Articles | Volume 10, issue 1
https://doi.org/10.5194/os-10-107-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-10-107-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Fate of colloids during estuarine mixing in the Arctic
O. S. Pokrovsky
Georesources and Environment Toulouse GET, UMR5563, CNRS, Université Paul Sabatier, 14 Avenue Edouard Belin, 31400 Toulouse, France
BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, Russia
L. S. Shirokova
Georesources and Environment Toulouse GET, UMR5563, CNRS, Université Paul Sabatier, 14 Avenue Edouard Belin, 31400 Toulouse, France
Institute of Ecological Problems of the Northern Regions, Ural Branch of the Russian Academy of Science, 23 Naberezhnaja Sev. Dviny, Arkhangelsk, Russia
J. Viers
Georesources and Environment Toulouse GET, UMR5563, CNRS, Université Paul Sabatier, 14 Avenue Edouard Belin, 31400 Toulouse, France
V. V. Gordeev
P.P. Shirshov Institute of Oceanology of the Russian Academy of Science, 36 Nakhimovsky Prospekt, 117997 Moscow, Russia
V. P. Shevchenko
P.P. Shirshov Institute of Oceanology of the Russian Academy of Science, 36 Nakhimovsky Prospekt, 117997 Moscow, Russia
A. V. Chupakov
Institute of Ecological Problems of the Northern Regions, Ural Branch of the Russian Academy of Science, 23 Naberezhnaja Sev. Dviny, Arkhangelsk, Russia
T. Y. Vorobieva
Institute of Ecological Problems of the Northern Regions, Ural Branch of the Russian Academy of Science, 23 Naberezhnaja Sev. Dviny, Arkhangelsk, Russia
F. Candaudap
Georesources and Environment Toulouse GET, UMR5563, CNRS, Université Paul Sabatier, 14 Avenue Edouard Belin, 31400 Toulouse, France
C. Causserand
Georesources and Environment Toulouse GET, UMR5563, CNRS, Université Paul Sabatier, 14 Avenue Edouard Belin, 31400 Toulouse, France
A. Lanzanova
Georesources and Environment Toulouse GET, UMR5563, CNRS, Université Paul Sabatier, 14 Avenue Edouard Belin, 31400 Toulouse, France
C. Zouiten
Georesources and Environment Toulouse GET, UMR5563, CNRS, Université Paul Sabatier, 14 Avenue Edouard Belin, 31400 Toulouse, France
Related authors
Artem V. Chupakov, Anna Chupakova, Svetlana A. Zabelina, Liudmila S. Shirokova, and Oleg S. Pokrovsky
EGUsphere, https://doi.org/10.5194/egusphere-2024-233, https://doi.org/10.5194/egusphere-2024-233, 2024
Short summary
Short summary
In boreal (non-permafrost) humic (>15 mg DOC/L) waters of a forest lake and a bog, the experimentally measured rate of photodegradation is 4 times higher than that of biodegradation. However, given the shallow (0.5 m) light-penetrating layer versus the full depth of water column (2–10 m), the biodegradation may provide the largest contribution to CO2 emission from the water surfaces
Thibault Xavier, Laurent Orgogozo, Anatoly S. Prokushkin, Esteban Alonso-González, Simon Gascoin, and Oleg S. Pokrovsky
EGUsphere, https://doi.org/10.5194/egusphere-2023-3074, https://doi.org/10.5194/egusphere-2023-3074, 2024
Short summary
Short summary
Permafrost (permanently frozen soil at depth) is thawing as a result of climate change. However, estimating its future degradation is particularly challenging due to the complex multi-physical processes involved. In this work, we designed and ran numerical simulations for months on a supercomputer to quantify the impact of climate change in a forested valley of Central Siberia. There, climate change could increase the thickness of the seasonally thawed soil layer in summer by up to 45 % by 2100.
Simon Cazaurang, Manuel Marcoux, Oleg S. Pokrovsky, Sergey V. Loiko, Artem G. Lim, Stéphane Audry, Liudmila S. Shirokova, and Laurent Orgogozo
Hydrol. Earth Syst. Sci., 27, 431–451, https://doi.org/10.5194/hess-27-431-2023, https://doi.org/10.5194/hess-27-431-2023, 2023
Short summary
Short summary
Moss, lichen and peat samples are reconstructed using X-ray tomography. Most samples can be cut down to a representative volume based on porosity. However, only homogeneous samples could be reduced to a representative volume based on hydraulic conductivity. For heterogeneous samples, a devoted pore network model is computed. The studied samples are mostly highly porous and water-conductive. These results must be put into perspective with compressibility phenomena occurring in field tests.
Artem G. Lim, Ivan V. Krickov, Sergey N. Vorobyev, Mikhail A. Korets, Sergey Kopysov, Liudmila S. Shirokova, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 19, 5859–5877, https://doi.org/10.5194/bg-19-5859-2022, https://doi.org/10.5194/bg-19-5859-2022, 2022
Short summary
Short summary
In order to quantify C transport and emission and main environmental factors controlling the C cycle in Siberian rivers, we investigated the largest tributary of the Ob River, the Ket River basin, by measuring spatial and seasonal variations in carbon CO2 and CH4 concentrations and emissions together with hydrochemical analyses. The obtained results are useful for large-scale modeling of C emission and export fluxes from permafrost-free boreal rivers of an underrepresented region of the world.
Sergey N. Vorobyev, Jan Karlsson, Yuri Y. Kolesnichenko, Mikhail A. Korets, and Oleg S. Pokrovsky
Biogeosciences, 18, 4919–4936, https://doi.org/10.5194/bg-18-4919-2021, https://doi.org/10.5194/bg-18-4919-2021, 2021
Short summary
Short summary
In order to quantify riverine carbon (C) exchange with the atmosphere in permafrost regions, we report a first assessment of CO2 and CH4 concentration and fluxes of the largest permafrost-affected river, the Lena River, during the peak of spring flow. The results allowed identification of environmental factors controlling GHG concentrations and emission in the Lena River watershed; this new knowledge can be used for foreseeing future changes in C balance in permafrost-affected Arctic rivers.
Artem G. Lim, Martin Jiskra, Jeroen E. Sonke, Sergey V. Loiko, Natalia Kosykh, and Oleg S. Pokrovsky
Biogeosciences, 17, 3083–3097, https://doi.org/10.5194/bg-17-3083-2020, https://doi.org/10.5194/bg-17-3083-2020, 2020
Short summary
Short summary
To better understand the mercury (Hg) content in northern soils, we measured Hg concentration in peat cores across a 1700 km permafrost gradient in Siberia. We demonstrated a northward increase in Hg concentration in peat and Hg pools in frozen peatlands. We revised the 0–30 cm northern soil Hg pool to be 72 Gg, which is 7 % of the global soil Hg pool of 1086 Gg. The results are important for understanding Hg exchange between soil, water, and the atmosphere under climate change in the Arctic.
Liudmila S. Shirokova, Artem V. Chupakov, Svetlana A. Zabelina, Natalia V. Neverova, Dahedrey Payandi-Rolland, Carole Causserand, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 16, 2511–2526, https://doi.org/10.5194/bg-16-2511-2019, https://doi.org/10.5194/bg-16-2511-2019, 2019
Short summary
Short summary
Regardless of the size and landscape context of surface water in frozen peatland in NE Europe, the bio- and photo-degradability of dissolved organic matter (DOM) over a 1-month incubation across a range of temperatures was below 10 %. We challenge the paradigm of dominance of photolysis and biodegradation in DOM processing in surface waters from frozen peatland, and we hypothesize peat pore-water DOM degradation and respiration of sediments to be the main drivers of CO2 emission in this region.
Ivan V. Krickov, Artem G. Lim, Rinat M. Manasypov, Sergey V. Loiko, Liudmila S. Shirokova, Sergey N. Kirpotin, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 15, 6867–6884, https://doi.org/10.5194/bg-15-6867-2018, https://doi.org/10.5194/bg-15-6867-2018, 2018
Short summary
Short summary
We tested the effect of climate, permafrost and physio-geographical landscape parameters on particulate C, N and P concentrations in small- and medium- sized rivers in the Western Siberian Lowland (WSL). We discovered a maximum of particulate C and N concentrations at the beginning of the permafrost appearance. A northward shift of permafrost boundaries may increase the particulate C and N export by WSL rivers to the Arctic Ocean by a factor of 2.
Vladimir P. Shevchenko, Oleg S. Pokrovsky, Sergey N. Vorobyev, Ivan V. Krickov, Rinat M. Manasypov, Nadezhda V. Politova, Sergey G. Kopysov, Olga M. Dara, Yves Auda, Liudmila S. Shirokova, Larisa G. Kolesnichenko, Valery A. Zemtsov, and Sergey N. Kirpotin
Hydrol. Earth Syst. Sci., 21, 5725–5746, https://doi.org/10.5194/hess-21-5725-2017, https://doi.org/10.5194/hess-21-5725-2017, 2017
Short summary
Short summary
We used a coupled hydrological–hydrochemical approach to assess the impact of snow on river and lake water chemistry across a permafrost gradient in very poorly studied Western Siberia Lowland (WSL), encompassing > 1.5 million km2. The riverine springtime fluxes of major and trace element in WSL rivers might be strongly overestimated due to previously unknown input from the snow deposition.
Aleksandr F. Sabrekov, Benjamin R. K. Runkle, Mikhail V. Glagolev, Irina E. Terentieva, Victor M. Stepanenko, Oleg R. Kotsyurbenko, Shamil S. Maksyutov, and Oleg S. Pokrovsky
Biogeosciences, 14, 3715–3742, https://doi.org/10.5194/bg-14-3715-2017, https://doi.org/10.5194/bg-14-3715-2017, 2017
Short summary
Short summary
Boreal lakes and wetland ponds have pronounced impacts on the global methane cycle. During field campaigns to West Siberian lakes, strong variations in the methane flux on both local and regional scales were observed, with significant emissions from southern taiga lakes. A newly constructed process-based model helps reveal what controls this variability and on what spatial scales. Our results provide insights into the emissions and possible ways to significantly improve global carbon models.
Tatiana V. Raudina, Sergey V. Loiko, Artyom G. Lim, Ivan V. Krickov, Liudmila S. Shirokova, Georgy I. Istigechev, Daria M. Kuzmina, Sergey P. Kulizhsky, Sergey N. Vorobyev, and Oleg S. Pokrovsky
Biogeosciences, 14, 3561–3584, https://doi.org/10.5194/bg-14-3561-2017, https://doi.org/10.5194/bg-14-3561-2017, 2017
Short summary
Short summary
We collected peat porewaters across a 640 km latitudinal transect of sporadic to continuous permafrost zone and analyzed organic carbon and trace metals. There was no distinct decrease in concentration along the latitudinal transect from 62.2° N to 67.4° N. The northward migration of the permafrost boundary or the change of hydrological regime is unlikely to modify chemical composition of peat porewater fluids larger than their natural variation within different micro-landscapes.
Oleg S. Pokrovsky, Rinat M. Manasypov, Sergey V. Loiko, Ivan A. Krickov, Sergey G. Kopysov, Larisa G. Kolesnichenko, Sergey N. Vorobyev, and Sergey N. Kirpotin
Biogeosciences, 13, 1877–1900, https://doi.org/10.5194/bg-13-1877-2016, https://doi.org/10.5194/bg-13-1877-2016, 2016
Short summary
Short summary
Climate change in western Siberia and permafrost boundary migration will essentially affect the elements controlled by underground water feeding (DIC, alkaline earth elements (Ca, Sr), oxyanions (Mo, Sb, As) and U). The thickening of the active layer may increase the export of trivalent and tetravalent hydrolysates in the form of organo-ferric colloids.
O. S. Pokrovsky, R. M. Manasypov, S. Loiko, L. S. Shirokova, I. A. Krickov, B. G. Pokrovsky, L. G. Kolesnichenko, S. G. Kopysov, V. A. Zemtzov, S. P. Kulizhsky, S. N. Vorobyev, and S. N. Kirpotin
Biogeosciences, 12, 6301–6320, https://doi.org/10.5194/bg-12-6301-2015, https://doi.org/10.5194/bg-12-6301-2015, 2015
Short summary
Short summary
The governing parameter of DOC and major element concentrations and fluxes in western Siberia is latitude. High fluxes in the continuous permafrost zone of frozen peat bogs stem from the fact that the underlining mineral layer is not reactive, protected by the permafrost so that the major part of the active layer is located within the organic (peat) matrix and not the mineral matrix. Possible changes in export fluxes of DOC and major river water components under permafrost thaw are quantified.
R. M. Manasypov, S. N. Vorobyev, S. V. Loiko, I. V. Kritzkov, L. S. Shirokova, V. P. Shevchenko, S. N. Kirpotin, S. P. Kulizhsky, L. G. Kolesnichenko, V. A. Zemtzov, V. V. Sinkinov, and O. S. Pokrovsky
Biogeosciences, 12, 3009–3028, https://doi.org/10.5194/bg-12-3009-2015, https://doi.org/10.5194/bg-12-3009-2015, 2015
Short summary
Short summary
A year-around hydrochemical study (including full winter freezing and spring flood) of shallow thermokarst lakes from a discontinuous permafrost zone of western Siberia revealed conceptually new features of element concentration evolution over different seasons within a large scale of the lake size.
R. M. Manasypov, O. S. Pokrovsky, S. N. Kirpotin, and L. S. Shirokova
The Cryosphere, 8, 1177–1193, https://doi.org/10.5194/tc-8-1177-2014, https://doi.org/10.5194/tc-8-1177-2014, 2014
O. S. Pokrovsky, L. S. Shirokova, S. N. Kirpotin, S. P. Kulizhsky, and S. N. Vorobiev
Biogeosciences, 10, 5349–5365, https://doi.org/10.5194/bg-10-5349-2013, https://doi.org/10.5194/bg-10-5349-2013, 2013
Artem V. Chupakov, Anna Chupakova, Svetlana A. Zabelina, Liudmila S. Shirokova, and Oleg S. Pokrovsky
EGUsphere, https://doi.org/10.5194/egusphere-2024-233, https://doi.org/10.5194/egusphere-2024-233, 2024
Short summary
Short summary
In boreal (non-permafrost) humic (>15 mg DOC/L) waters of a forest lake and a bog, the experimentally measured rate of photodegradation is 4 times higher than that of biodegradation. However, given the shallow (0.5 m) light-penetrating layer versus the full depth of water column (2–10 m), the biodegradation may provide the largest contribution to CO2 emission from the water surfaces
Thibault Xavier, Laurent Orgogozo, Anatoly S. Prokushkin, Esteban Alonso-González, Simon Gascoin, and Oleg S. Pokrovsky
EGUsphere, https://doi.org/10.5194/egusphere-2023-3074, https://doi.org/10.5194/egusphere-2023-3074, 2024
Short summary
Short summary
Permafrost (permanently frozen soil at depth) is thawing as a result of climate change. However, estimating its future degradation is particularly challenging due to the complex multi-physical processes involved. In this work, we designed and ran numerical simulations for months on a supercomputer to quantify the impact of climate change in a forested valley of Central Siberia. There, climate change could increase the thickness of the seasonally thawed soil layer in summer by up to 45 % by 2100.
Simon Cazaurang, Manuel Marcoux, Oleg S. Pokrovsky, Sergey V. Loiko, Artem G. Lim, Stéphane Audry, Liudmila S. Shirokova, and Laurent Orgogozo
Hydrol. Earth Syst. Sci., 27, 431–451, https://doi.org/10.5194/hess-27-431-2023, https://doi.org/10.5194/hess-27-431-2023, 2023
Short summary
Short summary
Moss, lichen and peat samples are reconstructed using X-ray tomography. Most samples can be cut down to a representative volume based on porosity. However, only homogeneous samples could be reduced to a representative volume based on hydraulic conductivity. For heterogeneous samples, a devoted pore network model is computed. The studied samples are mostly highly porous and water-conductive. These results must be put into perspective with compressibility phenomena occurring in field tests.
Artem G. Lim, Ivan V. Krickov, Sergey N. Vorobyev, Mikhail A. Korets, Sergey Kopysov, Liudmila S. Shirokova, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 19, 5859–5877, https://doi.org/10.5194/bg-19-5859-2022, https://doi.org/10.5194/bg-19-5859-2022, 2022
Short summary
Short summary
In order to quantify C transport and emission and main environmental factors controlling the C cycle in Siberian rivers, we investigated the largest tributary of the Ob River, the Ket River basin, by measuring spatial and seasonal variations in carbon CO2 and CH4 concentrations and emissions together with hydrochemical analyses. The obtained results are useful for large-scale modeling of C emission and export fluxes from permafrost-free boreal rivers of an underrepresented region of the world.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Sergey N. Vorobyev, Jan Karlsson, Yuri Y. Kolesnichenko, Mikhail A. Korets, and Oleg S. Pokrovsky
Biogeosciences, 18, 4919–4936, https://doi.org/10.5194/bg-18-4919-2021, https://doi.org/10.5194/bg-18-4919-2021, 2021
Short summary
Short summary
In order to quantify riverine carbon (C) exchange with the atmosphere in permafrost regions, we report a first assessment of CO2 and CH4 concentration and fluxes of the largest permafrost-affected river, the Lena River, during the peak of spring flow. The results allowed identification of environmental factors controlling GHG concentrations and emission in the Lena River watershed; this new knowledge can be used for foreseeing future changes in C balance in permafrost-affected Arctic rivers.
Tuukka Petäjä, Ella-Maria Duplissy, Ksenia Tabakova, Julia Schmale, Barbara Altstädter, Gerard Ancellet, Mikhail Arshinov, Yurii Balin, Urs Baltensperger, Jens Bange, Alison Beamish, Boris Belan, Antoine Berchet, Rossana Bossi, Warren R. L. Cairns, Ralf Ebinghaus, Imad El Haddad, Beatriz Ferreira-Araujo, Anna Franck, Lin Huang, Antti Hyvärinen, Angelika Humbert, Athina-Cerise Kalogridis, Pavel Konstantinov, Astrid Lampert, Matthew MacLeod, Olivier Magand, Alexander Mahura, Louis Marelle, Vladimir Masloboev, Dmitri Moisseev, Vaios Moschos, Niklas Neckel, Tatsuo Onishi, Stefan Osterwalder, Aino Ovaska, Pauli Paasonen, Mikhail Panchenko, Fidel Pankratov, Jakob B. Pernov, Andreas Platis, Olga Popovicheva, Jean-Christophe Raut, Aurélie Riandet, Torsten Sachs, Rosamaria Salvatori, Roberto Salzano, Ludwig Schröder, Martin Schön, Vladimir Shevchenko, Henrik Skov, Jeroen E. Sonke, Andrea Spolaor, Vasileios K. Stathopoulos, Mikko Strahlendorff, Jennie L. Thomas, Vito Vitale, Sterios Vratolis, Carlo Barbante, Sabine Chabrillat, Aurélien Dommergue, Konstantinos Eleftheriadis, Jyri Heilimo, Kathy S. Law, Andreas Massling, Steffen M. Noe, Jean-Daniel Paris, André S. H. Prévôt, Ilona Riipinen, Birgit Wehner, Zhiyong Xie, and Hanna K. Lappalainen
Atmos. Chem. Phys., 20, 8551–8592, https://doi.org/10.5194/acp-20-8551-2020, https://doi.org/10.5194/acp-20-8551-2020, 2020
Short summary
Short summary
The role of polar regions is increasing in terms of megatrends such as globalization, new transport routes, demography, and the use of natural resources with consequent effects on regional and transported pollutant concentrations. Here we summarize initial results from our integrative project exploring the Arctic environment and pollution to deliver data products, metrics, and indicators for stakeholders.
Artem G. Lim, Martin Jiskra, Jeroen E. Sonke, Sergey V. Loiko, Natalia Kosykh, and Oleg S. Pokrovsky
Biogeosciences, 17, 3083–3097, https://doi.org/10.5194/bg-17-3083-2020, https://doi.org/10.5194/bg-17-3083-2020, 2020
Short summary
Short summary
To better understand the mercury (Hg) content in northern soils, we measured Hg concentration in peat cores across a 1700 km permafrost gradient in Siberia. We demonstrated a northward increase in Hg concentration in peat and Hg pools in frozen peatlands. We revised the 0–30 cm northern soil Hg pool to be 72 Gg, which is 7 % of the global soil Hg pool of 1086 Gg. The results are important for understanding Hg exchange between soil, water, and the atmosphere under climate change in the Arctic.
Liudmila S. Shirokova, Artem V. Chupakov, Svetlana A. Zabelina, Natalia V. Neverova, Dahedrey Payandi-Rolland, Carole Causserand, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 16, 2511–2526, https://doi.org/10.5194/bg-16-2511-2019, https://doi.org/10.5194/bg-16-2511-2019, 2019
Short summary
Short summary
Regardless of the size and landscape context of surface water in frozen peatland in NE Europe, the bio- and photo-degradability of dissolved organic matter (DOM) over a 1-month incubation across a range of temperatures was below 10 %. We challenge the paradigm of dominance of photolysis and biodegradation in DOM processing in surface waters from frozen peatland, and we hypothesize peat pore-water DOM degradation and respiration of sediments to be the main drivers of CO2 emission in this region.
Ivan V. Krickov, Artem G. Lim, Rinat M. Manasypov, Sergey V. Loiko, Liudmila S. Shirokova, Sergey N. Kirpotin, Jan Karlsson, and Oleg S. Pokrovsky
Biogeosciences, 15, 6867–6884, https://doi.org/10.5194/bg-15-6867-2018, https://doi.org/10.5194/bg-15-6867-2018, 2018
Short summary
Short summary
We tested the effect of climate, permafrost and physio-geographical landscape parameters on particulate C, N and P concentrations in small- and medium- sized rivers in the Western Siberian Lowland (WSL). We discovered a maximum of particulate C and N concentrations at the beginning of the permafrost appearance. A northward shift of permafrost boundaries may increase the particulate C and N export by WSL rivers to the Arctic Ocean by a factor of 2.
Vladimir P. Shevchenko, Oleg S. Pokrovsky, Sergey N. Vorobyev, Ivan V. Krickov, Rinat M. Manasypov, Nadezhda V. Politova, Sergey G. Kopysov, Olga M. Dara, Yves Auda, Liudmila S. Shirokova, Larisa G. Kolesnichenko, Valery A. Zemtsov, and Sergey N. Kirpotin
Hydrol. Earth Syst. Sci., 21, 5725–5746, https://doi.org/10.5194/hess-21-5725-2017, https://doi.org/10.5194/hess-21-5725-2017, 2017
Short summary
Short summary
We used a coupled hydrological–hydrochemical approach to assess the impact of snow on river and lake water chemistry across a permafrost gradient in very poorly studied Western Siberia Lowland (WSL), encompassing > 1.5 million km2. The riverine springtime fluxes of major and trace element in WSL rivers might be strongly overestimated due to previously unknown input from the snow deposition.
Aleksandr F. Sabrekov, Benjamin R. K. Runkle, Mikhail V. Glagolev, Irina E. Terentieva, Victor M. Stepanenko, Oleg R. Kotsyurbenko, Shamil S. Maksyutov, and Oleg S. Pokrovsky
Biogeosciences, 14, 3715–3742, https://doi.org/10.5194/bg-14-3715-2017, https://doi.org/10.5194/bg-14-3715-2017, 2017
Short summary
Short summary
Boreal lakes and wetland ponds have pronounced impacts on the global methane cycle. During field campaigns to West Siberian lakes, strong variations in the methane flux on both local and regional scales were observed, with significant emissions from southern taiga lakes. A newly constructed process-based model helps reveal what controls this variability and on what spatial scales. Our results provide insights into the emissions and possible ways to significantly improve global carbon models.
Tatiana V. Raudina, Sergey V. Loiko, Artyom G. Lim, Ivan V. Krickov, Liudmila S. Shirokova, Georgy I. Istigechev, Daria M. Kuzmina, Sergey P. Kulizhsky, Sergey N. Vorobyev, and Oleg S. Pokrovsky
Biogeosciences, 14, 3561–3584, https://doi.org/10.5194/bg-14-3561-2017, https://doi.org/10.5194/bg-14-3561-2017, 2017
Short summary
Short summary
We collected peat porewaters across a 640 km latitudinal transect of sporadic to continuous permafrost zone and analyzed organic carbon and trace metals. There was no distinct decrease in concentration along the latitudinal transect from 62.2° N to 67.4° N. The northward migration of the permafrost boundary or the change of hydrological regime is unlikely to modify chemical composition of peat porewater fluids larger than their natural variation within different micro-landscapes.
Hanna K. Lappalainen, Veli-Matti Kerminen, Tuukka Petäjä, Theo Kurten, Aleksander Baklanov, Anatoly Shvidenko, Jaana Bäck, Timo Vihma, Pavel Alekseychik, Meinrat O. Andreae, Stephen R. Arnold, Mikhail Arshinov, Eija Asmi, Boris Belan, Leonid Bobylev, Sergey Chalov, Yafang Cheng, Natalia Chubarova, Gerrit de Leeuw, Aijun Ding, Sergey Dobrolyubov, Sergei Dubtsov, Egor Dyukarev, Nikolai Elansky, Kostas Eleftheriadis, Igor Esau, Nikolay Filatov, Mikhail Flint, Congbin Fu, Olga Glezer, Aleksander Gliko, Martin Heimann, Albert A. M. Holtslag, Urmas Hõrrak, Juha Janhunen, Sirkku Juhola, Leena Järvi, Heikki Järvinen, Anna Kanukhina, Pavel Konstantinov, Vladimir Kotlyakov, Antti-Jussi Kieloaho, Alexander S. Komarov, Joni Kujansuu, Ilmo Kukkonen, Ella-Maria Duplissy, Ari Laaksonen, Tuomas Laurila, Heikki Lihavainen, Alexander Lisitzin, Alexsander Mahura, Alexander Makshtas, Evgeny Mareev, Stephany Mazon, Dmitry Matishov, Vladimir Melnikov, Eugene Mikhailov, Dmitri Moisseev, Robert Nigmatulin, Steffen M. Noe, Anne Ojala, Mari Pihlatie, Olga Popovicheva, Jukka Pumpanen, Tatjana Regerand, Irina Repina, Aleksei Shcherbinin, Vladimir Shevchenko, Mikko Sipilä, Andrey Skorokhod, Dominick V. Spracklen, Hang Su, Dmitry A. Subetto, Junying Sun, Arkady Y. Terzhevik, Yuri Timofeyev, Yuliya Troitskaya, Veli-Pekka Tynkkynen, Viacheslav I. Kharuk, Nina Zaytseva, Jiahua Zhang, Yrjö Viisanen, Timo Vesala, Pertti Hari, Hans Christen Hansson, Gennady G. Matvienko, Nikolai S. Kasimov, Huadong Guo, Valery Bondur, Sergej Zilitinkevich, and Markku Kulmala
Atmos. Chem. Phys., 16, 14421–14461, https://doi.org/10.5194/acp-16-14421-2016, https://doi.org/10.5194/acp-16-14421-2016, 2016
Short summary
Short summary
After kick off in 2012, the Pan-Eurasian Experiment (PEEX) program has expanded fast and today the multi-disciplinary research community covers ca. 80 institutes and a network of ca. 500 scientists from Europe, Russia, and China. Here we introduce scientific topics relevant in this context. This is one of the first multi-disciplinary overviews crossing scientific boundaries, from atmospheric sciences to socio-economics and social sciences.
Oleg S. Pokrovsky, Rinat M. Manasypov, Sergey V. Loiko, Ivan A. Krickov, Sergey G. Kopysov, Larisa G. Kolesnichenko, Sergey N. Vorobyev, and Sergey N. Kirpotin
Biogeosciences, 13, 1877–1900, https://doi.org/10.5194/bg-13-1877-2016, https://doi.org/10.5194/bg-13-1877-2016, 2016
Short summary
Short summary
Climate change in western Siberia and permafrost boundary migration will essentially affect the elements controlled by underground water feeding (DIC, alkaline earth elements (Ca, Sr), oxyanions (Mo, Sb, As) and U). The thickening of the active layer may increase the export of trivalent and tetravalent hydrolysates in the form of organo-ferric colloids.
O. S. Pokrovsky, R. M. Manasypov, S. Loiko, L. S. Shirokova, I. A. Krickov, B. G. Pokrovsky, L. G. Kolesnichenko, S. G. Kopysov, V. A. Zemtzov, S. P. Kulizhsky, S. N. Vorobyev, and S. N. Kirpotin
Biogeosciences, 12, 6301–6320, https://doi.org/10.5194/bg-12-6301-2015, https://doi.org/10.5194/bg-12-6301-2015, 2015
Short summary
Short summary
The governing parameter of DOC and major element concentrations and fluxes in western Siberia is latitude. High fluxes in the continuous permafrost zone of frozen peat bogs stem from the fact that the underlining mineral layer is not reactive, protected by the permafrost so that the major part of the active layer is located within the organic (peat) matrix and not the mineral matrix. Possible changes in export fluxes of DOC and major river water components under permafrost thaw are quantified.
R. M. Manasypov, S. N. Vorobyev, S. V. Loiko, I. V. Kritzkov, L. S. Shirokova, V. P. Shevchenko, S. N. Kirpotin, S. P. Kulizhsky, L. G. Kolesnichenko, V. A. Zemtzov, V. V. Sinkinov, and O. S. Pokrovsky
Biogeosciences, 12, 3009–3028, https://doi.org/10.5194/bg-12-3009-2015, https://doi.org/10.5194/bg-12-3009-2015, 2015
Short summary
Short summary
A year-around hydrochemical study (including full winter freezing and spring flood) of shallow thermokarst lakes from a discontinuous permafrost zone of western Siberia revealed conceptually new features of element concentration evolution over different seasons within a large scale of the lake size.
R. M. Manasypov, O. S. Pokrovsky, S. N. Kirpotin, and L. S. Shirokova
The Cryosphere, 8, 1177–1193, https://doi.org/10.5194/tc-8-1177-2014, https://doi.org/10.5194/tc-8-1177-2014, 2014
O. S. Pokrovsky, L. S. Shirokova, S. N. Kirpotin, S. P. Kulizhsky, and S. N. Vorobiev
Biogeosciences, 10, 5349–5365, https://doi.org/10.5194/bg-10-5349-2013, https://doi.org/10.5194/bg-10-5349-2013, 2013
Cited articles
Alfaro-De la Torre, M. C., Beaulieu, P. Y., and Tessier, A. T.: In situ measurement of trace metals in lakewater using the dialysis and DGT techniques, Anal. Chim. Acta, 418, 53–68, 2000.
Allard, T., Menguy, N., Salomon, J., Calligaro, T., Weber, T., Calas, G., and Benedetti, M. F.: Revealing forms of iron in river-borne material from major tropical rivers of the Amazon Basin (Brazil), Geochim. Cosmochim. Ac., 68, 3079–3094, 2004.
Amon, R. M. W. and Benner, R.: Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River System, Geochim. Cosmochim. Ac., 60, 1783–1792, 1996.
Amon, R. M. W., Rinehart, A. J., Duan, S., Louchouarn, P., Prokushkin, A., Guggenberger, G., Bauch, D., Stedmon, C., Raymond, P. A., Holmes, R. M., McClelland, J. W., Peterson, B. J., Walker, S. A., and Zhulidov, A. V.: Dissolved organic matter sources in large Arctic rivers, Geochim. Cosmochim. Ac., 94, 217–237, 2012.
Andersson, P. S., Porcelli, D., Wasserburg, G. J., and Ingri, J.: Particle transport of 234U/238U in the Kalix river and in the Baltic Sea, Geochim. Cosmochim. Ac. 62, 385–392, 1998.
Andersson, P. S., Porcelli, D., Gustafsson, O., Ingri, J., and Wasserburg, G. J.: The importance of colloids for the behavior of uranium isotopes in the low-salinity zone of a stable estuary, Geochim. Cosmochim. Ac., 65, 13–25, 2001.
Anesio, A. M. and Graneli, W.: Photochemical mineralization of dissolved organic carbon in lakes of different pH and humic content, Archiv für Hydrobiologie, 160, 105–116, 2004.
Artemyev, V. E. and Romankevich, E. A.: Seasonal variations in the transport of organic matter in North Dvina Estuary, Mitt. Geol.-Paläont. Inst. Univ. Hamburg, SCOPE/UNEP Sonderband Heft, 66, 177–184, 1988.
Ask, J., Karlsson, J., Persson, L., Ask, P., Byström, P., and Jansson, M.: Whole-lake estimates of carbon flux through algae and bacteria in benthic and pelagic habitats of clear-water lakes, Ecology, 90, 1923–1932, 2008.
Åström, M. E., Österholm, P., Gustafsson, J. P., Nystrand, M., Peltola, P., Nordmyr, L., and Boman, A.: Attenuation of rare earth elements in a boreal estuary, Geochim. Cosmochim. Ac., 96, 105–119, 2012.
Audry, S., Blanc, G., Schäfer, J., Chaillou, G., and Robert, S.: Early diagenesis of trace metals (Cd, Cu, Co, Ni, U, Mo, and V) in the freshwater reaches of a macrotidal estuary, Geochim. Cosmochim. Ac., 70, 2264–2282, 2006.
Audry, S., Blanc, G., Schäfer, J., and Robert, S.: Effect of estuarine sediment resuspension on early diagenesis, sulfide oxidation and dissolved molebdenum and uranium distribution in the Gironde estuary, France, Chem. Geol., 238, 149–167, 2007.
Bagard, M. L., Chabaux, F., Pokrovsky, O. S., Prokushkin, A. S., Viers, J., Dupré, B., and Stille, P.: Seasonal variability of element fluxes in two Central Siberian rivers draining high latitude permafrost dominated areas, Geochim. Cosmochim. Ac., 75, 3335–3357, 2011.
Barbeau, K., Rue, E., Bruland, K., and Butler, A.: Photochemical cycling of iron in the surface ocean mediated by microbial iron (III)-binding ligands, Nature, 413, 409–413, 2001.
Bau, M.: Scavenging of dissolved yttrium and rare earths by precipitating iron oxyhydroxide: Experimental evidence for Ce oxidation, Y-Ho fractionation, and lanthanide tetrad effect, Geochim. Cosmochim. Ac., 63, 67–77, 1999.
Beck, M., Dellwig, O., Fischer, S., Schnetger, B., and Brumsack, H.-J.: Trace metal geochemistry of organic-rich watercourses draining the NW German coast, Estuar. Coast. Shelf S., 104–105, 66–79, 2012.
Benoit, G., Oktay-Marshall, S. D., Cantu II, A., Hood, E. M., Coleman, C. H., Corapcioglu, M. O., and Santschi, P. H.: Partitioning of Cu, Pb, Ag, Zn, Fe, Al, and Mn between filter-retained particles, colloids, and solution in six Texas estuaries, Mar. Chem., 45, 307–336, 1994.
Bertilsson, S. and Tranvik, L. J.: Photochemical transformation of dissolved organic matter in lakes, Limnol. Oceanogr., 45, 753–62, 2000.
Bianci, T. S.: Biogeochemistry of Estuaries, Oxford University Press, Oxford, United Kingdom, 706 pp., 2007.
Bianci, T. S. and Allison, M. A.: Large-river delta-front estuaries as natural "recorders" of global environmental change, P. Natl. Acad. Sci. USA, 106, 8085–8092, 2009.
Boughriet, A., Ouddane, B., Fischer, J. C., Wartel, M., and Leman, G.: Variability of dissolved Mn and Zn in the Seine estuary and chemical speciation of these metals in suspended matter, Water Res., 26, 1359–1378, 1992.
Boye, M., Nishioka, J., Croot, P., Laan, P., Timmermans, K. R., Strass, V. H., Takeda, S., and de Baar, H. J. W.: Significant portion of dissolved organic Fe complexes in fact is Fe colloids, Mar. Chem., 122, 20–27, 2010.
Boyle, E., Collier, R., Dengler, A. T., Edmond, J. M., Ng, A. C., and Stallard, R. F.: On the chemical mass-balance in estuaries, Geochim. Cosmochim. Ac., 38, 1719–1728, 1974.
Boyle, E., Edmond, J. M., and Sholkowitz, E. R.: The mechanism of iron removal in estuaries, Geochim. Cosmochim. Ac., 41, 1313–1324, 1977.
Breuer, E., Sañudo-Wilhelmy, S. A., and Aller, R. C.: Trace metals and dissolved organic carbon in an estuary with restricted river flow and a brown tide bloom, Estuaries, 22, 603–615, 1999.
Dai, M. and Martin, J.: First data on trace metal level and behaviour in two major Arctic river-estuarine systems (Ob and Yenisey) and in the adjacent Kara Sea, Russia, Earth Planet. Sc. Lett., 131, 127–141, 1995.
Dai, M., Martin, J., and Cauwet, G.: The significant role of colloids in the transport and transformation of organic carbon and associated trace metals (Cd, Cu and Ni) in the Rhône delta (France), Mar. Chem., 51, 159–175, 1995.
Du Laing, G., Rinklebe, J., Vandecasteele, B., Meers, E., and Tack, F. M. G.: Trace metal behavior in estuarine and riverine floodplain soils and sediments: A review, Sci. Total Environ., 407, 3972–3985, 2009.
Elbaz-Poulichet, F., Garnier, J.-M., Guan, D. M., Martin, J.-M., and Thomas, A. J.: The conservative behaviour of trace metals (Cd, Cu, Ni and Pb) and As in the surface plume of stratified estuaries: example of the Rhône River (France), Estuar. Coast. Shelf S., 42, 289–310, 1996.
Elderfield, H., Upstill-Goddard, R., and Sholkovitz, E. R.: The rare earth elements in rivers, estuaries, and coastal seas and their significance to the composition of ocean waters, Geochim. Cosmochim. Ac., 54, 971–991, 1990.
Forsberg, J., Dahlqvist, R., Gelting-Nystrom, J., and Ingri, J.: Trace metal speciation in Brackish water using diffusion gradients in thin films and ultrafiltration: comparison of techniques, Environ. Sci. Technol., 40, 3901–3905, 2006.
Fujii, M., Ito, H., Rose, A. L., Waite, D. T., and Omura, T.: Superoxide-mediated Fe(II) formation from organically complexed Fe(III) in coastal waters, Geochim. Cosmochim. Ac., 72, 6079–6089, 2008a.
Fujii, M., Ito, H., Rose, A. L., Waite, D. T., and Omura, T.: Transformation dynamics and reactivity of dissolved and colloidal iron in coastal waters, Marine Chem., 110, 165–175, 2008b.
Gerringa, L. J. A., Rijkenberg, M. J. A., Wolterbeek, H. Th., Verburg, T. G., Boye, M., and de Baar, H. J. W.: Kinetic study reveals weak Fe-binding ligand, which affects the solubility of Fe in the Scheldt estuary, Mar. Chem., 103, 30–45, 2007.
Gimpel, J., Zhang, H., Davison, W., and Edwards, A. C.: In situ metal speciation in lake surface waters using DGT, dialysis, and filtration, Environ. Sci. Technol., 37, 138–146, 2003.
Gobeil, C.: Biogeochemistry and chemical contamination in the St. Lawrence Estuary, The Handbook of Environmental Chemistry, Pt. H, 5, 121–147, https://doi.org/10.1007/698_5_023, 2006.
Gordeev, V. V.: Geochemistry of the river-sea system, Moskow, Russia, 452 pp., 2012.
Gordeev, V. V., Martin, J.-M., Sidorov, I. S., and Sidorova, M. V.: A reassessment of the Eurasian river input of water, sediment, major elements, and nutrients to the Arctic Ocean, Am. J. Sci., 296, 664–691, 1996.
Gordeev, V. V., Beeskow, B., and Rachold, V.: Geochemistry of the Ob and Yenisey estuaries: A comparative study, Berichte zur Polar-und Meeresforschung, AWI-Bremerhaven, Germany, 565, 235 pp., 2007.
Greenamoyer, J. M. and Moran, S. B.: Investigation of Cd, Cu, Ni and 234Th in the colloidal size range in the Gulf of Maine, Mar. Chem., 57, 217–226, 1997.
Guieu, C. and Martin, J. M.: The level and fate of metals in the Danube River plume, Estuar. Coast. Shelf S., 54, 501–512, 2002.
Guieu, C., Huang, W. W., Martin, J.-M., and Yong, Y. Y.: Outflow of trace metals into the Laptev Sea by the Lena River, Mar. Chem., 53, 255–267, 1996.
Gustafsson, O., Widerlund, A., Andersson, P. S., Ingri, J., Roos, P., and Ledin, A.: Colloid dynamics and transport of major elements through a boreal river – brackish bay mixing zone, Mar. Chem., 71, 1–21, 2000.
Hamilton-Taylor, J., Postill, A. S., Tipping, E., and Harper, M. P.: Laboratory measurements and modelling of metal-humic interactions under estuarine conditions, Geochim. Cosmochim. Ac., 66, 403–415, 2002.
Holmes, R. M., McClelland, J. W., Peterson, B. J., Tank, S. E., Bulygina, E., Eglinton, T. I., Gordeev, V. V., Gurtovaya, T. Y., Raymond, P. A., Repeta, D. J., Staples, R., Striegl, R. G., Zhulidov, A. V., and Zimov, S. A.: Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas, Estuar. Coast., 35, 369–382, https://doi.org/10.1007/s12237-011-9386-6, 2012.
Howell, K. A., Achterberg, E. P., Tappin, A. D., and Worsfold, P. J.: Colloidal metals in the Tamar Estuary and their influence on metal fractionation by membrane filtration, Environ. Chem., 3, 199–207, 2006.
Ilina, S. M., Poitrasson, F., Lapitskiy, S. A., Alekhin, Yu. V., Viers, J., and Pokrovsky, O. S.: Extreme iron isotope fractionation between colloids and particles of boreal and temperate organic-rich waters, Geochim. Cosmochim. Ac., 101, 96–111, 2013a.
Ilina, S. M., Viers, J., Mialle, S., Mavromatis, V., Brunet, P., Lapitskiy, S. A., Alekhin, Y. V., and Pokrovsky, O. S.: Stable (Cu, Mg) and radiogenic (Sr, Nd) isotope fractionation in colloids of boreal organic-rich waters, Chem. Geol., 342, 63–75, 2013b.
Ingri, J., Nordling, S., Larsson, J., Rönnegård, J., Nilsson, N., Rodushkin, I., Dahlqvist, R., Andersson, P., and Gustafsson, Ö.: Size distribution of colloidal trace metals and organic carbon during a coastal bloom in the Baltic Sea, Mar. Chem., 91, 117–130, 2004.
Ingri, J., Pekka, L., Dauvalter, V., Rodushkin, I., and Peinerud, E.: Manganese redox cycling in Lake Imandra: impact on nitrogen and the trace metal sediment record, Biogeosciences Discuss., 8, 273–321, https://doi.org/10.5194/bgd-8-273-2011, 2011.
Jansson, M., Bergström, A. K., Blomqvist, P., and Drakare, S.: Allochthonous organic carbon and phytoplankton/bacterioplankton production relationship in lakes, Ecology, 81, 3250–3255, 2000.
Jansson, M., Persson, L., De Roos, A. M., Jones, R. I., and Tranvik, L. J.: Terrestrial carbon and intraspecific size-variation shape lake ecosystems, Trends Ecol. Evol., 22, 316–322, 2007.
Jonsson, A., Meili, M., Bergström, A. K., and Jansson, M.: Whole-lake mineralization of allochthonous organic carbon in a large humic lake (Ortrasket, N. Sweden), Limnol. Oceanogr., 46, 1691–700, 2001.
Kattner, G., Lobbes, J., Fritznar, H. P., Engbrodt, R., and Lara, R. J.: Tracing dissolved organic substances and nutrients from the Lena River through Laptev Sea (Arctic), Mar. Chem., 65, 25–39, 1999.
Kelton, N., Molot, L. A., and Dillon, P. J.: Effect of ultraviolet and visible radiation on iron lability in boreal and artificial waters, Aquat. Sci., 69, 86–95, 2007.
Klinkhammer, G. P. and McManus, J.: Dissolved manganese in the Columbia River estuary: Production in the water column, Geochim. Cosmochim. Ac., 65, 2835–2841, 2001.
Koehler, H., Meon, B., Gordeev, V. V., Spitzy, A., and Amon, R. M. W.: Dissolved organic matter (DOM) in the estuaries of Ob and Yenisei and the adjacent Kara-Sea, Russia, Proceed. Marine Sci., 6, 281–309, 2003.
Kopáček, J., Klementová, S., and Norton, S. A.: Photochemical production of ionic and particulate aluminium and iron in lakes, Environ. Sci. Technol., 39, 3656–3662, 2006a.
Kopáček, J., Marešova, M., Norton, S. A., Porcal, P., and Vesely, J.: Photochemical source of metals for sediments, Environ. Sci. Technol., 40, 4455–4459, 2006b.
Koukina, S. E., Calafat-Frau, A., Hummel, H., and Palerud, R.: Trace metals in suspended particulate matter and sediments from teh Severnaya Dvina estuary, Russian Arctic, Polar Res., 37, 249–256, 2001.
Kozelka, P. B., Sanudo-Wilhelmy, S., Flegal, A. R., and Bruland, K. W.: Physico-chemical speciation of lead in South San Francisco Bay, Estuar. Coast. Shelf S., 44, 649–658, 1997.
Krachler, R., Jirsa, F., and Ayromlou, S.: Factors influencing the dissolved iron input by river water to the open ocean, Biogeosciences, 2, 311–315, https://doi.org/10.5194/bg-2-311-2005, 2005.
Kraepiel, A. M. L., Chiffoleau, J.-F., Martin, J.-M., and Morel, F. M. M.: Geochemistry of trace metals in the Gironde estuary, Geochim. Cosmochim. Ac., 61, 1421–1436, 1997.
Kritzberg, E. S., Cole, J. J., Pace, M. L., Granéli, W., and Bade, D. L.: Autochthonous versus allochthonous carbon sources of bacteria: results from whole-lake 13C addition experiments, Limnol. Oceanogr., 49, 588–596, 2004.
Kukina, S. E., Sadovnikova, L. K., Kalafat, A., Hummel, H., and Regoli, F.: Distribution of metals in suspended matter and bottom sediments in the estuary of the Northern Dvina, Oceanology, 42, 218–227, 2002.
Kuma, K., Nakabayashi, S., and Matsunaga, K.: Photoreduction of Fe(III) by hydroxycarboxylic acids in seawater, Water Res., 29, 1559–1569, 1995.
Kuma, K., Katsumoto, A., Nishioka, J., and Matsunaga, K.: Size-fractioned iron concentrations and Fe(III) hydroxide solubility in various coastal waters, Estuar. Coast. Shelf S., 47, 275–283, 1998.
Kuzyk, Z. A., MacDonald, R. W., Granskog, M. A., Scharien, R. K., Galley, R. J., Michel, C., Barber, D., and Stern, G.: Sea ice, hydrological, and biological processes in the Churchill River estuary region, Hudson Bay, Estuar. Coast. Shelf S., 77, 369–384, 2008.
Lawrence, M. G. and Kamber, B. S.: The behaviour of the rare earth elements during estuarine mixing-revisited, Mar. Chem., 100, 147–161, 2006.
Lisitsyn, A. P.: The marginal filter of the ocean, Oceanology, 34, 671–682, 1995.
Liu, R., Lead, J. R., and Zhang, H.: Combining cross flow ultrafiltration and diffusion gradients in thin-films approaches to determine trace metal speciation in freshwaters, Geochim. Cosmochim. Ac., 109, 14–26, 2013.
Lofts, S., Tipping, E., and Hamilton-Taylor, J.: The chemical speciation of Fe(III) in freshwaters, Aquat. Geochem., 14, 337–358, 2008.
MacDonald, R. W. and Yu, Y.: The Mackenzie Estuary of the Arctic Ocean, The Handbook of Environmental Chemistry, Pt. H, 5, 91–120, https://doi.org/10.1007/698_5_027, 2006.
McClelland, J. W., Holmes, R. M., Dunton, K. H., and MacDonald, R. W.: The Arctic Ocean estuary, Estuar. Coast., 35, 353–368, 2012.
McKenna, J. H.: DOC dynamics in a small temperate estuary: simultaneous addition and removal processes and implications on observed nonconservative behaviour, Estuaries, 27, 604–616, 2004.
Moran, M. A. and Hodson, R. E.: Bacterial production on humic and nonhumic components of dissolved organic carbon, Limnol. Oceanogr., 35, 1744–1757, 1990.
Moran, M. A. and Zepp, R. G.: Role of photoreactions in the formation of biologically labile compounds from dissolved organic matter, Limnol. Oceanogr., 42, 1307–1316, 1997.
Moran, M. A., Sheldon Jr., W. M., and Zepp, R. G.: Carbon loss and optical property changes during long-term photochemical and biological degradation of estuarine dissolved organic matter, Limnol. Oceanogr., 45, 1254–1264, 2000.
Muller, F. L. L.: Colloid/Solution partitioning of metal-selective organic ligands, and its relevance to Cu, Pb and Cd cycling in the Firth of Clyde, Estuar. Coast. Shelf S., 46, 419–437, 1998.
Nolting, R. F., van Dalen, M., and Helder, W.: Distribution of trace and major elements in sediment and pore waters of the Lena Delta and Laptev Sea, Mar. Chem., 53, 285–299, 1996.
Österlund, H., Gelting, J., Nordblad, F., Baxter, D. C., and Ingri, J.: Copper and nickel in ultrafiltered brackish water: labile or non-labile?, Mar. Chem., 132–133, 34–43, 2012.
Pédrot, M., Dia, A., Davranche, M., Coz, M. B.-L., Henin, O., and Gruau, G.: Insights into colloid-mediated trace element release at the soil/water interface, J. Colloid-Interf. Sci., 325, 187–197, 2008.
Point, D., Monperrus, M., Tessier, E., Amouroux, D., Chauvaud, L., Thouzeau, G., Jean, F., Amice, E., Gall, J., Leynaert, A., Clavier, J., and Donard, O. F. X.: Biological control of trace metal and organometal benthic fluxes in a eutrophic lagoon (Thau Lagoon, Mediterranean Sea, France), Estuar. Coast. Shelf S., 72, 457–471, 2007.
Pokrovsky, O. and Schott, J.: Iron colloids/organic matter associated transport of major and trace elements in small boreal rivers and their estuaries (NW Russia), Chem. Geol., 190, 141–179, 2002.
Pokrovsky, O. S. and Shirokova, L. S.: Diurnal variations of dissolved and colloidal organic carbon and trace metals in a boreal lake during summer bloom, Water Res., 47, 922–932, 2013.
Pokrovsky, O. S., Dupré, B., and Schott, J.: Fe-Al-organic colloids control of trace elements in peat soil solutions, Aquat. Geochem., 11, 241–278, 2005.
Pokrovsky, O. S., Schott, J., and Dupré, B.: Trace element fractionation and transport in boreal rivers and soil porewaters of permafrost-dominated basic terrain in Central Siberia, Geochm. Cosmochim. Ac., 70, 3239–3260, 2006.
Pokrovsky, O. S., Viers, J., Shirokova, L. S., Shevchenko, V. P., Filipov, A. S., and Dupré, B.: Dissolved, suspended, and colloidal fluxes of organic carbon, major and trace elements in Severnaya Dvina River and its tributary, Chem. Geol., 273, 136–149, 2010.
Pokrovsky, O. S., Shirokova, L. S., Kirpotin, S. N., Audry, S., Viers, J., and Dupré, B.: Effect of permafrost thawing on organic carbon and trace element colloidal speciation in the thermokarst lakes of western Siberia, Biogeosciences, 8, 565–583, https://doi.org/10.5194/bg-8-565-2011, 2011.
Pokrovsky, O. S., Shirokova, L. S., Zabelina, S. A., Vorobieva, T. Y., Moreva, O. Yu., Chupakov, A., Shorina, N. V., Kokryatskaya, N. M., Andry, S., Viers, J., Zoutien, C., and Freydier, R.: Size fractionation of trace elements in a seasonally stratified boreal lake: control of organic matter and iron colloids, Aquat. Geochem., 18, 115–139, 2012a.
Pokrovsky, O. S., Viers, J., Dupré, B., Chabaux, F., Gaillardetc, J., Audry, S., Prokushkin, A. S., Shirokova, L. S., Kirpotinf, S. N., Lapitsky, S. A., and Shevchenko, V. P.: Biogeochemistry of carbon, major and trace elements in watersheds of northern Eurasia drained to the Arctic Ocean: The change of fluxes, sources and mechanisms under the climate warming prospective, C.R. Geosci., 344, 663–677, 2012b.
Pokrovsky, O. S., Shirokova, L. S., Kirpotin, S. N., Kulizhsky, S. P., and Vorobiev, S. N.: Impact of western Siberia heat wave 2012 on greenhouse gases and trace metal concentration in thaw lakes of discontinuous permafrost zone, Biogeosciences, 10, 5349–5365, https://doi.org/10.5194/bg-10-5349-2013, 2013.
Porcelli, D., Andersson, P. S., Wasserburg, G. J., Ingri, J., and Baskaran, M.: The importance of colloids and mires for the transport of uranium isotopes through the Kalix River watershed and Baltic Sea, Geochim. Cosmochim. Ac., 61, 4095–4113, 1997.
Powell, R. T., Landing, W. M., and Bauer, J. E.: Colloidal trace metals, organic carbon and nitrogen in a southeastern U.S. estuary, Mar. Chem., 55, 165–176, 1996.
Raymond, P. A. and Bauer, J. E.: Bacterial consumption of DOC during transport through a temperate estuary, Aquatic Microb. Ecol., 22, 1–12, 2000.
Redfield, A. C., Ketchum, B. H., and Richards, F. A.: The influence of organisms on the composition of seawater, in: The Sea. Ideas and Observation on Progress in the Study of the Seas, 2, edited by: Hill, M. N., John Wiley, London, United Kingdom, 26–77, 1963.
Reid, R., Live, D., Faulkner, D., and Bauer, J.: A siderophore from a marine bacterium with an exceptional ferric ion affinity constant, Nature, 366, 455–458, 1993.
Savenko, A. V. and Shevchenko, V. P.: Seasonal variability of the distribution of dissolved forms of biogenic elements and alkalinity in the Northern Dvina mouth, Water Resour., 32, 417–421, 2005.
Savenko, A. V., Shevchenko, V. P., Novigatskii, A. N., and Efimova, L. V.: Effect of seasonal variability in the chemical composition of the riverine runoff on the distribution of dissolved forms of strontium, calcium, fluorine, and boron in the mouths of the Severnaya Dvina and Onega rivers, Oceanology, 43, 99–107, 2003.
Saňudo-Wilhelmy, S. A., Rivera-Duarte, I., and Flegal, A. R.: Distribution of colloidal trace metals in the San Francisco Bay estuary, Geochim. Cosmochim. Ac., 60, 4933–4944, 1996.
Schroeder, D. C. and Lee, F. G.: Potential transformations of chromium in natural waters, Water Air Soil Pollut., 4, 355–365, 1975.
Shank, G. C., Skrabal, S. A., Whitehead, R. F., and Kieber, R. J.: Strong copper complexation in an organic-rich estuary: the importance of allochthonous dissolved organic matter, Mar. Chem., 88, 21–39, 2004.
Shevchenko, V. P., Lisitzin, A. P., Belyaev, N. A., Filippov, A. S., Golovnina, E. A., Ivanov, A. A., Klyuvitkin, A. A., Malinkovich, S. M., Novigatsky, A. N., Politova, N. V., Rudakova, V. N., Rusakov, V. Yu., and Sherbak, S. S.: Seasonality of suspended particulate matter distribution in the White Sea, Berichte zur Polar- und Meeresforschung, 482, 142–149, 2004.
Shevchenko, V. P., Pokrovsky, O. S., Filippov, A. S., Lisitsyn, A. P., Bobrov, V. A., Bogunov, A. Yu., Zavernina, N. N., Zolotyh, E. O., Isaeva, A. B., Kokryatskaya, N. M., Korobov, V. B., Kravchishina, M. D., Novigatsky, A. N., and Politova, N. V.: On the elemental composition of suspended matter of the Severnaya Dvina river (White Sea region), Doklady Earth Sciences, 430, 228–234, 2010.
Shiller, A. M.: The effect of recycling traps and upwelling on estuarine chemical flux estimates, Geochim. Cosmochim. Ac., 60, 3177–3185, 1996.
Shiller, A. M. and Boyle, E. A.: Trace elements in the Mississippi River Delta outflow region: Behavior at high discharge, Geochim. Cosmochim. Ac., 55, 3241–3251, 1991.
Shirokova, L. S., Pokrovsky, O. S., Moreva, O. Y., Chupakov, A. V., Zabelina, S. A., Klimov, S. I., Shorina, N. V., and Vorobieva, T. Ya.: Decrease of concentration and colloidal fraction of organic carbon and trace elements in response to the anomalously hot summer 2010 in a humic boreal lake, Sci. Total Environ., 463–464, 78–90, 2013.
Sholkovitz, E. R.: Flocculation of dissolved organic and inorganic matter during the mixing of river water and seawater, Geochim. Cosmochim. Ac., 40, 831–845, 1976.
Sholkovitz, E. R.: The flocculation of dissolved Fe, Mn, Al, Cu, Ni, Co and Cd during estuarine mixing, Earth Planet. Sc. Lett., 41, 77–86, 1978.
Sholkovitz, E. R.: The aquatic chemistry of rare earth elements in rivers and estuaries, Aquat. Geochem., 1, 1–34, 1995.
Sholkovitz, E. R. and Elderfield, H.: The cycling of dissolved rare-earth elements in Chesapeake Bay, Global Biogeochem. Cy., 2, 157–176, 1988.
Shulkin, V. M. and Bogdanova, N. N.: Mobilization of metals from riverine suspended matter in seawater, Mar. Chem., 83, 157–167, 2003.
Sigleo, A. C. and Helz, G. R.: Composition of estuarine colloidal material: major and trace elements, Geochim. Cosmochim. Ac., 45, 2501–2509, 1981.
Stecher III, H. A. and Kogut, M. B.: Rapid barium removal in the Delaware estuary, Geochim. Cosmochim. Ac., 63, 1003–1012, 1999.
Stolpe, B. and Hassellöv, M.: Changes in size distribution of fresh water nanoscale colloidal matter and associated elements on mixing with seawater, Geochim. Cosmochim. Ac., 71, 3292–3301, 2007.
Stolpe, B., Guo, L., Shiller, A. M., and Hassellöv, M.: Size and composition of colloidal organic matter and trace elements in the Mississippi River, Pearl River and the northern Gulf of Mexico, as characterized by flow field-flow fractionation, Mar. Chem., 118, 119–128, 2010.
Strady, E., Blanc, G., Schäfer, J., Coynel, A., and Dabrin, A.: Dissolved uranium, vanadium and molybdenum behaviours during contrasting freshwater discharges in the Gironde Estuary (SW France), Estuar. Coast. Shelf S., 83, 550–560, 2009.
Takata, H., Aono, T., Tagami, K., and Uchida, S.: Influence of dissolved organic matter on particle-water interactions for Co, Cu and Cd under estuarine conditions, Estuar. Coast. Shelf S., 111, 75–83, 2012.
Tranvik, L.: Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content, Microb. Ecol., 16, 311–322, 1988.
Tranvik, L. J. and Jørgensen, N. O. G.: Colloidal and dissolved organic matter in lake water: Carbohydrate and amino acid composition, and ability to support bacterial growth, Biogeochemistry, 30, 77–97, 1995.
Ussher, S. J., Achterberg, E. P., Sarthou, G., Laan, P., de Baar, H. J. W., and Worsfold, P. J.: Distribution of size fractionated dissolved iron in the Canary Basin, Marine Environ. Res., 70, 46–55, 2010.
Van den Berg, C., Merks, A., and Duursma, E.: Organic complexation and its control of the dissolved concentrations of copper and zinc in the Scheldt estuary, Estuar. Coast. Shelf S., 24, 785–797, 1987.
Van der Sloot, H. A., Hoede, D., Wijkstra, J., Duinker, J. C., and Nolting, R. F.: Anionic species of V, As, Se, Mo, Sb, Te and W in the Scheldt and Rhine estuaries and the Southern Bight (North Sea), Estuar. Coast. Shelf S., 21, 633–651, 1985.
Vasyukova, E. V., Pokrovsky, O. S., Viers, J., Oliva, P., Dupre, B., Martin, F., and Candaudap, F.: Trace elements in organic- and iron-rich surficial fluids of the boreal zone: Assessing colloidal forms via dialysis and ultrafiltration, Geochim. Cosmochim. Ac., 74, 449–468, 2010.
Vasyukova, E. V., Pokrovsky, O. S., Viers, J., and Dupré, B.: New operational method of testing colloid complexation with metals in natural waters, Appl. Geochem., 27, 1226–1237, 2012.
Waeles, M., Riso, R. D., Maguer, J.-F., and Le Corre, P.: Distribution and chemical speciation of dissolved cadmium and copper in the Loire estuary and North Biscay continental shelf, France, Estuar. Coast. Shelf S., 59, 49–57, 2004.
Waeles, M., Riso, R. D., and Le Corre, P.: Seasonal variations of dissolved and particulate copper species in estuarine waters, Estuar. Coast. Shelf S., 62, 313–323, 2005a.
Waeles, M., Riso, R. D., and Le Corre, P.: Seasonal variations of cadmium speciation in the Penzé estuary, NW France, Estuar. Coast. Shelf S., 65, 143–152, 2005b.
Waeles, M., Tanguy, V., Lespes, G., and Riso, R. D.: Behaviour of colloidal trace metals (Cu, Pb and Cd) in estuarine waters: An approach using frontal ultrafiltration (UF) and stripping chronopotentiometric methods (SCP), Estuar. Coast. Shelf S., 80, 538–544, 2008.
Wells, M. L., Kozelka, P. B., and Bruland, K. W.: The complexation of "dissolved" Cu, Zn, Cd and Pb by soluble and colloidal organic matter in Narragansett Bay, RI, Mar. Chem., 62, 203–217, 1998.
Wen, L.-S., Santschi, P., Gill, G., and Paternostro, C.: Estuarine trace metal distributions in Galverston Bay: importance of colloidal forms in the speciation of the dissolved phase, Mar. Chem., 63, 185–212, 1999.
Wen, L.-S., Jiann, K.-T., and Santschi, P. H.: Physicochemical speciation of bioactive trace metals (Cd, Cu, Fe, Ni) in the oligotrophic South China Sea, Mar. Chem., 101, 104–129, 2006.
Wen, L.-S., Santschi, P. H., Warnken, K. W., Davison, W., Zhang, H., Li, H.-P., and Jiann, K.-T.: Molecular weight and chemical reactivity of dissolved trace metals (Cd, Cu, Ni) in surface waters from the Mississippi River to Gulf of Mexico, Estuar. Coast. Shelf S., 92, 649–658, 2011.
Wilkinson, K. J., Joz-Roland, A., and Buffle, J.: Different roles of pedogenic fulvic acids and aquagenic biopolymers on colloid aggregation and stability in freshwaters, Limnol. Oceanogr., 42, 1714–1724, 1997.