
Ocean Sci., 10, 107–125, 2014
www.ocean-sci.net/10/107/2014/
doi:10.5194/os-10-107-2014
© Author(s) 2014. CC Attribution 3.0 License.

Ocean Science

O
pen A

ccess

Fate of colloids during estuarine mixing in the Arctic

O. S. Pokrovsky1,2, L. S. Shirokova1,3, J. Viers1, V. V. Gordeev4, V. P. Shevchenko4, A. V. Chupakov3, T. Y. Vorobieva3,
F. Candaudap1, C. Causserand1, A. Lanzanova1, and C. Zouiten1

1Georesources and Environment Toulouse GET, UMR5563, CNRS, Université Paul Sabatier, 14 Avenue Edouard Belin,
31400 Toulouse, France
2BIO-GEO-CLIM Laboratory, Tomsk State University, Tomsk, Russia
3Institute of Ecological Problems of the Northern Regions, Ural Branch of the Russian Academy of Science, 23 Naberezhnaja
Sev. Dviny, Arkhangelsk, Russia
4P.P. Shirshov Institute of Oceanology of the Russian Academy of Science, 36 Nakhimovsky Prospekt,
117997 Moscow, Russia

Correspondence to:O. S. Pokrovsky (oleg@get.obs-mip.fr)

Received: 17 July 2013 – Published in Ocean Sci. Discuss.: 15 October 2013
Revised: 18 January 2014 – Accepted: 22 January 2014 – Published: 24 February 2014

Abstract. The estuarine behavior of organic carbon (OC)
and trace elements (TE) was studied for the largest Euro-
pean sub-Arctic river, which is the Severnaya Dvina; this
river has a deltaic estuary covered in ice during several hy-
drological seasons: summer (July 2010, 2012) and winter
(March 2009) baseflow, and the November–December 2011
ice-free period. Colloidal forms of OC and TE were assessed
for three pore size cutoffs (1, 10, and 50 kDa) using an in
situ dialysis procedure. Conventionally dissolved (< 0.22 µm)
fractions demonstrated clear conservative behavior for Li, B,
Na, Mg, K, Ca, Sr, Mo, Rb, Cs, and U during the mixing of
freshwater with the White Sea; a significant (up to a factor of
10) concentration increase occurs with increases in salinity.
Si and OC also displayed conservative behavior but with a
pronounced decrease in concentration seawards. Rather con-
servative behavior, but with much smaller changes in concen-
tration (variation within±30 %) over a full range of salini-
ties, was observed for Ti, Ni, Cr, As, Co, Cu, Ga, Y, and
heavy REE. Strong non-conservative behavior with coagula-
tion/removal at low salinities (< 5 ‰) was exhibited by Fe,
Al, Zr, Hf, and light REE. Finally, certain divalent metals ex-
hibited non-conservative behavior with a concentration gain
at low (∼ 2–5 ‰, Ba, Mn) or intermediate (∼ 10–15 ‰, Ba,
Zn, Pb, Cd) salinities, which is most likely linked to TE des-
orption from suspended matter or sediment outflux.

The most important result of this study is the elucidation
of the behavior of the “truly” dissolved low molecular weight
LMW< 1 kDa fraction containing Fe, OC, and a number of

insoluble elements. The concentration of the LMW frac-
tion either remains constant or increases its relative contri-
bution to the overall dissolved (< 0.22 µm) pool as the salin-
ity increases. Similarly, the relative proportion of colloidal
(1 kDa–0.22 µm) pool for the OC and insoluble TE bound
to ferric colloids systematically decreased seaward, with the
largest decrease occurring at low (< 5 ‰) salinities.

Overall, the observed decrease in the colloidal fraction
may be related to the coagulation of organo-ferric colloids at
the beginning of the mixing zone and therefore the replace-
ment of the HMW1 kDa–0.22 µm portion by the LMW< 1 kDa
fraction. These patterns are highly reproducible across differ-
ent sampling seasons, suggesting significant enrichment of
the mixing zone by the most labile (and potentially bioavail-
able) fraction of the OC, Fe and insoluble TE. The size frac-
tionation of the colloidal material during estuarine mixing
reflects a number of inorganic and biological processes, the
relative contribution of which to element speciation varies
depending on the hydrological stage and time of year. In par-
ticular, LMW< 1 kDa ligand production in the surface hori-
zons of the mixing zone may be linked to heterotrophic min-
eralization of allochthonous DOM and/or photodestruction.
Given the relatively low concentration of particulate ver-
sus dissolved load of most trace elements, desorption from
the river suspended material was less pronounced than in
other rivers in the world. As a result, the majority of dis-
solved components exhibited either conservative (OC and re-
lated elements such as divalent metals) or non-conservative,
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coagulation-controlled (Fe, Al, and insoluble TE associated
with organo-ferric colloids) behavior. The climate warm-
ing at high latitudes is likely to intensify the production of
LMW< 1 kDa organic ligands and the associated TE; there-
fore, the delivery of potentially bioavailable trace metal mi-
cronutrients from the land to the ocean may increase.

1 Introduction

Over the past several decades, a comprehensive picture of or-
ganic carbon and trace element geochemistry in the mixing
zone of the river mouths has been completed for many major
and “model” rivers around the world (Bianci, 2007; Bianci
and Allison, 2009; Gordeev, 2012). Several main processes
control the concentration patterns of OC, Fe, and TE in the
estuaries: coagulation of organic and organo-mineral colloids
(Sholkovitz, 1976; Boyle et al., 1977; Sigleo and Helz, 1981;
Benoit et al., 1994; Lisitsyn, 1995; Guieu et al., 1996; Benoit
et al., 1994), desorption from river-suspended matter or sed-
iments (Dai et al., 1995; Guieu and Martin, 2002), diffu-
sive flux from sediments (Shiller, 1996; Audry et al., 2006,
2007), and biological uptake (Redfield et al., 1963; Shiller
and Boyle, 1991). The relative importance of each of these
processes defines the degree of river flux transformation in
the mixing zone and net elemental input from the land to the
ocean. In this regard, physicochemical and biological mech-
anisms operating within the mixing zone of the Arctic Ocean
are especially important given the following: (1) extremely
high contributions of dissolved flux relative to the surface
and ocean volume compared to the other oceans (Holmes et
al., 2012); (2) dominance of dissolved and colloidal flux over
the suspended flux for most major and trace elements of the
river water (Gordeev et al., 1996; Pokrovsky et al., 2010); (3)
high vulnerability of Arctic river and sea ecosystems to both
anthropogenic pollution and ongoing climate change.

The majority of studies of the Arctic estuaries were car-
ried out during summer baseflow periods (MacDonald and
Yu, 2006; Gobeil, 2006; Kuzyk et al., 2008, and McClel-
land et al., 2012, for a review). Although this season in the
Arctic is very important due to the biological activity in the
water column, it does not allow the other major control-
ling factors of element transformation in the estuary, such
as photodestruction of DOM-related colloidal forms of TE,
desorption from river-suspended matter and redox exchange
with the sediments, to be tested. The relative importance
of the various driving mechanisms fluctuates depending on
the season; therefore, systematic studies over several sea-
sons are required. These studies constitute the first objec-
tive of the present study, which is aimed at assessing the
estuarine profiles of both major and trace elements, includ-
ing organic carbon, in the largest European Arctic River,
the Severnaya Dvina. These profiles will be based on sev-
eral sampling campaigns performed in the Severnaya Dv-
ina’s mouth zone during the main hydrological seasons:

summer baseflow (July), beginning of winter and ice for-
mation (November–December) and end of winter baseflow
(March).

All boreal rivers of the European Arctic, particularly the
Severnaya Dvina River, are major carriers of organic and
organo-mineral colloids from the land to the ocean. For ex-
ample, 20 to 30 % of Mn, Zn, and Cu, 30 to 50 % of Fe
and REEs, and up to 80 % of Corg and U are transported in
colloidal form from the total (dissolved + suspended) flux of
this river (Pokrovsky et al., 2010). Despite the importance
of the colloidal form in the overall elemental transport from
the land to the ocean, the transformation of colloids in the
mixing zone is still very poorly studied. The main reason
for knowledge gap is the lack of uniform and standardized
techniques allowing in situ or on site size fractionation of
the dissolved load along the salinity gradient. Until now, tan-
gential cross-flow and frontal ultrafiltration, along with dif-
fusive gradients in thin films, have remained the basic tech-
niques used to assess the colloidal distribution in estuarine
zones all over the world (Dai and Martin, 1995; Greenamoyer
and Moran, 1997; Ingri et al., 2004; Forsberg et al., 2006;
Howell et al., 2006; Waeles et al., 2008; Österlund et al.,
2012). The use of these techniques, however, requires sig-
nificant precautions against experimental artifacts, such as
charge separation, filter clogging and polarization, thorough
calibration and assumptions on the diffusion efficiency in the
gels and, most importantly, the use of a trace-clean proce-
dure during sampling, handling and filtration. These issues
are sometimes difficult to control under the field conditions
of the Arctic environments; as a result, no systematic stud-
ies of colloidal size fractionation over different seasons in
Arctic estuaries have been performed so far. The in situ dial-
ysis techniques commonly used in boreal rivers and lakes by
our group allow for passive, but adequate separation of col-
loidal (1 kDa–0.22 µm) and truly dissolved (< 1 kDa) frac-
tions, as well as separation by size distribution within the
colloidal pool itself (Pokrovsky et al., 2005, 2011, 2012a;
Vasyukova et al., 2010). To date, dialysis has been used to as-
sess the size fractionation in freshwaters (Alfaro-De la Torre
et al., 2000; Gimpel et al., 2003; Vasyukova et al., 2012),
but has only occasionally been applied under estuarine con-
ditions (cf. Hamilton-Taylor et al., 2002); the second objec-
tive of this study was to apply this dialysis technique toward
studying the Arctic estuary along the full salinity profile. The
specific goals here were as follows: (i) to quantify the dis-
tribution of organic carbon and TE among the major pools
of colloids and truly dissolved fraction and (ii) to trace the
evolution of the colloidal fraction along the salinity gradi-
ent. Our working hypothesis states that the coagulation of
organic and organo-mineral colloids increases the relative
proportion of potentially bioavailable, low molecular weight
(LMW< 1 kDa) fractions while decreasing the proportions of
the total dissolved (< 0.22 µm) and colloidal (1 kDa–0.22 µm)
fractions. Testing this scenario during different seasons along
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the salinity gradient of the Severnaya Dvina River constituted
an important objective in this work.

2 Sampling and analyses

The sampling area is located in the northern part of NW Rus-
sia within the delta of the Severnaya Dvina River, which be-
longs to the White Sea basin of the Arctic Ocean (Fig. 1).
The field work was performed during several hydrological
seasons: winter baseflow in March 2009, summer baseflow in
July 2010 and 2012 and the start of ice formation/beginning
of winter baseflow in November–December 2011 while the
water was still free of ice. Detailed geological, climatic and
geographic descriptions of the region are presented else-
where (Shevchenko et al., 2004, 2010; Pokrovsky et al.,
2010; Koukina et al., 2001). Sampling was performed from
the surface (0.5 m) horizon using a horizontal water sampler
made of polycarbonate/PVC (Aquatic Research Co) hung
with nylon cord from the PVC motor boat (July) or from
the ice (March). During the ice formation period in Decem-
ber 2011, a coastal pilot ship was used during water sample
collection.

In total, 74 samples were collected from the Severnaya
Dvina River and its mixing zone using filtration through
0.22 µm acetate cellulose filters. Approximately 80 % of
these samples were processed additionally using in situ dial-
ysis (1 kDa or 1, 15 and 50 kDa membranes). The trace metal
sampling, filtration, and dialysis, as well as the chemical
analyses, are presented in Sect. 1 in the Supplement. These
techniques are very similar to the methods used in our previ-
ous studies (Pokrovsky et al., 2006, 2011, 2012a; Shirokova
et al., 2013; Vasyukova et al., 2010). In situ dialysis was per-
formed using a large volume (5 to 10 L) of unfiltered estu-
arine surface water placed in a dark room at the tempera-
ture at which the sampled water was collected. Regular ag-
itation of the dialysis vessels was ensured. The equilibrium
dialysis was performed at a very high ratio of external so-
lution/internal reservoir without any correction for the exter-
nal reservoir dilution, which allowed assessing of the propor-
tion of colloidal forms operationally defined as the fraction
of 1 kDa–0.22 µm. The methodology of dialysis procedure as
well as various dialysis artifacts are thoroughly described in
Sect. S1 in the Supplement.

3 Results

3.1 Elemental concentration as a function of salinity

Major and trace element concentrations at different salinities
and size fraction are listed in Table S1 in the Supplement.
Several groups of elements could be distinguished accord-
ing to their concentration profiles, which were maintained
throughout all of the studied seasons:
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Fig. 1. Schematic map of sampling sites during different seasons. Diamonds,  march 2010, 2009; Circles, 927 

July 2010, 2012; Triangles, November-December 2011. 928 
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Fig. 1. Schematic map of sampling sites during different seasons.
Diamonds, March 2010, 2009; Circles, July 2010, 2012; Triangles,
November–December 2011.

1. Elements exhibiting conservative behavior with a
strong (up to a factor of 10) linear increase with salin-
ity both in the LMW< 1 kDa and the total dissolved
(< 0.22 µm) fractions: Li, B, Na, Mg, K, Ca, Sr, Rb,
Cs, Mo and U, illustrated for B, Mo and U in Fig. 2a–
d.

2. Quasi-conservative behavior with a slight or moderate
(≤ factor of 3) concentration increase with salinity: V,
As, Cr, and Sb, illustrated for the first two elements in
Fig. 3a, b.

3. Conservative behavior with strong (> factor of 3) de-
creases in concentration with the increase in salinity is
observed for DOC, Si and Mn (in March), as illustrated
in Fig. 4a–c.

4. Conservative behavior with a weak (≤ factor of 2) con-
centration change or constant level over the full range
of salinities, with relative variations within±30 %: Ni,
Cr, As, Co (in March), Cu, Zn, Ga, Ge, Y, heavy REEs
(Gd-Yb), as illustrated in Fig. 5a–d for Ni, Zn, Cu and
Cr.
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Figure 2. Boron (A), molybdenum (B), rubidium (C), and uranium (D) concentrations in the estuary. 942 
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Fig. 2.Boron(A), molybdenum(B), rubidium(C), and uranium(D) concentrations in the estuary.

5. Non-conservative behavior with pronounced coagula-
tion and element removal at low (< 5 ‰) salinities: Ti,
Fe, Al, Zr, Hf, LREEs (La-Eu), illustrated in Fig. 6a–c
for Al, Fe and Zr, respectively.

6. Non-conservative behavior with a concentration gain
at low (∼ 2–5 ‰, Ba, Mn) or intermediate (∼ 10–
15 ‰, Cd, Zn, Pb) salinities, illustrated for Ba, Cd and
Pb in Fig. 7a, b, and c, respectively.

Note that this classification is not exhaustive and the same
element, depending on the season, may belong to several
groups. For example, V increases linearly with salinity in
March but remains constant or only slightly increases during
the other seasons; Al increases its concentration in July 2012;
REEs that exhibit rather stable concentrations with salinity
increase in March; Mn and Ti show both conservative and
non-conservative behavior. Note the pronounced fractiona-
tion between the light REE and heavy REE in the estuarine
mixing zone because it is illustrated by the concentration ra-
tio of La to Yb (Fig. 8): this ratio decreases by almost one
order of magnitude from the freshwater to the seawater zone.

3.2 Behavior of colloidal fraction of organic carbon and
trace metals along the salinity gradient

Most elements studied in Sect. 3.1 exhibited similar salinity–
concentration profiles for < 0.22 µm and < 1 kDa fractions.
However, several typical colloid-borne TE and organic car-
bons demonstrated decoupling in the salinity profiles of the
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Figure 3. Arsenic (A) and vanadium (B) concentrations in the estuary. 949 

Fig. 3.Arsenic(A) and vanadium(B) concentrations in the estuary.
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Fig. 4. Organic carbon(A), Si (B) and Mn(C) concentrations as a
function of salinity.

total dissolved and LMW< 1 kDa fractions. The proportion of
colloidal organic carbon as a function of the salinity mea-
sured over two summers, two winters and one ice forma-
tion period is depicted in Fig. 9. The gradual decrease in
colloidal OC with increasing salinity occurred during March
and November–December, but the concentration of colloids
remained rather constant in the estuary during the summer.
There was a sharp drop in colloidal carbon within the first
2–3 ‰ in the summer; at higher salinities, the proportion of
colloidal OC was the smallest during this period.

The strongest decrease in the colloidal fraction along the
salinity gradient was observed for the insoluble trivalent and
tetravalent hydrolysates, as illustrated for Al, Fe, Ti and Zr in

Fig. 10. This decrease in the colloidal fraction, from ca. 80–
90 % of the total dissolved concentration in the freshwater, to
10–20 % at 20–15 ‰ salinity, is the most pronounced for Fe,
as recorded through all seasons. Similar to organic carbon,
this decrease is the largest in the summer and the smallest
during winter-ice formation periods. Large decreases in the
colloidal fraction with increasing salinity are also recorded
for Mn and Pb; the major changes occurred at low salinities
(< 5 ‰), as shown in Fig. 11a and d. In contrast, the decrease
was much smaller for Cu and Ni (Fig. 11b and c, respec-
tively), which exhibited a somewhat constant proportion of
colloids or only a 10 % decrease over the full range of salini-
ties, respectively. Similarly, oxyanions and neutral molecules
linked to colloids, such as V, Cr, As and Sb, demonstrated a
general decrease in the % colloids with salinity (Fig. 12),
although this decrease was different across the different sea-
sons and most pronounced for As and Cr (Fig. 12b, c). The
colloidal fraction of trivalent REEs (Fig. 13) followed the
pattern of Fe (for LREEs) and OC (for HREEs). Finally, U
strongly decreased its colloidal fraction in the range of low
salinities and then remained mostly in dissolved form during
all of the studied seasons (Fig. 13). Taken together, the rather
uniform distribution of the colloidal fraction versus salinity
during the different seasons shown in Figs. 9–13 allows for
the size fractionation of major and trace elements to be ap-
proximated with an average value calculated for the range of
low salinities (0 to 5 ‰, 36 samples) and for the intermedi-
ate to high salinities (5 to 30 ‰ , 29 samples), as illustrated
in the form of a stack diagram (Fig. 14). Despite the signif-
icant uncertainty that stems from the high dispersity of the
data points across the different seasons, it is still apparent
that both for low- and high-salinity ranges, there are three
groups of chemical elements dependent upon their affinity
for colloids: (1) < 10–20 % in colloidal fraction: Li, Na, K,
Si, Ca, Sr, Rb, Mg, B, Mo, Ba, Cs, P, and U; (2) from 20
to 40 % in colloids: Sb, Mn, Zn, As, V, Y, Ni, Cd, Co, Cr,
Ga, OC, Cu, Ti, and Al, and (3) 40–80 % present in colloidal
form: Hf, Pb, Zr, all REEs, and Fe. A second important ob-
servation is the systematically lower proportion of colloidal
material in the 5–30 ‰ saline waters compared to the begin-
ning of the estuary (0–5 ‰). This difference ranges from 5
to 20 % among the different trace elements, with the largest
shift being observed for Co and Pb.

3.3 Size fractionation of trace elements among major
colloidal pools along the salinity gradient

The use of dialysis membranes with different pore sizes (1,
15, and 50 kDa) during all three studied seasons allowed the
quantification of the OC and TE size fractionation along the
salinity gradient, from freshwater to seawater as the end-
point. Examples of dissolved component size fractionation
along the salinity gradient in November–December, July, and
March are presented in Figs. 15, 16, and 17, respectively.
For this illustration, we have chosen organic carbon, two
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Figure 5. Ni (A), Zn (B), Cu (C) and Cr (D) concentrations as a function of salinity. 969 
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Fig. 5.Ni (A), Zn (B), Cu (C) and Cr(D) concentrations as a function of salinity.

insoluble colloidal elements Al and Fe, which also act as
carriers of other TE in the form of organo-mineral colloids,
U because it changes its speciation from organic colloids to
truly dissolved uranyl carbonate complexes, and two metal
micronutrients – Cu and Ni.

In November–December, the organic carbon is domi-
nated by LMW< 1 kDa complexes (60 %) and large colloids
(50 kDa–0.22 µm) in the freshwater zone. There is a sys-
tematic decrease in the large colloids and an increase in the
LMW< 1 kDa forms with the appearance of a non-negligible
fraction of small colloids (1–15 kDa) in saline environments.
In March, the LMW< 1 kDa progressively increases seaward,
whereas the HMW50 kDa–0.22 µm colloidal fraction remains
similar between the freshwater and the seawater end point
(Fig. 17).

Al, Fe and other tri- and tetravalent insoluble ele-
ments mostly appeared as HMW50 kDa–0.22 µm colloids in
the low-salinity zone; this fraction almost disappears (Al)
or decreases significantly (Fe) in the high-salinity sam-
ples, whereas the LMW< 1 kDa fraction becomes dominant
above 9.5 ‰ salinity, which was observed for November–
December and July (Figs. 15 and 16). Notably, while the
fractions for 1–15 kDa and 15–50 kDa of Fe are minor in the
low-salinity range, they constitute 13–19 % of the total dis-
solved metal at 9.5–24 ‰ salinity.

Uranium exhibits a rapid decrease in the proportion of
both medium (1–15 kDa) and high (50 kDa–0.22 µm) molec-
ular weight forms at low-salinity ranges in November–
December and in March. During the summer period, this de-
crease is less pronounced; ca. 10 % of U is still present as
50 kDa–0.22 µm colloids at 10 ‰ salinity.

Divalent metals exhibit a complex pattern of size frac-
tionation as a function of salinity, which resembles nei-
ther the organic carbon nor the iron profile. For Ni,
the HMW50 kDa–0.22µm fraction achieves its maximum in
November–December, and in March, the maximum is at
9.0± 0.5 ‰; for medium size fractions (15–50 kDa or
1–50 kDa), however, this maximum occurs at 24 ‰ in
November–December and at 3.7 ‰ in March. The summer
period is characterized by the presence of∼ 40 % of HMW
colloids in the freshwater zone and their disappearance with
rising salinity at the expense of approximately equal amounts
of 1–15 kDa and 15–50 kDa fractions. In contrast to Ni,
the HMW of copper disappears above 1.2 ‰ salinity and
the medium-size fraction (15–50 kDa) becomes dominant in
highly saline water.

4 Discussion

4.1 Conservative versus non-conservative behavior
controlled by colloidal coagulation in the estuary

This work demonstrates rather “classic” behavior of major
and trace elements in conventionally dissolved (< 0.22 µm)
fractions in the mixing zone of the Severnaya Dvina River
and the White Sea. The spatial resolution of our measure-
ments does not allow the detection of the flocculation of
DOC that is reported to occur within the 2 to 4 ‰ salin-
ity range in the Severnaya Dvina estuary (Artemyev and
Romankevich, 1988). A linear decrease in the dissolved or-
ganic carbon with salinity increase in the major Arctic estu-
aries is fairly well known (Kattner et al., 1999; Koehler et al.,
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Fig. 6. Al (A), Fe (B) and Zr (C) concentrations as a function of
salinity in the estuary.

2003; Amon et al., 2012). This phenomenon is linked to the
rather refractory nature of DOM in the subarctic rivers and
the large proportion of LMW< 1 kDa that was not subjected
to coagulation compared to large colloids (see Sect. 4.2). In
contrast to a productive temperate estuary (i.e., McKenna,
2004), it is very unlikely that the coupled DOC addition
and removal may explain the semi-linear dependence of
DOC< 0.22 µmon salinity. The preservation of this highly con-
servative behavior takes place during both summer and the
glacial season in the Severnaya Dvina estuary (Figs. 4a and
9).

Other examples of the highly conservative behavior ob-
served during the estuarine mixing in the Arctic are boron
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Figure 7. Ba(A), Cd(B) and Pb (C) concentration as a function of salinity in the estuary. 983 
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Fig. 7. Ba (A), Cd (B) and Pb(C) concentrations as a function of
salinity in the estuary.

(Savenko et al., 2003), molybdenum, rubidium, and ura-
nium, the concentrations of which in the seawater are an
order of magnitude higher than the content of the freshwa-
ter end member. Whereas B, Rb and Mo are unlikely to be
affected by colloidal forms (Fig. 2a, b), U does appear in
HMW50 kDa–0.22 µm colloids in the freshwater zone (Figs. 13
and 15–17). However, strong uranyl carbonate complexes
start to appear at the beginning of mixing with the seawa-
ter, which decreases the affinity of this element for organo-
mineral colloid formation and renders it mainly to its truly
dissolved form. The removal of dissolved U in the very
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Figure 8. Plot of La/Yb 0.22 µm fraction concentration ratio as a function of salinity during different 998 

seasons in the Severnaya Dvina estuary. 999 
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Fig. 8. Plot of the La/Yb 0.22 µm fraction concentration ratio as a
function of salinity during different seasons in the Severnaya Dvina
estuary.

low-salinity zone by the Fe- and organo-rich colloids ob-
served in the Severnaya Dvina River estuary (Figs. 13, 15a,
16) corroborates numerous observations in the Kalix River–
Baltic Sea mixing zone (Porcelli et al., 1997; Andersson et
al., 1998, 2001), as well as reports for small rivers on the
NW German coast (Beck et al., 2012).

Other neutral molecules and oxyanions, such as As, Sb, V,
and Cr, demonstrate systematic concentration increases to-
ward the seawater end member (Fig. 3a, b) because these el-
ements are more concentrated in seawater than in the fresh-
water. This behavior is quite typical for anionic species in the
temperate estuaries (i.e., Van der Sloot et al., 1985; Strady
et al., 2009). Despite the fact that these elements are bound
to 10–30 % in HMW organo-ferric colloids in the Severnaya
Dvina River (Pokrovsky et al., 2010), this speciation feature
does not influence their concentration pattern, which remains
independent for the Fe above∼ 2 ‰ salinity. Only at the very
beginning of the estuarine mixing does a measurable drop
(20 to 30 % from the freshwater concentration) occur, as il-
lustrated for As and V in Fig. 3a, b. This drop can be linked
to the coagulation of the majority of HMW50 kDa–0.22µm Fe
colloids at the beginning of the mixing zone, because the pro-
portion of colloidal forms in total dissolved concentration of
As and V achieves 20–25 % (Fig. 14). Chromium is different
from other oxyanions, because, as it can be seen in Fig. 5,
in addition to the general increase in concentration with in-
creasing salinity, Cr also shows a mid-salinity maximum sim-
ilar to Ni and Cu. This result is consistent with occurrence of
both Cr(III) and Cr(VI) in natural waters (Schroeder and Lee,
1975). The appearance of this maximum may be linked to
Cr(III) association with humic substances similar to Ni and
Cu or Cr(III) desorption from river-suspended matter similar
to other cations.

As expected, Si presents quite conservative behavior dur-
ing all three studied seasons (Fig. 4b), with the seawater
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Figure 9. Relative proportion of colloidal organic carbon as a function of salinity during different seasons 1052 

in the Severnaya Dvina estuary. 1053 
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Fig. 9.Relative proportion of colloidal organic carbon as a function
of salinity during different seasons in the Severnaya Dvina estuary.

end member being equal to 900± 100 µg L−1 during all
seasons and the riverine component ranging from 1800 to
5100 µg L−1. This behavior agrees with numerous previous
observations (i.e., Boyle et al., 1974) in the Severnaya Dvina
estuary in particular (Savenko and Shevchenko, 2005), and
the reported minimal removal of silica in the brackish bay
mixing zone of the Baltic Sea (Gustafsson et al., 2000). This
result strongly suggests the lack of any active uptake of Si
by the diatoms in the mixing zone, as well as a negligible
effect on the dissolution of sediments or diagenetic flux. In
agreement with the majority of the previous experiments us-
ing dialysis and ultrafiltration (Pokrovsky and Schott, 2002;
Vasyukova et al., 2010), colloidal Si does not appear in these
waters.

The significant coagulation of Al, Fe, and trivalent (REEs)
and tetravalent (Ti, Zr, Hf, Th) hydrolysates is pronounced
mostly at the very beginning of the estuarine mixing (Figs. 10
and 13) because these elements normally appear as large-size
colloids (Figs. 15–17) that are quite unstable in aqueous solu-
tion with an elevated ionic strength, as confirmed by numer-
ous observations of the flocculation and removal of colloidal
material with increasing salinity in the estuaries (Sholkowitz,
1976, 1978; Sigleo and Helz, 1981). The decrease in the
proportion of colloidal Fe with the concomitant increase in
salinity is well established from size-fractionation techniques
(Kuma et al., 1998; Sǎnudo-Wilhelmy et al., 1996; Stolpe
and Hassellöv, 2007). Insoluble, less mobile elements fol-
low the pattern of Fe tightly, with maximal removal occur-
ring in the low (0–5 ‰) salinity zone. These results are con-
sistent with the dominant status of the trivalent and tetrava-
lent elements in the White Sea watersheds, which occur in
the form of large organo-ferric colloids rather than organic
complexes capable of controlling the speciation of these el-
ements in the surface boreal waters (Pokrovsky and Schott,
2002; Vasyukova et al., 2010; Pokrovsky et al., 2010, 2012b).
The decrease in the La/Yb ratio in the < 0.22 µm fraction
with rising salinity (Fig. 8) may reflect the removal of the
Fe-rich colloids, binding LREE via surface adsorption or

Ocean Sci., 10, 107–125, 2014 www.ocean-sci.net/10/107/2014/
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Figure 10. Proportion of colloidal Al, Fe, Ti and Zr as a function of salinity during different seasons in 1102 

the Severnaya Dvina estuary. 1103 
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Fig. 10.Proportion of colloidal Al, Fe, Ti and Zr as a function of salinity during different seasons in the Severnaya Dvina estuary.
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Figure 11. Proportion of colloidal Mn, Cu, Ni and Pb as a function of salinity during different seasons in 1151 

the Severnaya Dvina estuary. 1152 
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Fig. 11.Proportion of colloidal Mn, Cu, Ni and Pb as a function of salinity during different seasons in the Severnaya Dvina estuary.

incorporation, and the appearance of LMW organic ligands
forming strong complexes with HREE. Preferential removal
of the light REE was already observed in temperate es-
tuaries (Sholkovitz and Elderfield, 1988; Elderfield et al.,
1990) and LREE are known to be removed more efficiently
than HREE in small estuaries (Lawrence and Kamber, 2006;
Åström et al., 2012). The affinity of light REE for mineral
and colloidal surfaces such as HMW organo-ferric colloids,

and HREE for soluble organic ligands such as LMW< 1 kDa
complexes, is fairly well known both from experimental
studies (Bau, 1999) and natural observations in the boreal
zone (Pokrovsky et al., 2006). This is also proven from the
analysis of filtrates and ultrafiltrates of natural Fe and OC-
rich samples (Sholkovitz, 1995, for Hudson river filtrates
0.025 µm, 50 kDa and 5 kDa and Pédrot et al., 2008, for soil
solution filtrates 0.22 µm, 30, 5 and 2 kDa).

www.ocean-sci.net/10/107/2014/ Ocean Sci., 10, 107–125, 2014
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Figure 12. Proportion of colloidal V, Cr, As and Sb as a function of salinity during different seasons in 1206 

the Severnaya Dvina estuary. 1207 
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Fig. 12.Proportion of colloidal V, Cr, As and Sb as a function of salinity during different seasons in the Severnaya Dvina estuary.
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Figure 13. Proportion of colloidal La, Ce, Yb, and U as a function of salinity during different seasons in 1253 

the Severnaya Dvina estuary. 1254 
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Fig. 13.Proportion of colloidal La, Ce, Yb, and U as a function of salinity during different seasons in the Severnaya Dvina estuary.

The behavior of the divalent transition metals (Ni, Cu,
Zn) reflects both seasonal variation in elemental concen-
tration in the freshwater end member, as well as their
affinity for organic matter. The concentration–salinity pat-
tern of these elements is quite complex, with generally flat
or seaward-decreasing concentration lines with pronounced
maxima in the medium-salinity (10–15 ‰) range (Fig. 5a–c).
The phytoplankton uptake of these elements is not strongly

pronounced in the Severnaya Dvina estuary because the
summer-period element concentrations are comparable to the
winter time measurement. For the same reason, the desorp-
tion of these divalent micronutrients from the river suspended
matter (RSM) and bed sediments, which is induced by the in-
organic complexation of the metals by seawater anions and
also known to occur in the estuaries (Kraepiel et al., 1997;
Takata et al., 2012), cannot be proved from our data. Indeed,

Ocean Sci., 10, 107–125, 2014 www.ocean-sci.net/10/107/2014/
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Figure 14.  A stack diagram of colloidal fractions of TE as an average of all seasons in low salinity and 1301 
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Fig. 14.A stack diagram of colloidal fractions of TE as an average
of all seasons in low-salinity and high-salinity zones (dark and light
columns, respectively).

the RSM concentration in March is a factor of 2 to 3 lower
than that which was observed in the summer (Shevchenko
et al., 2004, 2010), yet the concentrations of these three el-
ements exhibit the maximum value in the range of medium
salinities during winter baseflow. At the same time, the dif-
fusion flux from the sediments, similar to what is reported
for these elements from other world estuaries (Boughriet et
al., 1992; Audry et al., 2006, 2007; Point et al., 2007), can-
not be excluded because of the existence of several maxima
of heavy metal distribution in the sediments of the Sever-
naya Dvina estuary along the salinity profile (Koukina et al.,
2001).

Manganese should be considered separately from other di-
valent metals because of the following: its concentration (1)
strongly varies across the different seasons, reflecting strong
accumulation in the winter under the ice because of the en-
hanced discharge of anoxic groundwater or Mn-rich tribu-
tary (Gordeev et al., 2007; Pokrovsky et al., 2010) and (2)
depends on the light and oxygen due to the multiple redox
states of Mn in boreal waters during the summer (Ingri et
al., 2011; Pokrovsky and Shirokova, 2013). The first mech-
anism is consistent with the peaks of the concentration ob-
served at low (0–5 ‰) salinity ranges that follow the order
of March > November–December > July (Fig. 4c). This or-
der also supports the hypothesis that the Mn concentration
in the estuary is being controlled by diffusion from the sed-
iments, which is likely to be most pronounced during the
winter period. Remobilization of the Mn from the sediments
due to strong Mn reductions taking place directly below the
sediment–water interface is fairly well established for other
Arctic river delta settings (i.e., Nolting et al., 1996) and was
also suggested for the Baltic Sea coastal zone (Ingri et al.,
2004). The reduction of Mn oxides in the water column it-
self cannot be excluded either (Klinkhammer and McManus,
2001).

Finally, two indifferent/toxic heavy metals – Cd and
Pb – as well as Ba, demonstrated the typical maxima of
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Fig. 15. A diagram of relative fraction of colloidal material in the
Severnaya Dvina River estuary during the November–December ice
formation period.

concentration at moderate (Cd, Pb) and low (Ba) salinities
(Fig. 7), which is most likely linked to desorption from the
river suspended matter (Shiller and Boyle, 1991; Dai et al.,
1995; Elbaz-Poulichet et al., 1996; Shulkin and Bogdanova,
2003), sediments (Stecher III and Kogut, 1999) and/or dif-
fusion flux from the sediments (Point et al., 2007; Du Laing
et al., 2009). The particle desorption or the influx from the
sediments is known to increase the Cd concentration in the
high-salinity zone of temperate estuaries to as much as 360 %
of its riverine end member (Waeles et al., 2004) because
the seawater Ca2+ replaces the Cd2+ in the iron/manganese
oxide-associated fraction (Waeles et al., 2005a, b). In the
case of the Severnaya Dvina estuary, the desorption from
the RSM occurring at low salinities is more pronounced in
the LMW< 1 kDa fraction (Fig. 7b), demonstrating the impor-
tance of the exchangeable (ionic) form of this metal to the
estuarine behavior. Despite the high affinity of Pb2+ toward
the large Fe-rich colloids demonstrated in the boreal waters
of the White Sea watershed (Pokrovsky and Schott, 2002;
Vasyukova et al., 2010), some temperate rivers (Stolpe et
al., 2010) and boreal estuaries (Stolpe and Hassellöv, 2007),

www.ocean-sci.net/10/107/2014/ Ocean Sci., 10, 107–125, 2014
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Figure 16. A diagram of relative fraction of colloidal material in the Severnaya Dvina River estuary 1360 
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 1362 

Fig. 16. A diagram of relative fraction of colloidal material in the
Severnaya Dvina River estuary during July.

the co-precipitation of Pb with coagulates of organo-ferric
colloids at a lower salinity range known for other estuaries
(Breuer et al., 1999) is not pronounced in the Severnaya Dv-
ina estuary. Instead we observed an enrichment of the mixing
zone in Pb (Fig. 7) likely due to both RSM desorption and
sediment mobilization. This effect is most likely due to the
low Pb concentration in the riverine end member; however,
anthropogenic contamination of estuarine sediments cannot
be ruled out, given the highest Pb concentration in clays of
the Severnaya Dvina compared to other neighboring sub-
arctic rivers such as the Mezen and Pechora (Kukina et al.,
2002).

4.2 Increase in the proportion of LMW< 1 kDa of OC,
trace elements and metal micronutrients during
estuarine mixing

The first and most significant result is the difference in
the degree of conservative or non-conservative behavior be-
tween traditional “total” (< 0.22 µm) and “truly” dissolved
LMW< 1 kDa fractions. For the majority of studied metals
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Figure 17. A diagram of relative fraction of colloidal material in the Severnaya Dvina River estuary 1376 
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Fig. 17. A diagram of relative fraction of colloidal material in the
Severnaya Dvina River estuary during March (winter baseflow).

this result was not counterintuitive because it was demon-
strated in earlier studies that the colloidal fraction in the estu-
ary is subjected to the largest degree of coagulation (Dai and
Martin, 1995). Additionally, a much smaller decrease in the
truly dissolved (< 1 kDa) form of Fe and Cu compared to the
< 0.22 µm fraction when the salinity increases in the coastal
zone has been already reported across the range of high salin-
ities (Wells et al., 2000). However, the less expected result
is the enrichment of the LMW fraction in many insoluble
metals and OC with increased salinity. For example, organic
carbon demonstrates an increase in the LMW< 1 kDa fraction
in July 2012 and 2010 at approximately 5 ‰ salinity; other-
wise, it exhibits a rather flat concentration pattern along the
estuary (Fig. 5a). No loss of this fraction occurs; rather, there
is some gain in the LMW< 1 kDa fraction at ca. 2 ‰ salinity,
presumably due to the autochthonous process of OC trans-
formation/production within the water column. An organic-
rich subtropical river in the southeastern US also demon-
strated an increase in the LMW fraction of OC at low salinity
and relatively flat concentrations towards the seawater end
member (Powell et al., 1996); a boreal estuary demonstrated
the unchanged concentration of small (0.5–3 nm) fluorescent
OM with increasing salt concentrations up to 25 ‰ salinity
(Stolpe and Hassellöv, 2007). DOC production during an Au-
gust phytoplankton bloom in the estuaries is also fairly well
known (McKenna, 2004).

Because the increase in the organic carbon LMW< 1 kDa in
the Severnaya Dvina River estuary is much stronger and pro-
nounced in July than in winter (Figs. 4a and 9), three main
processes may be responsible for it: (i) photochemical oxi-
dation of allochthonous organic matter that produces LMW
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complexes because it is fairly well known for a number of
other boreal and temperate settings (cf. Amon and Benner,
1996; Bertilsson and Tranvik, 2000; Moran et al., 2000;
Jonsson et al., 2001; Anesio and Graneli, 2004; Kopáček
et al., 2006a, b; Kelton et al., 2007), (ii) heterotrophic min-
eralization of DOM by aerobic bacterioplankton known for
their effect on boreal lakes (cf. Tranvik, 1988; Tranvik and
Jørgensen, 1995; Jansson et al., 2000, 2007; Kritzberg et
al., 2004; Ask et al., 2008), subtropical marshes (Moran
and Hodson, 1990), and temperate estuaries (Raymond and
Bauer, 2000), and (iii) the exometabolites of the phyto-
plankton, whose presence is mostly pronounced at the be-
ginning of the Severnaya Dvina estuarine mixing, in the
zone where both marine and freshwater species co-exist
(T. Y. Vorobieva, unpublished data); exometabolite produc-
tion by gram-negative bacteria in the marine zone cannot
be ruled out (Wells et al., 1998). The photo degradation of
dissolved organic matter is known to produce LMW organic
compounds that can significantly stimulate bacterial biomass
production (Moran and Zepp, 1997). For example, produc-
tion of the lower molecular weight species of OC, Fe and
metals at higher salinities has been detected in the Trinity
Estuary (Galveston Bay, Gulf of Mexico) and suggested to
be induced by some photochemical and microbiological re-
actions (Wen et al., 1999). However, the degree of the in-
crease in the LMW fraction in this tropical organic-poor river
(6 mg L−1 DOC in the freshwater zone) was significantly
smaller than the organic-rich Severnaya Dvina River estuary.

The most crucial changes in the size fractionation pat-
tern over the estuarine zone occurred with Fe, which is nor-
mally present in the freshwater end member of this river as
organo-ferric HMW colloids (Pokrovsky et al., 2010), which
is consistent with other rivers’ speciation studies (Stolpe et
al., 2010). It can be observed from Fig. 6b that a clear en-
richment of the mixing zone by LMW< 1 kDa Fe complexes
occurred, with a relative increase between freshwater and
10± 5 ‰ salinity as high as a factor of 5. This suggests
higher stability of LMW Fe complexes during river water
migration through the mixing zone. Indeed, the lifetime of
truly dissolved iron in coastal waters is known to be signif-
icantly longer than that of colloidal fractions (14 days and
< 1 h, respectively, Fujii et al., 2008b). The increase in LMW-
reactive Fe fractions at high salinities has been already ob-
served in subtropical, organic-rich estuaries (Powell et al.,
1996). On the northwest African coast, LMW (< 0.02 µm)
colloidal Fe decreased its concentration seaward to a smaller
degree than that of dissolved (< 0.22 µm) Fe (Ussher et al.,
2010). Experimental studies in the Scheldt estuary demon-
strated that, in the range of 0.3 to 10 ‰ salinity, Fe concentra-
tion decreased much more sharply for the fraction < 0.2 µm
compared to the fraction < 1 kDa (Gerringa et al., 2007).
This analysis demonstrated that, although a smaller degree
of coagulation for LMW Fe commonly occurs in the estuary,
the increase in this fraction seaward observed in the present
study is unprecedented. In the Severnaya Dvina estuary, the

maximal increase of LMW< 1 kDa Fe fraction was detected
during the winter baseflow (Figs. 6b and 15–17). This obser-
vation rules out the possibility of superoxide-mediated LMW
Fe(II) photochemical formation from organically complexed
Fe(III), as it is known for coastal waters from the temperate
zone (Kuma et al., 1995; Fujii et al., 2008a). The 50–80 cm
ice coverage together with an equal amount of overlaying
snow during the Arctic winter period should not allow sig-
nificant photo-reduction processes. Given that phytoplank-
ton activity during glacial periods is also low, we hypoth-
esize that the process responsible for winter-time increase
of LMW compounds is heterotrophic mineralization of al-
lochthonous DOM. Indeed, the efficiency of DOC utilization
by bacteria is known to increase with the increase in salin-
ity, as shown by in situ incubation experiments in a temper-
ate estuary (Raymond and Bauer, 2000). Concurrently, the
relative decrease in the 1 kDa–0.22 µm fraction, i.e., coagu-
lation processes of Fe colloids, is more pronounced during
summer, when compared to levels during the winter base-
flow (Fig. 10). This result is consistent with the fact that both
phytoplankton activity and photo degradation leading to the
production of LMW< 1 kDa fractions are much more efficient
in summer than in winter. Indeed, in the freshwater temperate
settings, an increase in LMW carbohydrates during summer
time was reported (Wilkinson et al., 1997). Additionally, bac-
terial consumption of DOC is known to increase with tem-
perature increase in the estuary (Raymond and Bauer, 2000).
Production of the LMW (0.3–1 kDa) Fe(III) siderophores by
marine prokaryotes is fairly well known (Reid et al., 1993;
Barbeau et al., 2001) and strong LMW complexes of this
metal need to be reported in sea surface waters (Wen et
al., 2006). The effect of redox processes should not be pro-
nounced for dissolved Fe in the Severnaya Dvina estuary be-
cause the majority (> 95 %) of this element is present in its
trivalent form, as determined from spectrophotometric anal-
ysis (Pokrovsky et al., 2010, and references therein). This
finding is consistent with the other data, indicating that all
dissolved Fe in freshwater appears as Fe-humic complexes
or aggregates of Fe hydroxides and humic-Fe (Allard et al.,
2004; Lofts et al., 2008; Liu et al., 2013). Another reason for
more pronounced total dissolved concentration of OC and
Fe decrease in July compared to March is that the river con-
tained a higher concentration of aquatic organic polymers in
summer than in winter (i.e., Wilkinson et al., 1997), thus en-
hancing the aggregation of colloids in July.

The behavior of other insoluble elements linked to organo-
ferric colloids (Al, Ti, Zr, REEs, Figs. 10 and 13), as well as
As, Cr, Pb and U (Figs. 12 and 13), follows that of Fe with
the (i) strong decrease in the colloidal fraction across all sea-
sons, which is linked to coagulation and the mechanical re-
moval of these elements in the form of Fe-rich precipitates;
the (ii) intense processes of colloidal transformation during
the summer and the appearance of a significant fraction of
the LMW< 1 kDa forms. This estuarine behavior corroborates
with the strong control over the migration of these elements
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as organo-ferric colloids, which is known for the freshwater
settings of the White Sea watershed in general (Pokrovsky
and Schott, 2002) and the Severnaya Dvina River in partic-
ular (Pokrovsky et al., 2010). At the same time, the chemi-
cal nature of strong metal chelators, including LMW forms,
which might serve as transports for bio-available iron in the
rivers, estuaries and coastal waters have not yet been identi-
fied (cf., Krachler et al., 2005; Boye et al., 2010).

Divalent metals (Cu, Ni, Mn, Pb) also exhibit a rapid de-
crease in their colloidal forms in the summer at the very
beginning of the mixing zone and a much more gradual
decrease in the colloidal forms during the winter period
(Fig. 11). The highly dynamic behavior of the colloidal diva-
lent metals (Cd, Co, Cu, Ni, Pb, Zn) during the summer in the
Trinity River estuary has been reported by Wen et al. (1999).
The abiotic coagulation of colloids should be similar across
the different seasons and thus does not allow explaining of
the seasonal variation of colloidal fractions. In contrast, ei-
ther photo-induced degradation or respiration by bacterio-
plankton – both being intensified during the ice-free summer
period and warmer water temperatures – can be invoked to
control the divalent metal speciation in the mixing zone. In
addition, the contribution of the LMW phytoplankton exu-
dates to the total dissolved pool of metals can decrease the
proportion of the colloidal fraction. This decrease is much
smaller for Cu relative to Mn, Pb and Ni (Fig. 11), which
is consistent with a very strong complexation of this metal
by LMW organic ligands of both terrestrial origin (Shank et
al., 2004; Krachler et al., 2005) and from phytoplankton ex-
ometabolism (van den Berg et al., 1987; Muller, 1998; Wae-
les et al., 2005a; Wen et al., 2011). Strong Cu2+ binding
to humic complexes across the full range of salinity is also
known from dialysis mixing experiments (Hamilton-Taylor
et al., 2002). In contrast, the similar pattern of % colloids
vs. salinity for Mn and Pb (Fig. 11), which are two strongly
opposing metals in terms of their biological affinity and the
degree of their complexation by DOM (Powell et al., 1996;
Kozelka et al., 1997), is not supportive of active biologi-
cal control of metal complexation due to the LMW phyto-
plankon exometabolites in the mixing zone.

4.3 Perspective on carbon and trace element delivery to
the Arctic Ocean under a climate change scenario

The increase in the concentration of the LMW< 1 kDa frac-
tion in the seaward direction highlighted for the first time
in this work may have significant and unexpected conse-
quences for the biogeochemical functioning of the mixing
zone. First, this LMW fraction is potentially bioavailable be-
cause the pore sizes of cell wall transport channels and pores
of the 1 kDa dialysis membranes are comparable (see dis-
cussion in Vasyukova et al., 2012). Therefore, a number of
metal micronutrients (Fe, Co, Ni, Mn, Zn, V, etc.) should en-
rich the coastal zone with their potentially bioavailable frac-
tion and thus affect the primary productivity of the Arctic

Ocean. Second, the LMW fraction of the trace metals in the
river water exhibits isotopic signatures drastically different
from those of conventionally dissolved < 0.22 µm fraction, as
is known for Fe (Ilina et al., 2013a), Sr (Ilina et al., 2013b)
and U (Bagard et al., 2011). For example, the LMW< 1 kDa
of the river water is 2 to 4 ‰ enriched in57Fe relative to
the < 0.22 µm fraction. The unusually high mobility of the
LMW< 1 kDa fraction of Fe through the mixing zone is ca-
pable of enriching the Arctic Ocean in the heavy isotope of
various metals relative to what might be predicted from the
flux of the < 0.22 µm fraction.

Upon the climate warming, the ongoing increase in the
LMW metal and OC concentration occurring in the White
Sea watersheds (cf., Shirokova et al., 2013; Pokrovsky et al.,
2013) will be further accentuated in the estuaries because this
LMW pool passes through the mixing zone without coagu-
lation. This phenomenon might influence the following: (i)
the primary productivity of the coastal zone, leading to CO2
drawdown from the atmosphere, and (ii) heterotrophic res-
piration of the allochthonous DOC accompanied by CO2 re-
lease into the atmosphere. However, distinguishing quantita-
tively between these two processes is not yet possible. For
organic carbon, the smallest proportion of colloids (1 kDa–
0.22 µm) is observed during summer across the entire salinity
zone (Fig. 9). The insoluble elements (Al, Fe, Zr, REEs) and
divalent metals (Co, Ni, Cu, Pb) follow this scheme, there-
fore suggesting that the heating of the surface water and
extension of the active (vegetative) ice-free period should
decrease the proportion of colloids versus “truly” dissolved
components of the LMW< 1 kDa fraction.

Finally, the majority of annual colloidal flux in the Sev-
ernaya Dvina River occurs during the spring flood period
(Pokrovsky et al., 2010). The most important transformation
processes of the allochthonous organic matter and related el-
ements should therefore occur in May (i.e., Gustafsson et al.,
2000), which is the period not yet investigated using this size
fractionation technique along the salinity gradient in Rus-
sian Arctic rivers. The particularity of colloidal composition
during spring flood on the Severnaya Dvina River has been
thoroughly described in Pokrovsky et al. (2010). It consists
in the higher proportion of colloidal (1 kDa–0.22 µm) frac-
tion compared to winter and summer baseflow and a fac-
tor of 2 to 3 higher concentration of 0.22 µm filtered DOC,
Fe and a number of insoluble trivalent and tetravalent hy-
drolysates. As a result, one may expect significantly more
pronounced colloidal coagulation in the estuarine zone dur-
ing the spring flood in May compared to winter and summer
baseflow. On the annual scale, consideration the spring flood
period would certainly increase the flux of LMW fraction of
OC and TE to the Arctic Ocean. Given highly pronounced
Arctic summer insolation, low water temperatures and low
phytoplankton activity in May, the relative order of the pro-
cesses controlling the production of LMW< 1 kDa fraction
may be as follows: photodestruction > heterotrophic mineral-
ization > exometabolite production. On the other hand, due to
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significantly higher discharge in spring, the water residence
time in the estuary becomes shorter and thus the time neces-
sary for colloidal coagulation might be insufficient to ensure
the non-conservative behavior of insoluble elements. Thus,
Fe-rich HMW colloids may travel further seaward, north of
Mud’yug Island (Fig. 1) due to significantly higher freshwa-
ter zone influence.

5 Conclusions

Systematic sampling of the Severnaya Dvina River mixing
zone within the White Sea (European subarctic) revealed sev-
eral families of major and trace elements, depending on their
conservative or non-conservative behavior, which was in ac-
cordance with previous studies of both temperate and tropical
estuaries. The in situ dialysis of estuarine water performed
for the first time with membranes having different pore sizes
(1, 15, and 50 kDa) allowed the characterization of the com-
plexity of the colloidal size distribution and allowed us to
trace the transformation of HMW into LMW fractions along
the estuarine profile during different seasons. The coagula-
tion of HMW50 kDa–0.22 µm colloids at the beginning (< 5 ‰)
of the mixing zone is especially pronounced for the insol-
uble TE bound to ferric colloids in the river water (Al, Ti,
Zr, Hf, Th, REEs, Pb, Mn (in winter), U) and more rarely
observed for divalent metals initially present as LMW or-
ganic complexes (Cu, Ni) or oxyanions (As, Sb, V, Cr). At
the same time, the enrichment of the estuarine surface water
in the LMW< 1 kDa organic fraction seaward for most insol-
uble elements, such as Fe, is a novel and unexpected find-
ing. Therefore, the LMW< 1 kDa fraction of DOC, Fe, Al, and
other insoluble trace metals is accumulated in the estuary,
despite significant coagulation of the colloidal fraction. The
climate warming at high latitudes is likely to accentuate the
enrichment of the coastal waters in the LMW< 1 kDa fraction
by decreasing the degree of colloidal coagulation in the estu-
arine mixing zone.

Supplementary material related to this article is
available online athttp://www.ocean-sci.net/10/107/2014/
os-10-107-2014-supplement.pdf.
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Sǎnudo-Wilhelmy, S. A., Rivera-Duarte, I., and Flegal, A. R.: Dis-
tribution of colloidal trace metals in the San Francisco Bay estu-
ary, Geochim. Cosmochim. Ac., 60, 4933–4944, 1996.

Schroeder, D. C. and Lee, F. G.: Potential transformations of
chromium in natural waters, Water Air Soil Pollut., 4, 355–365,
1975.

Shank, G. C., Skrabal, S. A., Whitehead, R. F., and Kieber, R. J.:
Strong copper complexation in an organic-rich estuary: the im-
portance of allochthonous dissolved organic matter, Mar. Chem.,
88, 21–39, 2004.

Shevchenko, V. P., Lisitzin, A. P., Belyaev, N. A., Filippov, A. S.,
Golovnina, E. A., Ivanov, A. A., Klyuvitkin, A. A., Malinkovich,
S. M., Novigatsky, A. N., Politova, N. V., Rudakova, V. N.,
Rusakov, V. Yu., and Sherbak, S. S.: Seasonality of suspended
particulate matter distribution in the White Sea, Berichte zur
Polar- und Meeresforschung, 482, 142–149, 2004.

Shevchenko, V. P., Pokrovsky, O. S., Filippov, A. S., Lisitsyn, A.
P., Bobrov, V. A., Bogunov, A. Yu., Zavernina, N. N., Zolo-
tyh, E. O., Isaeva, A. B., Kokryatskaya, N. M., Korobov, V. B.,
Kravchishina, M. D., Novigatsky, A. N., and Politova, N. V.: On
the elemental composition of suspended matter of the Severnaya
Dvina river (White Sea region), Doklady Earth Sciences, 430,
228–234, 2010.

Shiller, A. M.: The effect of recycling traps and upwelling on es-
tuarine chemical flux estimates, Geochim. Cosmochim. Ac., 60,
3177–3185, 1996.

Shiller, A. M. and Boyle, E. A.: Trace elements in the Missis-
sippi River Delta outflow region: Behavior at high discharge,
Geochim. Cosmochim. Ac., 55, 3241–3251, 1991.

Ocean Sci., 10, 107–125, 2014 www.ocean-sci.net/10/107/2014/

http://dx.doi.org/10.5194/bg-8-565-2011
http://dx.doi.org/10.5194/bg-8-565-2011
http://dx.doi.org/10.5194/bg-10-5349-2013


O. S. Pokrovsky et al.: Fate of colloids during estuarine mixing in the Arctic 125

Shirokova, L. S., Pokrovsky, O. S., Moreva, O. Y., Chupakov, A. V.,
Zabelina, S. A., Klimov, S. I., Shorina, N. V., and Vorobieva, T.
Ya.: Decrease of concentration and colloidal fraction of organic
carbon and trace elements in response to the anomalously hot
summer 2010 in a humic boreal lake, Sci. Total Environ., 463–
464, 78–90, 2013.

Sholkovitz, E. R.: Flocculation of dissolved organic and inorganic
matter during the mixing of river water and seawater, Geochim.
Cosmochim. Ac., 40, 831–845, 1976.

Sholkovitz, E. R.: The flocculation of dissolved Fe, Mn, Al, Cu, Ni,
Co and Cd during estuarine mixing, Earth Planet. Sc. Lett., 41,
77–86, 1978.

Sholkovitz, E. R.: The aquatic chemistry of rare earth elements in
rivers and estuaries, Aquat. Geochem., 1, 1–34, 1995.

Sholkovitz, E. R. and Elderfield, H.: The cycling of dissolved rare-
earth elements in Chesapeake Bay, Global Biogeochem. Cy., 2,
157–176, 1988.

Shulkin, V. M. and Bogdanova, N. N.: Mobilization of metals from
riverine suspended matter in seawater, Mar. Chem., 83, 157–167,
2003.

Sigleo, A. C. and Helz, G. R.: Composition of estuarine colloidal
material: major and trace elements, Geochim. Cosmochim. Ac.,
45, 2501–2509, 1981.

Stecher III, H. A. and Kogut, M. B.: Rapid barium removal in the
Delaware estuary, Geochim. Cosmochim. Ac., 63, 1003–1012,
1999.

Stolpe, B. and Hassellöv, M.: Changes in size distribution of fresh
water nanoscale colloidal matter and associated elements on mix-
ing with seawater, Geochim. Cosmochim. Ac., 71, 3292–3301,
2007.

Stolpe, B., Guo, L., Shiller, A. M., and Hassellöv, M.: Size and
composition of colloidal organic matter and trace elements in the
Mississippi River, Pearl River and the northern Gulf of Mexico,
as characterized by flow field-flow fractionation, Mar. Chem.,
118, 119–128, 2010.

Strady, E., Blanc, G., Schäfer, J., Coynel, A., and Dabrin, A.: Dis-
solved uranium, vanadium and molybdenum behaviours during
contrasting freshwater discharges in the Gironde Estuary (SW
France), Estuar. Coast. Shelf S., 83, 550–560, 2009.

Takata, H., Aono, T., Tagami, K., and Uchida, S.: Influence of dis-
solved organic matter on particle-water interactions for Co, Cu
and Cd under estuarine conditions, Estuar. Coast. Shelf S., 111,
75–83, 2012.

Tranvik, L.: Availability of dissolved organic carbon for planktonic
bacteria in oligotrophic lakes of differing humic content, Microb.
Ecol., 16, 311–322, 1988.

Tranvik, L. J. and Jørgensen, N. O. G.: Colloidal and dissolved or-
ganic matter in lake water: Carbohydrate and amino acid compo-
sition, and ability to support bacterial growth, Biogeochemistry,
30, 77–97, 1995.

Ussher, S. J., Achterberg, E. P., Sarthou, G., Laan, P., de Baar, H.
J. W., and Worsfold, P. J.: Distribution of size fractionated dis-
solved iron in the Canary Basin, Marine Environ. Res., 70, 46–
55, 2010.

Van den Berg, C., Merks, A., and Duursma, E.: Organic complexa-
tion and its control of the dissolved concentrations of copper and
zinc in the Scheldt estuary, Estuar. Coast. Shelf S., 24, 785–797,
1987.

Van der Sloot, H. A., Hoede, D., Wijkstra, J., Duinker, J. C., and
Nolting, R. F.: Anionic species of V, As, Se, Mo, Sb, Te and W
in the Scheldt and Rhine estuaries and the Southern Bight (North
Sea), Estuar. Coast. Shelf S., 21, 633–651, 1985.

Vasyukova, E. V., Pokrovsky, O. S., Viers, J., Oliva, P., Dupre, B.,
Martin, F., and Candaudap, F.: Trace elements in organic- and
iron-rich surficial fluids of the boreal zone: Assessing colloidal
forms via dialysis and ultrafiltration, Geochim. Cosmochim. Ac.,
74, 449–468, 2010.

Vasyukova, E. V., Pokrovsky, O. S., Viers, J., and Dupré, B.: New
operational method of testing colloid complexation with metals
in natural waters, Appl. Geochem., 27, 1226–1237, 2012.

Waeles, M., Riso, R. D., Maguer, J.-F., and Le Corre, P.: Distribu-
tion and chemical speciation of dissolved cadmium and copper
in the Loire estuary and North Biscay continental shelf, France,
Estuar. Coast. Shelf S., 59, 49–57, 2004.

Waeles, M., Riso, R. D., and Le Corre, P.: Seasonal variations of
dissolved and particulate copper species in estuarine waters, Es-
tuar. Coast. Shelf S., 62, 313–323, 2005a.

Waeles, M., Riso, R. D., and Le Corre, P.: Seasonal variations of
cadmium speciation in the Penzé estuary, NW France, Estuar.
Coast. Shelf S., 65, 143–152, 2005b.

Waeles, M., Tanguy, V., Lespes, G., and Riso, R. D.: Behaviour of
colloidal trace metals (Cu, Pb and Cd) in estuarine waters: An ap-
proach using frontal ultrafiltration (UF) and stripping chronopo-
tentiometric methods (SCP), Estuar. Coast. Shelf S., 80, 538–
544, 2008.

Wells, M. L., Kozelka, P. B., and Bruland, K. W.: The complexation
of ‘dissolved’ Cu, Zn, Cd and Pb by soluble and colloidal organic
matter in Narragansett Bay, RI, Mar. Chem., 62, 203–217, 1998.

Wells, M. L., Smith, G. J., and Bruland, K. W. The distribution of
colloidal and particulate bioactive metals in Narragansett Bay,
RI, Mar. Chem., 71, 143–163, 2000.

Wen, L.-S., Santschi, P., Gill, G., and Paternostro, C.: Estuarine
trace metal distributions in Galverston Bay: importance of col-
loidal forms in the speciation of the dissolved phase, Mar. Chem.,
63, 185–212, 1999.

Wen, L.-S., Jiann, K.-T., and Santschi, P. H.: Physicochemical spe-
ciation of bioactive trace metals (Cd, Cu, Fe, Ni) in the olig-
otrophic South China Sea, Mar. Chem., 101, 104–129, 2006.

Wen, L.-S., Santschi, P. H., Warnken, K. W., Davison, W., Zhang,
H., Li, H.-P., and Jiann, K.-T.: Molecular weight and chemical
reactivity of dissolved trace metals (Cd, Cu, Ni) in surface wa-
ters from the Mississippi River to Gulf of Mexico, Estuar. Coast.
Shelf S., 92, 649–658, 2011.

Wilkinson, K. J., Joz-Roland, A., and Buffle, J.: Different roles of
pedogenic fulvic acids and aquagenic biopolymers on colloid ag-
gregation and stability in freshwaters, Limnol. Oceanogr., 42,
1714–1724, 1997.

www.ocean-sci.net/10/107/2014/ Ocean Sci., 10, 107–125, 2014


