Articles | Volume 10, issue 6
https://doi.org/10.5194/os-10-893-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-10-893-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Evaluation of wet troposphere path delays from atmospheric reanalyses and radiometers and their impact on the altimeter sea level
J.-F. Legeais
Collecte Localisation Satellites, Parc Technologique du canal, 8–10 rue Hermès, 31520 Ramonville Saint-Agne, France
M. Ablain
Collecte Localisation Satellites, Parc Technologique du canal, 8–10 rue Hermès, 31520 Ramonville Saint-Agne, France
S. Thao
Collecte Localisation Satellites, Parc Technologique du canal, 8–10 rue Hermès, 31520 Ramonville Saint-Agne, France
Related authors
Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, Hao Zuo, Johnny A. Johannessen, Martin G. Scharffenberg, Luciana Fenoglio-Marc, M. Joana Fernandes, Ole Baltazar Andersen, Sergei Rudenko, Paolo Cipollini, Graham D. Quartly, Marcello Passaro, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 10, 281–301, https://doi.org/10.5194/essd-10-281-2018, https://doi.org/10.5194/essd-10-281-2018, 2018
Short summary
Short summary
Sea level is one of the best indicators of climate change and has been listed as one of the essential climate variables. Sea level measurements have been provided by satellite altimetry for 25 years, and the Climate Change Initiative (CCI) program of the European Space Agency has given the opportunity to provide a long-term, homogeneous and accurate sea level record. It will help scientists to better understand climate change and its variability.
Graham D. Quartly, Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, M. Joana Fernandes, Sergei Rudenko, Loren Carrère, Pablo Nilo García, Paolo Cipollini, Ole B. Andersen, Jean-Christophe Poisson, Sabrina Mbajon Njiche, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 9, 557–572, https://doi.org/10.5194/essd-9-557-2017, https://doi.org/10.5194/essd-9-557-2017, 2017
Short summary
Short summary
We have produced an improved monthly record of mean sea level for 1993–2015. It is developed by careful processing of the records from nine satellite altimeter missions, making use of the best available orbits, instrumental corrections and geophysical corrections. This paper details the selection process and the processing method. The data are suitable for investigation of sea level changes at scales from seasonal to long-term sea level rise, including interannual variations due to El Niño.
Jean-François Legeais, Pierre Prandi, and Stéphanie Guinehut
Ocean Sci., 12, 647–662, https://doi.org/10.5194/os-12-647-2016, https://doi.org/10.5194/os-12-647-2016, 2016
Short summary
Short summary
Sea level is a key indicator of climate change and has been monitored by satellite altimetry for more than 2 decades. The evaluation of the performances of the altimeter missions can be performed by comparison with in situ-independent measurements from Argo profiling floats. This allows for the detection of altimeter drift and the estimation of the impact of a new altimeter standard. This study aims at characterizing the errors of the method thanks to sensitivity analyses to different parameters.
M. Ablain, A. Cazenave, G. Larnicol, M. Balmaseda, P. Cipollini, Y. Faugère, M. J. Fernandes, O. Henry, J. A. Johannessen, P. Knudsen, O. Andersen, J. Legeais, B. Meyssignac, N. Picot, M. Roca, S. Rudenko, M. G. Scharffenberg, D. Stammer, G. Timms, and J. Benveniste
Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-11-67-2015, https://doi.org/10.5194/os-11-67-2015, 2015
Short summary
Short summary
This paper presents various respective data improvements achieved within the European Space Agency (ESA) Climate Change Initiative (ESA CCI) project on sea level during its first phase (2010-2013), using multi-mission satellite altimetry data over the 1993-2010 time span.
Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, Hao Zuo, Johnny A. Johannessen, Martin G. Scharffenberg, Luciana Fenoglio-Marc, M. Joana Fernandes, Ole Baltazar Andersen, Sergei Rudenko, Paolo Cipollini, Graham D. Quartly, Marcello Passaro, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 10, 281–301, https://doi.org/10.5194/essd-10-281-2018, https://doi.org/10.5194/essd-10-281-2018, 2018
Short summary
Short summary
Sea level is one of the best indicators of climate change and has been listed as one of the essential climate variables. Sea level measurements have been provided by satellite altimetry for 25 years, and the Climate Change Initiative (CCI) program of the European Space Agency has given the opportunity to provide a long-term, homogeneous and accurate sea level record. It will help scientists to better understand climate change and its variability.
Graham D. Quartly, Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, M. Joana Fernandes, Sergei Rudenko, Loren Carrère, Pablo Nilo García, Paolo Cipollini, Ole B. Andersen, Jean-Christophe Poisson, Sabrina Mbajon Njiche, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 9, 557–572, https://doi.org/10.5194/essd-9-557-2017, https://doi.org/10.5194/essd-9-557-2017, 2017
Short summary
Short summary
We have produced an improved monthly record of mean sea level for 1993–2015. It is developed by careful processing of the records from nine satellite altimeter missions, making use of the best available orbits, instrumental corrections and geophysical corrections. This paper details the selection process and the processing method. The data are suitable for investigation of sea level changes at scales from seasonal to long-term sea level rise, including interannual variations due to El Niño.
Christopher J. Merchant, Frank Paul, Thomas Popp, Michael Ablain, Sophie Bontemps, Pierre Defourny, Rainer Hollmann, Thomas Lavergne, Alexandra Laeng, Gerrit de Leeuw, Jonathan Mittaz, Caroline Poulsen, Adam C. Povey, Max Reuter, Shubha Sathyendranath, Stein Sandven, Viktoria F. Sofieva, and Wolfgang Wagner
Earth Syst. Sci. Data, 9, 511–527, https://doi.org/10.5194/essd-9-511-2017, https://doi.org/10.5194/essd-9-511-2017, 2017
Short summary
Short summary
Climate data records (CDRs) contain data describing Earth's climate and should address uncertainty in the data to communicate what is known about climate variability or change and what range of doubt exists. This paper discusses good practice for including uncertainty information in CDRs for the essential climate variables (ECVs) derived from satellite data. Recommendations emerge from the shared experience of diverse ECV projects within the European Space Agency Climate Change Initiative.
Marie-Isabelle Pujol, Yannice Faugère, Guillaume Taburet, Stéphanie Dupuy, Camille Pelloquin, Michael Ablain, and Nicolas Picot
Ocean Sci., 12, 1067–1090, https://doi.org/10.5194/os-12-1067-2016, https://doi.org/10.5194/os-12-1067-2016, 2016
Loren Carrere, Yannice Faugère, and Michaël Ablain
Ocean Sci., 12, 825–842, https://doi.org/10.5194/os-12-825-2016, https://doi.org/10.5194/os-12-825-2016, 2016
Short summary
Short summary
New dynamic atmospheric (DAC_ERA) and dry tropospheric (DT_ERA) correction have been computed for the altimeter period using the ERA-Interim meteorological reanalysis. The corrections improve sea level estimations in Southern Ocean and in shallow waters; the impact is the most important for the first decade of altimetry, when operational meteorological models had a weaker quality. DT_ERA remains better in the recent period. New corrections significantly impact long-term regional trends.
Jean-François Legeais, Pierre Prandi, and Stéphanie Guinehut
Ocean Sci., 12, 647–662, https://doi.org/10.5194/os-12-647-2016, https://doi.org/10.5194/os-12-647-2016, 2016
Short summary
Short summary
Sea level is a key indicator of climate change and has been monitored by satellite altimetry for more than 2 decades. The evaluation of the performances of the altimeter missions can be performed by comparison with in situ-independent measurements from Argo profiling floats. This allows for the detection of altimeter drift and the estimation of the impact of a new altimeter standard. This study aims at characterizing the errors of the method thanks to sensitivity analyses to different parameters.
L. Zawadzki and M. Ablain
Ocean Sci., 12, 9–18, https://doi.org/10.5194/os-12-9-2016, https://doi.org/10.5194/os-12-9-2016, 2016
Short summary
Short summary
The reference mean sea level (MSL) record, essential for understanding climate evolution, is derived from the altimetric measurements of the TOPEX/Poseidon mission, followed by Jason-1 and later Jason-2 on the same orbit. Soon, Jason-3 will be launched on the same historical orbit, followed by Sentinel-3a on a new one. This paper shows linking missions with the same orbit enables meeting climate user requirements regarding the MSL trend while using Sentinel-3a would increase the uncertainty.
H. B. Dieng, A. Cazenave, K. von Schuckmann, M. Ablain, and B. Meyssignac
Ocean Sci., 11, 789–802, https://doi.org/10.5194/os-11-789-2015, https://doi.org/10.5194/os-11-789-2015, 2015
M. Ablain, A. Cazenave, G. Larnicol, M. Balmaseda, P. Cipollini, Y. Faugère, M. J. Fernandes, O. Henry, J. A. Johannessen, P. Knudsen, O. Andersen, J. Legeais, B. Meyssignac, N. Picot, M. Roca, S. Rudenko, M. G. Scharffenberg, D. Stammer, G. Timms, and J. Benveniste
Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-11-67-2015, https://doi.org/10.5194/os-11-67-2015, 2015
Short summary
Short summary
This paper presents various respective data improvements achieved within the European Space Agency (ESA) Climate Change Initiative (ESA CCI) project on sea level during its first phase (2010-2013), using multi-mission satellite altimetry data over the 1993-2010 time span.
Related subject area
Approach: Remote Sensing | Depth range: Surface | Geographical range: All Geographic Regions | Phenomena: Sea Level
Orbit-related sea level errors for TOPEX altimetry at seasonal to decadal timescales
A comparison of methods to estimate vertical land motion trends from GNSS and altimetry at tide gauge stations
GEM: a dynamic tracking model for mesoscale eddies in the ocean
El Niño, La Niña, and the global sea level budget
DUACS DT2014: the new multi-mission altimeter data set reprocessed over 20 years
Major improvement of altimetry sea level estimations using pressure-derived corrections based on ERA-Interim atmospheric reanalysis
Accuracy of the mean sea level continuous record with future altimetric missions: Jason-3 vs. Sentinel-3a
Technical Note: Watershed strategy for oceanic mesoscale eddy splitting
Improved sea level record over the satellite altimetry era (1993–2010) from the Climate Change Initiative project
From satellite altimetry to Argo and operational oceanography: three revolutions in oceanography
Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean
Saskia Esselborn, Sergei Rudenko, and Tilo Schöne
Ocean Sci., 14, 205–223, https://doi.org/10.5194/os-14-205-2018, https://doi.org/10.5194/os-14-205-2018, 2018
Short summary
Short summary
Global and regional sea level changes are the subject of public and scientific concern. Sea level data from satellite radar altimetry rely on precise knowledge of the orbits. We assess the orbit-related uncertainty of sea level on seasonal to decadal timescales for the 1990s from a set of TOPEX/Poseidon orbit solutions. Orbit errors may hinder the estimation of global mean sea level rise acceleration. The uncertainty of sea level trends due to orbit errors reaches regionally up to 1.2 mm yr−1.
Marcel Kleinherenbrink, Riccardo Riva, and Thomas Frederikse
Ocean Sci., 14, 187–204, https://doi.org/10.5194/os-14-187-2018, https://doi.org/10.5194/os-14-187-2018, 2018
Short summary
Short summary
Tide gauges observe sea level changes, but are also affected by vertical land motion (VLM). Estimation of absolute sea level requires a correction for the local VLM. VLM is either estimated from GNSS observations or indirectly by subtracting tide gauge observations from satellite altimetry observations. Because altimetry and GNSS observations are often not made at the tide gauge location, the estimates vary. In this study we determine the best approach for both methods.
Qiu-Yang Li, Liang Sun, and Sheng-Fu Lin
Ocean Sci., 12, 1249–1267, https://doi.org/10.5194/os-12-1249-2016, https://doi.org/10.5194/os-12-1249-2016, 2016
Short summary
Short summary
The Genealogical Evolution Model (GEM) is an efficient logical model used to track dynamic evolution of mesoscale eddies in the ocean. It can distinguish different dynamic processes (e.g., merging and splitting) within a dynamic evolution pattern with a two-dimensional vector. All of the computational steps are linear and do not include iteration. It is very fast and is potentially useful for studying dynamic processes in other related fields, e.g., the dynamics of cyclones in meteorology.
Christopher G. Piecuch and Katherine J. Quinn
Ocean Sci., 12, 1165–1177, https://doi.org/10.5194/os-12-1165-2016, https://doi.org/10.5194/os-12-1165-2016, 2016
Short summary
Short summary
We use satellite and in situ data to elucidate global-mean sea level (GMSL) changes related to El Niño-Southern Oscillation (ENSO) over 2005–2015. Steric and mass effects make comparable contributions to the GMSL budget during ENSO, in contrast to previous interpretations based largely on hydrological models, which emphasize mass contributions. Results exemplify the usefulness of the Global Ocean Observing System for understanding the Earth's radiation imbalance and hydrological cycle.
Marie-Isabelle Pujol, Yannice Faugère, Guillaume Taburet, Stéphanie Dupuy, Camille Pelloquin, Michael Ablain, and Nicolas Picot
Ocean Sci., 12, 1067–1090, https://doi.org/10.5194/os-12-1067-2016, https://doi.org/10.5194/os-12-1067-2016, 2016
Loren Carrere, Yannice Faugère, and Michaël Ablain
Ocean Sci., 12, 825–842, https://doi.org/10.5194/os-12-825-2016, https://doi.org/10.5194/os-12-825-2016, 2016
Short summary
Short summary
New dynamic atmospheric (DAC_ERA) and dry tropospheric (DT_ERA) correction have been computed for the altimeter period using the ERA-Interim meteorological reanalysis. The corrections improve sea level estimations in Southern Ocean and in shallow waters; the impact is the most important for the first decade of altimetry, when operational meteorological models had a weaker quality. DT_ERA remains better in the recent period. New corrections significantly impact long-term regional trends.
L. Zawadzki and M. Ablain
Ocean Sci., 12, 9–18, https://doi.org/10.5194/os-12-9-2016, https://doi.org/10.5194/os-12-9-2016, 2016
Short summary
Short summary
The reference mean sea level (MSL) record, essential for understanding climate evolution, is derived from the altimetric measurements of the TOPEX/Poseidon mission, followed by Jason-1 and later Jason-2 on the same orbit. Soon, Jason-3 will be launched on the same historical orbit, followed by Sentinel-3a on a new one. This paper shows linking missions with the same orbit enables meeting climate user requirements regarding the MSL trend while using Sentinel-3a would increase the uncertainty.
Q. Y. Li and L. Sun
Ocean Sci., 11, 269–273, https://doi.org/10.5194/os-11-269-2015, https://doi.org/10.5194/os-11-269-2015, 2015
Short summary
Short summary
This study established a splitting strategy that could separate multinuclear eddies into mononuclear eddies. As the values of eddy parameters (e.g. SLA, geostrophic potential vorticity, Okubo–Weiss parameter) are similar to basins in a map, the natural divisions of the basins are the watersheds between them. It can also be applied to automatic identification of troughs and ridges from weather charts. We denoted it the Universal Splitting Technology for Circulations (USTC) method.
M. Ablain, A. Cazenave, G. Larnicol, M. Balmaseda, P. Cipollini, Y. Faugère, M. J. Fernandes, O. Henry, J. A. Johannessen, P. Knudsen, O. Andersen, J. Legeais, B. Meyssignac, N. Picot, M. Roca, S. Rudenko, M. G. Scharffenberg, D. Stammer, G. Timms, and J. Benveniste
Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-11-67-2015, https://doi.org/10.5194/os-11-67-2015, 2015
Short summary
Short summary
This paper presents various respective data improvements achieved within the European Space Agency (ESA) Climate Change Initiative (ESA CCI) project on sea level during its first phase (2010-2013), using multi-mission satellite altimetry data over the 1993-2010 time span.
P. Y. Le Traon
Ocean Sci., 9, 901–915, https://doi.org/10.5194/os-9-901-2013, https://doi.org/10.5194/os-9-901-2013, 2013
D. P. Chambers and J. A. Bonin
Ocean Sci., 8, 859–868, https://doi.org/10.5194/os-8-859-2012, https://doi.org/10.5194/os-8-859-2012, 2012
Cited articles
Ablain, M., Cazenave, A., Valladeau, G., and Guinehut, S.: A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008, Ocean Sci., 5, 193–201, https://doi.org/10.5194/os-5-193-2009, 2009.
Ablain, M., Larnicol, G., Faugere, Y., Cazenave, A., Meyssignac, B., Picot, N., and Benveniste, J.: Error Characterization of Altimetry Measurements at Climate Scales. Proceedings of the 20 years of progress in radar altimetry symposium, Venice, available at: http://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2012/oral/02_friday_28/04_errors_uncertainties_I/03_EU1_Ablain.pdf (last access: 20 March 2014), 2012.
Andersson, E., Bauer, P., Beljaars, A., Chevallier, F., Holm, E., Janiskova, M., Kallberg, P., Kelly, G., Lopez, P., Mcnally, A., Moreau, E., Simmons, A. J., Thépaut, J.-N., and Tompkins, A. M.: Assimilation and Modeling of the Atmospheric Hydrological Cycle in the ECMWF Forecasting System, B. Am. Meteorol. Soc., 86, 387–402, https://doi.org/10.1175/BAMS-86-3-387, 2005.
AVISO: TOPEX/Poseidon validation activities, 13 years of T/P data (GDR-Ms), CLS.DOS/NT/05.240. SALP-RP-MA-EA-21315-CLS, available at: www.aviso.altimetry.fr/fileadmin/documents/calval/validation_report/TP/annual_report_tp_2005.pdf (last access: 20 March 2014), 2006.
AVISO: SSALTO/DUACS User Handbook: (M)SLA and (M)ADT Near-Real Time and Delayed Time Products, CLS-DOS-NT-06-034, SALP-MU-P-EA-21065-CLS, 2013.
Bengtsson, L., Hagemann, S., and Hodges, K. I.: Can climate trends be calculated from reanalysis data?, J. Geophys. Res., 109, D11111, https://doi.org/10.1029/2004JD004536, 2004.
Brown, S.: A novel near-land radiometer wet path-delay retrieval algorithm: application to the Jason-2/OSTM advanced microwave radiometer, IEEE T. Geosci. Remote, 48, 1986–1992, https://doi.org/10.1109/TGRS.2009.2037220, 2010.
Brown, S., Desai, S., Wenwen, L., and Tanner, A. B.: On the long-term stability of microwave radiometers using noise diodes for calibration, IEEE T. Geosci. Remote, 45, 1908–1920, https://doi.org/10.1109/TGRS.2006.888098, 2007.
Brown, S., Desai, S., and Sibthorpe, A.: Error structures in the altimetry data from the Wet Tropospheric Path Delay correction, in: Proceedings of the OSTST Meeting, Lisbon, available at: http://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2010/oral/19_Tuesday/Brown.pdf (last access: 20 March 2014), 2010.
Brown, S., Desai, S., and Sibthorpe, A.: Improvements to the radiometer processing for GDR-D, in: Proceedings of the OSTST meeting, San Diego CA, available at: http://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2011/oral/02_Thursday/Splinter 5 IP/04_Brown.pdf (last access: 20 March 2014), 2011.
Carrère, L.: Improvement of DAC for climate and mesoscale studies using the ERA-Interim dataset, in preparation, 2014.
Cazenave, A., Chambers, D. P., Cipollini, P., Fu, L.-L., Hurell, J. W., Merrifield, M., Nerem, R. S., Plag, H. P., Shum, C. K., and Willis, J.: The challenge for measuring sea level rise and regional and global trends, in: Proceedings of OceanObs'09: Sustained Ocean Observations and Information for Society, edited by: Hall, J., Harrison, D. E., and Stammer, D., Vol. 1, European Space Agency, Noordwijk, the Netherlands, 135–152, (ESA Special Publication WPP-306), available at: http://www.oceanobs09.net/proceedings/pp/2A3-Cazenave-OceanObs09.pp.11.pdf (last access: 3 July 2014), 2010.
Couhert, A., Cerri, L., Legeais, J.-F., Ablain, M., Zelensky, N., Haines, B., Lemoine, F., Bertiger, W., Desai, S., and Otten, M.: Towards the 1 mm/y stability of the radial orbit error at regional scales, Adv. Space Res., online first, https://doi.org/10.1016/j.asr.2014.06.041, 2014.
Dee, D. P.: The forefront of climate monitoring, International innovation, available at: http://www.era-clim.eu/news/p27-29_ERA_Clim_LowRes.pdf (last access: 20 March 2014), 2012.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., , Haimberger, L., Healy, S. B., Hersbach, H., Holm, E. V., Isaksen, L., Kallberg, P., Kohler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Dessler, A. E. and Davis, S. M.: Trends in tropospheric humidity from reanalysis systems, J. Geophys. Res., 115, D19127, https://doi.org/10.1029/2010JD014192, 2010.
Ebita, A., Kobayashi, S., Ota, Y., Moriya, M., Kumabe, R., Onogi, K., Harada, Y., Yasui S., Miyaoka, K., Takahashi, K., Kamahori, H., Kobayashi, C., Endo, H, Soma, M., Oikawa, Y., and Ishimizu, T.: The Japanese 55-year Reanalysis "JRA-55": An interim report, SOLA, 7, 149–152, https://doi.org/10.2151/sola.2011-038, 2011.
Fernandes, M. J., Lazaro, C., Nunes, A. L., and Scharroo, R.: Atmospheric Corrections for Altimetry Studies over Inland Water, Remote Sens., 6, 4952–4997, 2014.
Fu, L.-L. and Haines, B. J.: The challenges in long-term altimetry calibration for addressing the problem of global sea level change, Adv. Space Res., 51, 1284–1300, https://doi.org/10.1016/j.asr.2012.06.005, 2012.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S., White, G., Woollen, J., Zhu, Y., Leetmaa, A., Reynolds, R., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K. C., Ropelewski, C., Wang, J., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, B. Am. Meteorol. Soc., 77, 437–470, https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2, 1996.
Keihm, S., Zlotnicki, J. V., and Ruf, C. S.: TOPEX microwave radiometer performance evaluation, IEEE T. Geosci. Remote, 38, 1379–1386, 2000.
Lagerloef, G. S. E., Mitchum, G. T., Lukas, R. B., and Niiler, P. P.: Tropical Pacific near-surface currents estimated from altimeter, wind, and drifter data, J. Geophys. Res., 104, 23313–23326, https://doi.org/10.1029/1999JC900197, 1999.
Llovel, W., Becker, M., Cazenave, A., Jevrejeva, S., Alkama, R., Decharme, B., Douville, H., Ablain, M., and Beckley, B.: Terrestrial waters and sea level variations on interannual time scale, Global Planet. Change, 75, 76–82, https://doi.org/10.1016/j.gloplacha.2010.10.008, 2011.
Molteni, F., Buizza, R., Palmer, T. N., and Petroliagis, T.: The ECMWF ensemble prediction system: methodology and validation, Q. J. Roy. Meteor. Soc., 122, 73–119, https://doi.org/10.1002/qj.49712252905, 1996.
Nedoluha, G. E., Bevilacqua, R. M., Gomez, R. M., Waltman, W. B., Hicks, B. C., Thacker, D. L., and Matthews, W. A.: Measurements of water vapor in the middle atmosphere and implications for mesospheric transport, J. Geophys. Res., 101, 21183–21193, https://doi.org/10.1029/96JD01741, 1996.
Nerem, R. S., Chambers, D. P., Leuliette, E. W., Mitchum, G. T., and Giese, B. S.: Variations in global mean sea level associated with the 1997–1998 ENSO event: implications for measuring long term sea level change, Geophys. Res. Lett., 26, 3005–3008, 1999.
Niell, A. E., Coster, A. J., Solheim, F. S., Mendes, V. B., Toor, P. C., Langley, R. B., and Upham, C. A.: Comparison of Measurements of Atmospheric Wet Delay by Radiosonde, Water Vapor Radiometer, GPS, and VLBI, J. Atmos. Ocean. Tech., 18, 830–850, 2001.
Obligis, E., Eymard, L., Tran, N., Labroue, S., and Femenias, P.: First threeyears of the microwave radiometer aboard ENVISAT: in-flight calibration, processing, and validation of the geophysical products, J. Atmos. Ocean. Tech., 23, 802–814, 2006.
Obligis, E., Eymard, L., Ablain, M., Picard, B., Legeais, J.-F., Faugère, Y., and Picot, N.: The wet tropospheric correction for altimetry missions: a Mean Sea Level issue, in: Proceedings of the OSTST meeting, Lisbon, available at: http://www.aviso.altimetry.fr/fileadmin/documents/OSTST/2010/oral/19_Tuesday/OBLIGIS.pdf (last access: 20 March 2014), 2010.
Scharroo, R., Lillibridge, J., and Smith, W. H. F.: Cross-calibration and long-term monitoring of the microwave radiometers of ERS, Topex, GFO, Jason-1 and Envisat, Mar. Geod., 97, 279–297, https://doi.org/10.1080/01490410490465265, 2004.
Seele, C. and Hartogh, P.: Water vapor of the polar middle atmosphere: annual variation and summer mesosphere Conditions as observed by ground-based microwave spectroscopy, Geophys. Res. Lett., 26, 1517–1520, https://doi.org/10.1029/1999GL900315, 1999.
Stum, J.: A comparison between TOPEX microwave radiometer, ERS 1 microwave radiometer, and European Centre for Medium-Range Weather Forecasting derived wet tropospheric corrections, J. Geophys. Res., 99, 24927–24939, https://doi.org/10.1029/94JC01104, 1994.
Stum, J.: A comparison of the brightness temperatures and water vapor path delays measured by the TOPEX, ERS-1, and ERS-2 Microwave Radiometers, J. Atmos. Ocean. Tech., 15, 987–994, 1998.
Thorne, P. W. and Vose, R. S.: Reanalyses Suitable for Characterizing Long-Term Trends, B. Am. Meteorol. Soc., 91, 353–361, https://doi.org/10.1175/2009BAMS2858.1, 2010.
Urban, T. J., Pekker, T., Tapley, B. D., Kruizinga, G. L., and Shum, C. K.: A multiyear intercomparison of wet troposphere corrections from TOPEX/Poseidon, ERS-1 and ERS-2 microwave radiometers and the European centre for medium-range weather forecasts model, J. Geophys. Res.-Oceans, 106, 19657–19669, https://doi.org/10.1029/2001JC000486, 2001.
Willis, J. K. and Church, J. A.: Regional sea-level projection, Perspect. Sci., 336, 550–551, 2012.
Zlotnicki, V. and Desai, S. D.: Assessment of Jason Microwave Radiometer's Measurement of Wet Tropspheric Path Delay using Comparisons with SSM/I and TMI, Mar. Geod., 27, 241–253, 2004.