Journal cover Journal topic
Ocean Science An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 2.864
IF2.864
IF 5-year value: 3.337
IF 5-year
3.337
CiteScore value: 4.5
CiteScore
4.5
SNIP value: 1.259
SNIP1.259
IPP value: 3.07
IPP3.07
SJR value: 1.326
SJR1.326
Scimago H <br class='widget-line-break'>index value: 52
Scimago H
index
52
h5-index value: 30
h5-index30
Preprints
https://doi.org/10.5194/os-2020-35
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-2020-35
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

  13 May 2020

13 May 2020

Review status
This preprint is currently under review for the journal OS.

Constraining Uncertainties in CMIP5 Projections of Arctic Sea Ice Volume with Observations

Wang Yangjun, Liu Kefeng, Shan Yulong, and Zhang Ren Wang Yangjun et al.
  • College of Meteorology and Oceanography, National University of Defense Technology, Nanjing, 211101, China

Abstract. This study proposes adaptive forecasting through exponential re-weighting based on the Structural Similarity Index Measure (AFTER-SSIM) algorithm to evaluate the performance of global climate models from the Coupled Model Intercomparison Project (CMIP5) under different emission scenarios during 2006 to 2018, attempting to reduce the uncertainty among them. The SSIM approach uses a loss function to obtain more information on the spatial distribution between model outputs and observed data, where the genetic algorithm (GA) is used to optimise the parameters of both seasonal cycles and long-term trends of sea ice concentration and sea ice thickness. The re-weighting mechanism of the AFTER-SSIM algorithm guarantees a performance improvement in sea ice volume simulations as new information is added. Finally, the ranked models have been combined to estimate the future Arctic sea ice volume and navigation possibility through the Arctic Northern Sea Route. Results show that the proposed algorithm reduces the uncertainty among models, sea ice volume will continue to shrink in the future, and the open periods for 1A super vessels are likely to reach to five months ranging from August to December in 2030.

Wang Yangjun et al.

Interactive discussion

Status: final response (author comments only)
Status: final response (author comments only)
AC: Author comment | RC: Referee comment | SC: Short comment | EC: Editor comment
[Login for Authors/Topic Editors] [Subscribe to comment alert] Printer-friendly Version - Printer-friendly version Supplement - Supplement

Wang Yangjun et al.

Wang Yangjun et al.

Viewed

Total article views: 398 (including HTML, PDF, and XML)
HTML PDF XML Total BibTeX EndNote
279 78 41 398 42 37
  • HTML: 279
  • PDF: 78
  • XML: 41
  • Total: 398
  • BibTeX: 42
  • EndNote: 37
Views and downloads (calculated since 13 May 2020)
Cumulative views and downloads (calculated since 13 May 2020)

Viewed (geographical distribution)

Total article views: 302 (including HTML, PDF, and XML) Thereof 302 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
1
 
 
 
 

Cited

Saved

No saved metrics found.

Discussed

No discussed metrics found.
Latest update: 28 Sep 2020
Publications Copernicus
Download
Short summary
This paper proposes a new algorithm called AFTER-SSIM algorithm to evaluate the performance of 101 selected global climate models under different emission scenarios during 2006 to 2018 and reduces the uncertainty among them.  AFTER-SSIM algorithm shows good performance in sea ice combined forecast and uncertainty reduction among global climate models. The possibility beyond 80 % indicates that the Arctic Northern Sea Route will be open to 1A super vessels for 5 months in the year of 2030.
This paper proposes a new algorithm called AFTER-SSIM algorithm to evaluate the performance of...
Citation