Articles | Volume 10, issue 1
https://doi.org/10.5194/os-10-17-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-10-17-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
A parameter model of gas exchange for the seasonal sea ice zone
B. Loose
Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Rd., Narragansett, RI, 02882, USA
W. R. McGillis
Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964, USA
D. Perovich
US Army Corps of Engineers Cold Regions Research and Engineering Laboratory, 72 Lyme Rd., Hanover, NH, 03755, USA
C. J. Zappa
Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964, USA
P. Schlosser
Lamont-Doherty Earth Observatory of Columbia University, 61 Route 9W, Palisades, NY 10964, USA
Department of Earth and Environmental Sciences, Columbia University, Room 106 Geoscience Bldg., Palisades, NY 10964, USA
Department of Earth and Environmental Engineering, Columbia University, 918 Seeley Mudd Bldg., Columbia University, 500 West 120th St, New York, NY 10027, USA
Related authors
No articles found.
Nathan J. M. Laxague, Christopher J. Zappa, Andrew R. Mahoney, John Goodwin, Cyrus Harris, Robert E. Schaeffer, Roswell Schaeffer Sr., Sarah Betcher, Donna D. W. Hauser, Carson R. Witte, Jessica M. Lindsay, Ajit Subramaniam, Kate E. Turner, and Alex Whiting
The Cryosphere, 18, 3297–3313, https://doi.org/10.5194/tc-18-3297-2024, https://doi.org/10.5194/tc-18-3297-2024, 2024
Short summary
Short summary
The state of sea ice strongly affects its absorption of solar energy. In May 2019, we flew uncrewed aerial vehicles (UAVs) equipped with sensors designed to quantify the sunlight that is reflected by sea ice at each wavelength over the sea ice of Kotzebue Sound, Alaska. We found that snow patches get darker (up to ~ 20 %) as they get smaller, while bare patches get darker (up to ~ 20 %) as they get larger. We believe that this difference is due to melting around the edges of small features.
Cara C. Manning, Rachel H. R. Stanley, David P. Nicholson, Brice Loose, Ann Lovely, Peter Schlosser, and Bruce G. Hatcher
Biogeosciences, 16, 3351–3376, https://doi.org/10.5194/bg-16-3351-2019, https://doi.org/10.5194/bg-16-3351-2019, 2019
Short summary
Short summary
We measured rates of biological activity and gas exchange in a Canadian estuary during ice melt. We quantified gas exchange using inert, deliberately released tracers and found that the gas transfer rate at > 90 % ice cover was 6 % of the rate for nearly ice-free conditions. We measured oxygen concentration and isotopic composition and used the data to detect changes in the rates of photosynthesis and respiration (autotrophy and heterotrophy) as the ice melted.
D. Kiefhaber, C. J. Zappa, and B. Jähne
Ocean Sci. Discuss., https://doi.org/10.5194/osd-12-1291-2015, https://doi.org/10.5194/osd-12-1291-2015, 2015
Revised manuscript has not been submitted
Cited articles
Andreas, E. L. and Murphy, B.: Bulk transfer coefficients for heat and momentum over leads and polynyas, J. Phys. Oceanogr., 16, 1875–1883, 1986.
Andreas, E. L., Horst, T. W., Grachev, A. A., Persson, O. G., Fairall, C. W., Gueste, P. S., and Jordan, R. E.: Parametrizing turbulent exchange over summer sea ice and the marginal ice zone, Q. J. Roy. Meteorol. Soc., 136, 927–943, 2010.
Bender, M., Kinter, S., Cassar, N., and Wanninkhof, R.: Evaluating gas transfer velocity parameterizations using upper ocean radon distributions, J. Geophys. Res., 116, C02010, https://doi.org/10.1029/2009JC005805, 2011.
Blackadar, A. K. and Tennekes, H.: Asymptotic similary in a neutral barotropic planetary boundary layer, J. Atmos. Sci., 25, 1015–1020, 1968.
Bock, E. J., Hara, T., Frew, N., and McGillis, W. R.: Relationship between air-sea gas transfer and short wind waves, J. Geophys. Res., 104, 25821–25831, 1999.
Charnock, H.: Air sea interaction. Cambridge, MA, MIT Press, 1981.
Comiso, J. C.: Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I, in: National Snow and Ice Data Center, National Snow and Ice Data Center, Boulder, CO, 2007.
Cox, G. F. N. and Weeks, W. F.: Equations for determining the gas and brine volumes in sea-ice samples, J. Glaciol., 29, 306–316, 1983.
Dykaar, B. B. and Kitandis, P.: Determination of the effective hydraulic conductivity for a heterogeneous porous media using a numerical spectra approach 2. Results, Water Resour. Res., 28, 1167–1178, 1992.
Else, B., Papakyriakou, T., Galley, R. J., Drennan, W. M., Miller, L. A., and Thomas, H.: Eddy covariance measurements of wintertime CO2 fluxes in an arctic polynya: Evidence for enhanced gas transfer during ice formation, J.Geophys. Res., 116, C00G03, https://doi.org/10.1029/2010JC006760, 2011.
Fanning, K. A. and Torres, L. M.: 222Rn and 226Ra: Indicators of sea-ice effects on air-sea gas exchange, Polar Res., 10, 51–58, 1991.
Frew, N. M., Bock, E. J., Schimpf, U., Hara, T., Haußecker, H., Edson, J. B., McGillis, W. R., Nelson, R. K., McKenna, S. P., Uz, B., and Jähne, B.: Air-sea gas transfer: Its dependence on wind stress, small-scale roughness, and surface films, J. Geophys. Res., 109, C08S17, https://doi.org/10.1029/2003JC002131, 2004.
Frew, N. M., Glover, D. M., Bock, E. J., and McCue, S. J.: A new approach to estimation of global air-sea gas transfer velocity fields using dual-frequency altimeter backscatter, J. Geophys. Res., 112, C11003, https://doi.org/10.1029/2006JC003819, 2007.
Gaspar, P., Gregoris, Y., and Lefevre, J.-M.: A simple eddy kinetic energy model for simulations of the oceanic vertical mixing: Tests at Staion Papa and Long-term upper ocean study site, J. Geophys. Res.-Oceans, 95, 16179–16193, 1990.
Geiger, C. A. and Drinkwater, M. R.: Coincident buoy- and SAR-derived surface fluxes in the western Weddell Sea during Ice Station Weddell 1992, J. Geophys. Res., 110, C04002, https://doi.org/10.1029/2003JC002112, 2005.
Golden, K. M., Heaton, A. L., Eicken, H., and Lytle, V. I.: Void bounds for fluid transport in sea ice, Mech. Mater., 38, 801–817, 2006.
Gosink, T. A., Pearson, J. G., and Kelly, J. J.: Gas movement through sea-ice, Nature, 263, 41–42, 1976.
Hayes, D. R. and Jenkins, A.: Autonomous Underwater Vehicle Measurements of Surface Wave Decay and Directional Spectra in the Marginal Sea Ice Zone, J. Phys. Oceanogr., 37, 71–83, 2007.
Ho, D. T., Bliven, L., Wanninkhof, R., and Schlosser, P.: The effect of rain on air-water gas exchange, Tellus, 49B, 149–158, 1997.
Ho, D. T., Law, C. S., Smitth, M. J., Schlosser, P., Harvey, M., and Hill, P.: Measurements of air-sea gas exchange at high wind speeds in the Southern Ocean: Implications for global parameterizations, Geophys. Res. Lett., 33, L16611, https://doi.org/10.1029/2006GL026817, 2006.
Ho, D. T., Wanninkhof, R., Schlosser, P., Ullman, D. S., Hebert, D., and Sullivan, K. F.: Towards a universal relationship between wind speed and gas exchange: Gas transfer velocities measured with 3He/SF6 during the Southern Ocean Gas Exchange Experiment, J. Geophys. Res., 116, C00F04, https://doi.org/10.1029/2010JC006854, 2011.
Jähne, B. and Haubecker, H.: Air-water gas exchange, Annu. Rev. Fluid Mech., 30, 443–468, https://doi.org/10.1146/annurev.fluid.30.1.443, 1998.
Jähne, B., Münnich, K. O., Bösinger, R., Dutzi, A., Huber, W., and Libner, P.: On the parameters influencing air-water gas exchange, J. Geophys. Res., 92, 1937–1949, 1987.
Killawee, J. A., Fairchild, I. J., Tison, J.-L., Janssens, L., and Lorrain, R.: Segregation of solutes and gases in experimental freezing of dilute solutions: Implications for natural glacial systems, Geochim. Cosmochim. Ac., 62, 3637–3655, 1998.
Knuth, M. and Ackley, S. F.: Summer and early-fall sea-ice concentration in the Ross Sea: comparison of in situ ASPeCt observations and satellite passive microwave estimates, Ann. Glaciol., 44, 303–309, 2006.
Kohout, A. L. and Meylan, M. H.: An elastic plate model for wave attenuation and ice floe breaking in the marginal ice zone, J. Geophys. Res., 113, C09016, https://doi.org/10.1029/2007JC004434, 2008.
Lamont, J. C. and Scott, D. S.: An eddy cell model of mass transfer into the surface of a turbulent liquid, AIChE J., 16, 512–519, 1970.
Liss, P. S.: Processes of gas exchange across an air-water interface, Deep-Sea Res. Pt. I, 20, 221–238, 1973.
Lombardo, C. P. and Gregg, M. C.: Similiarity scaling of viscous and thermal dissipation in a convecting surface boundary layer, J. Geophys. Res., 94, 6273–6284, 1989.
Loose, B. and Schlosser, P.: Sea ice and its effect on CO2 flux between the atmosphere and the Southern Ocean interior, J. Geophys. Res.-Oceans, 116, C11019, https://doi.org/10.1029/2010JC006509, 2011.
Loose, B., McGillis, W. R., Schlosser, P., Perovich, D., and Takahashi, T.: The effects of freezing, growth and ice cover on gas transport processes in laboratory seawater experiments, Geophys. Res. Lett., 36, L05603, https://doi.org/10.1029/2008GL036318, 2009.
Loose, B., Schlosser, P., Perovich, D., Ringelberg, D., Ho, D. T., Takahashi, T., Richter-Menge, J., Reynolds, C. M., McGillis, W. R., and Tison, J.-L.: Gas diffusion through columnar laboratory sea ice: Implications for mixed-layer ventilation of CO2 in the seasonal ice zone, Tellus B, 63, 11, https://doi.org/10.1111/j.1600-0889.2010.00506.x, 2010.
Lu, P., Li, Z., Cheng, B., and Lepparanta, M.: A parameterization of the ice-ocean drag coefficient, J. Geophys. Res., 116, C07019, https://doi.org/10.1029/2010JC006878, 2011.
McGillis, W. R., Edson, J. B., Hare, J. E., and Fairall, C. W.: Direct covariance air-sea CO2 fluxes, J. Geophys. Res., 106, 16729–16745, 2001.
McPhee, M.: Turbulent heat flux in the upper ocean under sea ice, J. Geophys. Res., 97, 5365–5379, 1992.
McPhee, M. G.: Air-ice-ocean interaction: Turbulent ocean boundary layer exchange, New York, Springer, 2008.
McPhee, M. and Martinson, D. G.: Turbulent mixing under drifting pack ice in the Weddell Sea, Science, 263, 218–220, 1992.
Meylan, M. H., Squire, V. A., and Fox, C.: Toward realism in modeling ocean wave behavior in marginal ice zones, J. Geophys. Res., 102, 22981–22991, 1997.
Miller, L., Papakyriakou, T., Collins, R. E., Deming, J. W., Ehn, J. K., Macdonald, R. W., Mucci, A., Owens, O., Raudsepp, M., and Sutherland, N.: Carbon dynamics in Sea Ice: A Winter Flux Time Series, J. Geophys. Res., 116, C02028, https://doi.org/10.1029/2009JC006058, 2011.
Morison, J. H., McPhee, M., Curtin, T. B., and Paulson, T. B.: The oceanography of winter leads, J. Geophys. Res., 97, 11199–11218, 1992.
Nightingale, P. D., Liss, P. S., and Schlosser, P.: Measurements of air-sea gas transfer during an open ocean algal bloom, Geophys. Res. Lett., 27, 2117–2120, 2000.
Orton, P., McGillis, W. R., and Zappa, C. J.: Sea breeze forcing of estuary turbulence and air-water CO2 exchange, Geophys. Res. Lett., 37, L13603, https://doi.org/10.1029/2010GL043159, 2010.
Perrie, W. and Hu, Y.: Air-ice-ocean momentum exchange. Part I: Energy transfer between waves and ice floes, J. Phys. Oceanogr., 26, 1705–1720, 1996.
Perrie, W. and Hu, Y.: Air-ice-Ocean Momentum Exchange. Part II: Ice Drift, J. Phys. Oceanogr., 27, 1976–1996, 1997.
Polnikov, V. G. and Lavrenov, I. V.: Calculation of the Nonlinear Energy Transfer through the Wave Spectrum at the Sea Surface Covered with Broken Ice, Oceanology, 47, 334–343, 2007.
Proshutinsky, A., Aksenov, Y., Clement Kinney, J., Gerdes, R., Golubeva, E., Holland, E., Holloway, G., Jahn, A., Johnson, M., Popova, E., Steele, M., and Watanab, E.: Recent advances in Arctic ocean studies employing models from the Arctic Ocean Model Intercomparison Project, Oceanography, 24, 102–113, https://doi.org/10.5670/oceanog.2011.61, 2011.
Rao, K. N., Narasimha, R., and Narayanan, B.: The "bursting" phenomenon in a turbulent boundary layer, J. Fluid Mech., 48, 339–352, https://doi.org/10.1017/S0022112071001605, 1971.
Rothrock, D. A. and Thorndike, A. S.: Measuring the sea ice floe size distribution, J. Geophys. Res., 89, 6477–6486, 1985.
Shaw, W. J., Stanton, T. P., McPhee, M. G. and Kikuchi, T.: Estimates of surface roughness length in heterogeneous under-ice boundary layers, J. Geophys. Res., 113, C08030, https://doi.org/10.1029/2007JC004550, 2008.
Shirasawa, K. and Ingram, G.: Characteristics of the turbulent oceanic boundary layer under sea ice Part 1: A review of the ice-ocean boundary layer, J. Marine Syst., 2, 153–160, 1991.
Smethie, W., Takahashi, T., Chipman, D., and Ledwell, J.: Gas Exchange and CO2 Flux in the Tropical Atlantic Ocean Determined from 222Rn and pCO2 measurements, J. Geophys. Res., 90, 7005-7022, 1985.
Squire, V. A. and Williams, T. D.: Wave propagation across sea-ice thickness changes, Ocean Model., 21, 1–11, https://doi.org/10.1016/j.ocemod.2007.10.006, 2008.
Squire, V. A., Dugan, J. P., Wadhams, P., Rottier, P. J., and Liu, A. K.: Of ocean waves and sea ice, Annu. Rev. Fluid Mech., 27, 115–168, 1995.
Stanley, R., Jenkins, W. J., and Doney, S. C.: Quantifying seasonal air-sea gas exchange processes using noble gas time-series: A design experiment, J. Marine Res., 64, 267–295, 2006.
Steele, M., Morison, J. H., and Untersteiner, N.: The Partition of Air-Ice-Ocean Momentum Exchange as a Function of Ice Concentration, Floe Size, and Draft, J. Geophys. Res., 94, 12739–12750, 1989.
Stephens, B. B. and Keeling, R. F.: The influence of Antarctic sea ice on glacial-interglacial CO2 variations, Nature, 404, 171–174, 2000.
Sweeney, C., Gloor, E., Jacobson, A. R., Key, R. M., McKinley, G., Sarmiento, J.-L., and Wanninkhof, R.: Constraining global air-sea gas exchange for CO2 with recent bomb 14C measurements, Global Biogeochem. Cy., 21, GB2015, https://doi.org/10.1029/2006GB002784, 2007.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A., Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson, A., Bakker, D. C. E., Shuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii, M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema, M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A., Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.: Climatological Mean and Decadal Change in Surface Ocean pCO2, and Net Sea-air CO2 Flux over the Global Oceans, Deep-Sea Res. Pt. II, 56, 554–577, 2009.
Tennekes, H. and Lumley, J. L.: A first course in turbulence, Cambridge, MA, MIT Press, 1972.
Timmermans, M. L., Proshutinsky, A., Krishfield, R. A., Perovich, D. K., Richter-Menge, J. A., Stanton, T. P., and Toole, J. M.: Surface freshening in the Arctic Ocean's Eurasian Basin: An apparent consequence of recent change in the wind-driven circulation, J. Geophys. Res., 116, C00D03, https://doi.org/10.1029/2011JC006975, 2011.
Toyota, T., Takatsuji, S., and Nakayama, M.: Characteristics of sea ice floe size distribution in the seasonal ice zone, Geophys. Res. Lett., 33, L02616, https://doi.org/10.1029/2005GL024556, 2006.
Wadhams, P., Squire, V. A., Ewing, J. A., and Pascal, R. W.: The effect of the marginal ice zone on the directional wave spectrum of the ocean, J. Phys. Oceanogr., 16, 358–376, 1986.
Wanninkhof, R.: Relationship between Wind-Speed and Gas-Exchange over the Ocean, J. Geophys. Res.-Oceans, 97, 7373–7382, 1992.
Wanninkhof, R. and McGillis, W. R.: A cubic relationship between air-sea CO2 exchangeand wind speed, Geophys. Res. Lett., 26, 1889–1892, 1999.
Wanninkhof, R., Asher, W., Weppernig, R., Chen, H., Schlosser, P., Langdon, C., and Sambrotto, R.: Gas transfer experiment on Georges Bank using two volatile deliberate tracers, J. Geophys. Res., 98, 20237–20248, 1993.
Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C., and McGillis, W. R.: Advances in Quantifying Air-Sea Gas Exchange and Environmental Forcing, Annu. Rev. Marine Sci., 1, 213–244, https://doi.org/10.1146/annurev.marine.010908.163742, 2009.
Zappa, C. J., Raymond, P., Terray, E., and McGillis, W. R.: Variation in surface turbulence and the gas transfer velocity over a tidal cycle in a micro-tidal estuary, Estuaries, 26, 1401–1415, 2003.
Zappa, C. J., McGillis, W. R., Raymond, P. A., Edson, J. B., Hintsa, E. J., Zemmelink, H. J., Dacey, J. W. H., and Ho, D. T.: Environmental turbulent mixing controls on air-water gas exchange in marine and aquatic systems., Geophys. Res. Lett., 34, L10601, https://doi.org/10.1029/2006GL028790, 2007.