Articles | Volume 10, issue 1
https://doi.org/10.5194/os-10-141-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-10-141-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Halocline water modification and along-slope advection at the Laptev Sea continental margin
GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1–3, 24148 Kiel, Germany
S. Torres-Valdes
Ocean Biogeochemistry and Ecosystems, National Oceanography Centre (NOC), European Way, Southampton, SO14 3ZH, UK
I. Polyakov
International Arctic Research Center and College of Natural Science and Mathematics, University of Alaska Fairbanks, Fairbanks, Alaska, USA
A. Novikhin
Arctic and Antarctic Research Institute, St. Petersburg, Russia
I. Dmitrenko
Centre for Earth Observation Science, University of Manitoba, Winnipeg, Manitoba, Canada
J. McKay
College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
A. Mix
College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, Oregon, USA
Related authors
Jens A. Hölemann, Bennet Juhls, Dorothea Bauch, Markus Janout, Boris P. Koch, and Birgit Heim
Biogeosciences, 18, 3637–3655, https://doi.org/10.5194/bg-18-3637-2021, https://doi.org/10.5194/bg-18-3637-2021, 2021
Short summary
Short summary
The Arctic Ocean receives large amounts of river water rich in terrestrial dissolved organic matter (tDOM), which is an important component of the Arctic carbon cycle. Our analysis shows that mixing of three major freshwater sources is the main factor that regulates the distribution of tDOM concentrations in the Siberian shelf seas. In this context, the formation and melting of the land-fast ice in the Laptev Sea and the peak spring discharge of the Lena River are of particular importance.
T. Pados, R. F. Spielhagen, D. Bauch, H. Meyer, and M. Segl
Biogeosciences, 12, 1733–1752, https://doi.org/10.5194/bg-12-1733-2015, https://doi.org/10.5194/bg-12-1733-2015, 2015
Short summary
Short summary
Fossil planktic foraminifera and their geochemical composition are commonly used proxies in palaeoceanography. Our study with living specimens revealed that in the Fram Strait both Neogloboquadrina pachyderma and Turborotalita quinqueloba from the water column have lower δ18O and δ13C values than inorganically precipitated calcite/fossil tests from the sediment surface. These offsets indicate biological influence during calcification and a change of water column properties in the recent past.
C. Wegner, D. Bauch, J. A. Hölemann, M. A. Janout, B. Heim, A. Novikhin, H. Kassens, and L. Timokhov
Biogeosciences, 10, 1117–1129, https://doi.org/10.5194/bg-10-1117-2013, https://doi.org/10.5194/bg-10-1117-2013, 2013
Naoya Kanna, Kazutaka Tateyama, Takuji Waseda, Anna Timofeeva, Maria Papadimitraki, Laura Whitmore, Hajime Obata, Daiki Nomura, Hiroshi Ogawa, Youhei Yamashita, and Igor Polyakov
EGUsphere, https://doi.org/10.5194/egusphere-2024-1834, https://doi.org/10.5194/egusphere-2024-1834, 2024
Short summary
Short summary
This article presents data on iron and manganese, which are essential micronutrients for primary producers, on the surface of the Arctic’s Laptev and East Siberian Seas (LESS). Observations were made in international cooperation with the NABOS expedition during the late summer of 2021 in the Arctic Ocean. The results from this study indicate that the major factors controlling these metal concentrations in LESS are river discharge and the input of shelf sediment.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024, https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
Short summary
Increasing resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least of the same importance for obtaining reliable simulations.
Jens A. Hölemann, Bennet Juhls, Dorothea Bauch, Markus Janout, Boris P. Koch, and Birgit Heim
Biogeosciences, 18, 3637–3655, https://doi.org/10.5194/bg-18-3637-2021, https://doi.org/10.5194/bg-18-3637-2021, 2021
Short summary
Short summary
The Arctic Ocean receives large amounts of river water rich in terrestrial dissolved organic matter (tDOM), which is an important component of the Arctic carbon cycle. Our analysis shows that mixing of three major freshwater sources is the main factor that regulates the distribution of tDOM concentrations in the Siberian shelf seas. In this context, the formation and melting of the land-fast ice in the Laptev Sea and the peak spring discharge of the Lena River are of particular importance.
H. Jakob Belter, Thomas Krumpen, Luisa von Albedyll, Tatiana A. Alekseeva, Gerit Birnbaum, Sergei V. Frolov, Stefan Hendricks, Andreas Herber, Igor Polyakov, Ian Raphael, Robert Ricker, Sergei S. Serovetnikov, Melinda Webster, and Christian Haas
The Cryosphere, 15, 2575–2591, https://doi.org/10.5194/tc-15-2575-2021, https://doi.org/10.5194/tc-15-2575-2021, 2021
Short summary
Short summary
Summer sea ice thickness observations based on electromagnetic induction measurements north of Fram Strait show a 20 % reduction in mean and modal ice thickness from 2001–2020. The observed variability is caused by changes in drift speeds and consequential variations in sea ice age and number of freezing-degree days. Increased ocean heat fluxes measured upstream in the source regions of Arctic ice seem to precondition ice thickness, which is potentially still measurable more than a year later.
Andrey V. Pnyushkov, Igor V. Polyakov, Robert Rember, Vladimir V. Ivanov, Matthew B. Alkire, Igor M. Ashik, Till M. Baumann, Genrikh V. Alekseev, and Arild Sundfjord
Ocean Sci., 14, 1349–1371, https://doi.org/10.5194/os-14-1349-2018, https://doi.org/10.5194/os-14-1349-2018, 2018
Short summary
Short summary
This study describes along-slope volume, heat, and salt transports derived from observations collected between 2013 and 2015 in the eastern Eurasian Basin of the Arctic Ocean using a cross-slope array of six moorings. Inferred transport estimates may have wide implications and should be considered when assessing high-latitude ocean dynamics.
Andrey Pnyushkov, Igor V. Polyakov, Laurie Padman, and An T. Nguyen
Ocean Sci., 14, 1329–1347, https://doi.org/10.5194/os-14-1329-2018, https://doi.org/10.5194/os-14-1329-2018, 2018
Short summary
Short summary
A total of 4 years of velocity and hydrography records from moored profilers over the Laptev Sea slope reveal multiple events of eddies passing through the mooring site. These events suggest that the advection of mesoscale eddies is an important component of ocean dynamics in the Eurasian Basin of the Arctic Ocean. Increased vertical shear of current velocities found within eddies produces enhanced diapycnal mixing, suggesting their importance for the redistribution of heat in the Arctic Ocean.
Matthew B. Alkire, Igor Polyakov, Robert Rember, Andrey Pnyushkov, Vladimir Ivanov, and Igor Ashik
Ocean Sci., 13, 983–995, https://doi.org/10.5194/os-13-983-2017, https://doi.org/10.5194/os-13-983-2017, 2017
Short summary
Short summary
High-resolution measurements of temperature, salinity, and the stable oxygen isotope ratio of seawater were collected along the slopes of the Barents, Kara, and Laptev seas during late summer of 2013 and 2015. Two separate mixing regimes were identified that describe the initial and final stages of halocline water formation. The linear regressions defining the mixing regimes appear to be stable despite the dramatic environmental changes observed over the Arctic Ocean over the past two decades.
B. Srain, S. Pantoja, J. Sepúlveda, C. B. Lange, P. Muñoz, R. E. Summons, J. McKay, and M. Salamanca
Biogeosciences, 12, 6045–6058, https://doi.org/10.5194/bg-12-6045-2015, https://doi.org/10.5194/bg-12-6045-2015, 2015
T. Pados, R. F. Spielhagen, D. Bauch, H. Meyer, and M. Segl
Biogeosciences, 12, 1733–1752, https://doi.org/10.5194/bg-12-1733-2015, https://doi.org/10.5194/bg-12-1733-2015, 2015
Short summary
Short summary
Fossil planktic foraminifera and their geochemical composition are commonly used proxies in palaeoceanography. Our study with living specimens revealed that in the Fram Strait both Neogloboquadrina pachyderma and Turborotalita quinqueloba from the water column have lower δ18O and δ13C values than inorganically precipitated calcite/fossil tests from the sediment surface. These offsets indicate biological influence during calcification and a change of water column properties in the recent past.
I. A. Dmitrenko, S. A. Kirillov, N. Serra, N. V. Koldunov, V. V. Ivanov, U. Schauer, I. V. Polyakov, D. Barber, M. Janout, V. S. Lien, M. Makhotin, and Y. Aksenov
Ocean Sci., 10, 719–730, https://doi.org/10.5194/os-10-719-2014, https://doi.org/10.5194/os-10-719-2014, 2014
C. Wegner, D. Bauch, J. A. Hölemann, M. A. Janout, B. Heim, A. Novikhin, H. Kassens, and L. Timokhov
Biogeosciences, 10, 1117–1129, https://doi.org/10.5194/bg-10-1117-2013, https://doi.org/10.5194/bg-10-1117-2013, 2013
Related subject area
Approach: In situ Observations | Depth range: Shelf-sea depth | Geographical range: Deep Seas: Arctic Ocean | Phenomena: Chemical Tracers
Liquid export of Arctic freshwater components through the Fram Strait 1998–2011
B. Rabe, P. A. Dodd, E. Hansen, E. Falck, U. Schauer, A. Mackensen, A. Beszczynska-Möller, G. Kattner, E. J. Rohling, and K. Cox
Ocean Sci., 9, 91–109, https://doi.org/10.5194/os-9-91-2013, https://doi.org/10.5194/os-9-91-2013, 2013
Cited articles
Aagaard, K., Coachman, L. and Carmack, E.: On the halocline of the Arctic Ocean, Deep-Sea Res., 28, 529–545, 1981.
Abrahamsen, E. P., Meredith, M. P., Falkner, K. K., Torres-Valdes, S., Leng, M. J., Alkire, M. B., Bacon, S., Laxon, S., Polyakov, I., Ivanov, V., and Kirillov, S.: Tracer-derived freshwater budget of the Siberian Continental Shelf following the extreme Arctic summer of 2007, Geophys. Res. Lett., 36, L07602, https://doi.org/10.1029/2009GL037341, 2009.
Aksenov, Y., Ivanov, V. V., Nurser, A. J. G., Bacon, S., Polyakov, I. V., Coward, A. C., Naveira-Garabato, A. C., and Beszczynska-Moeller, A.: The Arctic Circumpolar Boundary Current, J. Geophys. Res.-Oceans, 116, C09017, https://doi.org/10.1029/2010JC006637, 2011.
Anderson, L. G., Andersson, P. S., Björk, G., Peter Jones, E., Jutterström, S., and Wåhlström, I.: Source and formation of the upper halocline of the Arctic Ocean, J. Geophys. Res.-Oceans, 118, 410–421, https://doi.org/10.1029/2012JC008291, 2013.
Bareiss, J., Eicken, H., Helbig, A., and Martin, T.: Impact of river discharge and regional climatology on the decay of sea ice in the Laptev Sea during spring and early summer, Arct. Antarct. Alp. Res., 31, 214– 229, 1999.
Bauch, D., Schlosser, P., and Fairbanks, R. F.: Freshwater balance and the sources of deep and bottom waters in the Arctic Ocean inferred from the distribution of H218O, Progr. Oceanogr., 35, 53–80, 1995.
Bauch, D., Erlenkeuser, H., and Andersen, N.: Water mass processes on Arctic shelves as revealed from 18O of H2O, Global Planet. Change, 48, 165–174, https://doi.org/10.1016/j.gloplacha.2004.12.011, 2005.
Bauch, D., Dmitrenko, I. A., Wegner, C., Hölemann, J., Kirillov, S. A., Timokhov, L. A., and Kassens, H.: Exchange of Laptev Sea and Arctic Ocean halocline waters in response to atmospheric forcing, J. Geophys. Res.-Oceans, 114, C05008, https://doi.org/10.1029/2008JC005062, 2009.
Bauch, D., Hölemann, J., Andersen, N., Dobrotina, E., Nikulina, A., and Kassens, H.: The Arctic shelf regions as a source of freshwater and brine-enriched waters as revealed from stable oxygen isotopes, Polarforschung, 80, 127–140, 2010.
Bauch, D., Gröger, M., Dmitrenko, I., Hölemann, J., Kirillov, S., Mackensen, A., Taldenkova, E., and Andersen, N.: Atmospheric controlled freshwater water release at the Laptev Sea Continental margin, Polar Res., 30, 5858, https://doi.org/10.3402/polar.v30i0.5858, 2011a.
Bauch, D., Rutgers van der Loeff, M., Andersen, N., Torres-Valdes, S., Bakker, K., and Abrahamsen, E. P.: Origin of freshwater and polynya water in the Arctic Ocean halocline in summer 2007, Progr. Oceanogr., 91, 482–495, https://doi.org/10.1016/j.pocean.2011.07.017, 2011b.
Bauch, D., Hölemann, J. A., Dmitrenko, I. A., Janout, M. A., Nikulina, A., Kirillov, S. A., Krumpen, T., Kassens, H., and Timokhov, L.: The impact of Siberian coastal polynyas on shelf-derived Arctic Ocean halocline waters, J. Geophys. Res.-Oceans, 117, C00G12, https://doi.org/10.1029/2011JC007282, 2012.
Bauch, D., Hölemann, J. A., Nikulina, A., Wegner, C., Janout, M. A., Timokhov, L. A., and Kassens, H.: Correlation of river water and local sea-ice melting on the Laptev Sea shelf (Siberian Arctic), J. Geophys. Res.-Oceans, 118, 550–561, https://doi.org/10.1002/jgrc.20076, 2013.
Bordovsky, O. K. and Ivanenkov, V. N.: Modern methods of hydrochemical studies of the ocean, IORAS, Moscow, 1992.
Broecker, W. S. and Peng, T. H.: Tracers in the Sea, Eldigio, Palisades, NY, 1982.
Cooper, L. W., Whitledge, T. E., Grebmeier, J. M., and Weingartner, T.: The nutrient, salinity, and stable isotope composition of Bering and Chukchi seas waters in and near the Bering Strait, J. Geophys. Res., 102, 12563–12573, 1997.
Craig, H.: Standard for reporting concentrations of Deuterium and Oxygen-18 in natural waters, Science, 133, 1833–1834, 1961.
Devol, A. H., Codispoti, L. A., and Christensen, J. P.: Summer and winter denitrification rates in western Arctic shelf sediments, Cont. Shelf Res., 17, 1029–1050, https://doi.org/10.1016/S0278-4343(97)00003-4, 1997.
Dmitrenko, I. A., Kirillov, S. A., and Tremblay, L. B.: The long-term and interannual variability of summer fresh water storage over the eastern Siberian shelf: Implication for climatic change, J. Geophys. Res.-Oceans, 113, C03007, https://doi.org/10.1029/2007JC004304, 2008.
Dmitrenko, I. A., Kirillov, S. A., Tremblay, L. B., Bauch, D., Hölemann, J. A., Krumpen, T., Kassens, H., Wegner, C., Heinemann, G., and Schröder, D.: Impact of the Arctic Ocean Atlantic Water layer on Siberian shelf hydrography, J. Geophys. Res.-Oceans, 115, C08010, https://doi.org/10.1029/2009JC006020, 2010.
Dmitrenko, I. A., Ivanov, V. V., Kirillov, S. A., Vinogradova, E. L., Torres-Valdes, S., and Bauch, D.: Properties of the Atlantic derived halocline waters over the Laptev Sea continental margin: Evidence from 2002 to 2009, J. Geophys. Res.-Oceans, 116, C10024, https://doi.org/10.1029/2011JC007269, 2011.
Dmitrenko, I. A., Kirillov, S. A., Ivanov, V. V., Rudels, B., Serra, N., and Koldunov, N. V.: Modified Halocline Water over the Laptev Sea Continental Margin: Historical Data Analysis, J. Climate, 25, 5556–5565, https://doi.org/10.1175/JCLI-D-11-00336.1, 2012.
Ekwurzel, B., Schlosser, P., Mortlock, R., and Fairbanks, R.: River runoff, sea ice meltwater, and Pacific water distribution and mean residence times in the Arctic Ocean, J. Geophys. Res.-Oceans, 106, 9075–9092, 2001.
Gruber, N. and Sarmiento, J. L.: Global patterns of marine nitrogen fixation and denitrification, Global Biogeochem. Cy., 11, 235–266, 1997.
Guay, C. K., Falkner, K. K., Muench, R. D., Mensch, M., Frank, M., and Bayer, R.: Wind-driven transport pathways for Eurasian Arctic river discharge, J. Geophys. Res., 106, 11469–11480, 2001.
Holmes, R. M., McClelland, J. W., Peterson, B. J., Tank, S. E., Bulygina, E., Eglington, T. I., Gordeev, V. V., Gurtovaya, T. Y., Raymond, P. A., Repeta, R., Staples, R., Striegl, R. G., Zhulidov, A. V., and Zimov, S. A.: Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas, Estuaries Coasts, 35, 369–382, https://doi.org/10.10007/s12237-011-9386-6, 2012.
Jones, E., Anderson, L., and Swift, J.: Distribution of Atlantic and Pacific water in the upper Arctic Ocean: Implications for circulation, Geophys. Res. Lett., 25, 765–768, 1998.
Karcher, M., Gerdes, R., and Kauker, F.: Modeling of ?18O and 99Tc dispersion in Arctic and subarctic seas, ASOF Newsletter, Issue No 5, April 2006, available at: http://epic.awi.de/epic/Main?static=yes&page=abstract&entry_dn=Kar2006d, 2006.
Kassens, H. and Dmitrenko, I. A.: The TRANSDRIFT II expedition to the Laptev Sea, Rep. Polar Res., 182, 1–180, 1995.
Kassens, H. and Volkmann-Lark, K.: Eurasische Schelfmeere im Umbruch Ozeanische Fronten und Polynjasysteme in der Laptev-See, 2010.
Krumpen, T., Janout, M., Hodges, K. I., Gerdes, R., Girard-Ardhuin, F., Hölemann, J. A., and Willmes, S.: Variability and trends in Laptev Sea ice outflow between 1992–2011, The Cryosphere, 7, 349–363, https://doi.org/10.5194/tc-7-349-2013, 2013.
Macdonald, W., Paton, D., Carmack, E., and Omstedt, A.: The freshwater budget and under-ice spreading of Mackenzie River water in the Canadian Beauford Sea based on salinity and 18O/16O measurements in water and ice, J. Geophys. Res.-Oceans, 100, 895–919, 1995.
Newton, R., Schlosser, P., Martinson, D. G., and Maslowski, W.: Freshwater distribution in the Arctic Ocean: Simulation with a high resolution model and model-data comparison, J. Geophys. Res.-Oceans, 113, C05024, https://doi.org/10.1029/2007JC004111, 2008.
Newton, R., Schlosser, P., Mortlock, R., Swift, J., and MacDonald, R.: Canadian Basin freshwater sources and changes: Results from the 2005 Arctic Ocean Section, J. Geophys. Res.-Oceans, 118, 2133–2154, https://doi.org/10.1002/jgrc.20101, 2013.
Nitishinsky, M., Anderson, L. G., and Hölemann, J. A.: Inorganic carbon and nutrient fluxes on the Arctic Shelf, Cont. Shelf Res., 27, 1584–1599, https://doi.org/10.1016/j.csr.2007.01.019, 2007.
Östlund, H. and Hut, G.: Arctic Ocean water mass balance from isotope data, J. Geophys. Res.-Oceans, 89, 6373–6381, 1984.
Overland, J. E. and Wang, M.: When will the summer arctic be nearly sea ice free? Geophys. Res. Lett., 40, 1–5, https://doi.org/10.1002/grl.50316, 2013.
Pivovarov, S. V., Hölemann, J. A., Kassens, H., Piepenburg, D., and Schmidt, M. K.: Laptev and East Siberian Seas, in: The Sea, edited by: Robinson, R. A. and Brink, K. H., 14, 1107–1133, Harvard University Press, 2004.
Rudels, B.: Atlantic sources of the Arctic Ocean surface and halocline waters, Polar Res., 23, 181–208, 2004.
Rudels, B., Anderson, L. G., and Jones, E. P.: Formation and evolution of the surface mixed layer and halocline of the Arctic Ocean, J. Geophys. Res.-Oceans, 101, 8807–8821, https://doi.org/10.1029/96JC00143, 1996.
Santschi, P., Höhener, P., Benoit, G., and Buchholtz-ten Brink, M.: Chemical processes at the sediment-water interface, Marine Chem., 30, 269–315, https://doi.org/10.1016/0304-4203(90)90076-O, 1990.
Schauer, U.: The expedition ARKTIS-XXII/2 of the research vessel "Polarstern" in 2007, Alfred-Wegener Institute for Polar and Marine Research, Bremerhaven, 2008.
Schlitzer, R.: Ocean Data View, available at: http://www.awi-bremerhaven.de/GEO/ODV, 2001.
Spreen, G., Kaleschke, L., and Heygster, G.: Sea ice remote sensing using AMSR-E 89-GHz channels, J. Geophys. Res.-Oceans, 113, C02S03, https://doi.org/10.1029/2005JC003384, 2008.
Steele, M. and Boyd, T.: Retreat of the cold halocline layer in the Arctic Ocean, J. Geophys. Res.-Oceans, 103, 10419–10435, 1998.
Tanaka, T., Guo, L., Deal, C., Tanaka, N., Whitledge, T., and Murata, A.: N deficiency in a well-oxygenated cold bottom water over the Bering Sea shelf: influence of sedimentary denitrification, Cont. Shelf Res., 24, 1271–1283, https://doi.org/10.1016/j.csr.2004.04.004, 2004.
US Environmental Protection Agency: Methods of chemical analysis of water and wastes, Cincinnati, Ohio, EPA 600/4-79/020, p. 460, 1983.
Wegner, C., Bauch, D., Hölemann, J. A., Janout, M. A., Heim, B., Novikhin, A., Kassens, H., and Timokhov, L.: Interannual variability of surface and bottom sediment transport on the Laptev Sea shelf during summer, Biogeosciences, 10, 1117–1129, https://doi.org/10.5194/bg-10-1117-2013, 2013.
Wessel, P. and Smith, W. H. F.: New improved version of the Generic Mapping Tools released, EOS Trans. AGU, 79, 579, 1998.
Woodgate, R. A., Aagaard, K., Muench, R. D., Gunn, J., Björk, G., Rudels, B., Roach, A. T., and Schauer, U.: The Arctic Ocean Boundary Current along the Eurasian slope and the adjacent Lomonosov Ridge: Water mass properties, transports andtransformations from mooredinstruments, Deep-Sea Res. I, 48, 1757–1792, 2001.
Yamamoto-Kawai, M., Carmack, E., and McLaughlin, F.: Nitrogen balance and Arctic throughflow, Nature, 443, 43–43, https://doi.org/10.1038/443043a, 2006.
Yamamoto-Kawai, M., McLaughlin, F. A., Carmack, E. C., Nishino, S., and Shimada, K.: Freshwater budget of the Canada Basin, Arctic Ocean, from salinity, δ18O, and nutrients, J. Geophys. Res.-Oceans, 113, C01007, https://doi.org/10.1029/2006JC003858, 2008.
Zhang, X., He, J., Zhang, J., Polyakov, I., Gerdes, R., Inoue, J., and Wu, P.: Enhanced poleward moisture transport and amplified northern high-latitude wetting trend, Nature Clim. Change, 3, 47–51, https://doi.org/10.1038/nclimate1631, 2013.