Eastern Arctic Experiment, J. Geophys. Res., 96, 4769–4782, 1991.
Padman, L., Plueddemann, A. J., Muench, R. D., and Pinkel, R.: Diurnal tides near the Yermak Plateau, J. Geophys. Res., 97, 12639–12652, 1992.
Phillips, O. M.: The Dynamics of the Upper Ocean, 2nd edn., Cambridge University Press, Cambridge, UK, 1977.
Plueddemann, A. J.: Internal wave observations from the Arctic Environmental Drifting Buoy, J. Geophys. Res., 97, 12619–12638, 1992.
Pnyushkov, A. V. and Polyakov, I. V.: Observations of tidally induced currents over the continental slope of the Laptev Sea, Arctic Ocean, J. Phys. Oceanogr., 42, 78–94, https://doi.org/10.1175/JPO-D-11-064.1, 2012.
Rhines, P. B.: Slow oscillations in an ocean of varying depth, 2: Islands and seamounts, J. Fluid Mech., 37, 191–205, 1969.
Robertson, R.: Internal tides and baroclinicity in the southern Weddell Sea 1. Model description, J. Geophys. Res., 106, 27001–27016, 2001.
Simmons, H., Chang, M.-H., Chang, Y.-T., Chao, S.-Y., Fringer, O., Jackson, C., and Ko., D.: Modeling and prediction of internal waves in the South China Sea, Oceanography, 24, 88–99, https://doi.org/10.5670/oceanog.2011, 2011.
Simmons, H. L., Hallberg, R. W., and Arbic, B. K.: Internal wave generation in a global baroclinic tide model, Deep-Sea Res. II, 51, 3043–3068, 2004.
Sirevaag, A. and Fer, I.: Early spring oceanic heat fluxes and mixing observed from drift stations north of Svalbard, J. Phys. Oceanogr., 39, 3049–3069, 2009.
Stammer, D., Ray, R. D., Andersen, O. B., Arbic, B. K., Bosch, W., Carrère, L., Cheng, Y., Chinn, D. S., Dushaw, B. D., Egbert, G. D., Erofeeva, S. Y., Fok, H. S., Green, J. A. M., Griffiths, S., King, M. A., Lapin, V., Lemoine, F. G., Luthcke, S. B., Lyard, F., Morison, J., Müller, M., Padman, L., Richman, J. G., Shriver, J. F., Shum, C. K., Taguchi, E., and Yi, Y.: Accuracy assessment of global barotropic ocean tide models, Rev. Geophys., 52, 243–282, https://doi.org/10.1002/2014RG000450, 2014.
Steele, M., Morley, R., and Ermold, W.: PHC: A global ocean hydrography with a high-quality Arctic Ocean, J. Clim., 14, 2079–2087, 2001.
Tanaka, Y., Hibiya, T., Niwa, Y., and Iwamae, N.: Numerical study of K1 internal tides in the Kuril straits, J. Geophys. Res., 115, C09016, https://doi.org/10.1029/2009JC005903, 2010.
Tanaka, Y., Yasuda, I., Hasumi, H., Tatebe, H., and Osafune, S.: Effects of the 18.6-yr modulation of tidal mixing on the North Pacific bidecadal climate variability in a coupled climate model, J. Clim., 25, 7625–7642, https://doi.org/10.1175/Jcli-D-12-00051.1, 2012.
Vlasenko, V., Stashchuk, N., Hutter, K., and Sabinin, K.: Nonlinear internal waves forced by tides near the critical latitude, Deep-Sea Res. I, 50, 317–338, 2003.
Vlasenko, V., Stashchuk, N., and Hutter, K.: Baroclinic tides. Theoretical modeling and observational evidence, Cambridge University Press, 2005.
Wang, D. P. and Mooers, C. N. K.: Coastal-trapped waves in a continuously stratified ocean, J. Phys. Oceanogr., 6, 853–863, 1976.
Wijesekera, H., Padman, L., Dillon, T., Levine, M., Paulson, C., and Pinkel, R.: The application of internal-wave dissipation models to a region of strong mixing, J. Phys. Oceanogr., 23, 269–286, 1993.
Short summary
Over the Yermak Plateau northwest of Svalbard there is substantial energy conversion from barotropic to internal tides. Internal tides are trapped along the topography. An approximate local conversion-to-dissipation balance is found over
shallows and also in the deep part of the sloping flanks. Dissipation of
tidal energy can be a significant contributor to turbulent mixing and cooling of the Atlantic layer in the Arctic Ocean.
Over the Yermak Plateau northwest of Svalbard there is substantial energy conversion from...