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Abstract. This study proposes adaptive forecasting through exponential re-weighting based on the Structural 

Similarity Index Measure (AFTER-SSIM) algorithm to evaluate the performance of global climate models from 

the Coupled Model Intercomparison Project (CMIP5) under different emission scenarios during 2006 to 2018, 

attempting to reduce the uncertainty among them. The SSIM approach uses a loss function to obtain more 

information on the spatial distribution between model outputs and observed data, where the genetic algorithm 10 

(GA) is used to optimise the parameters of both seasonal cycles and long-term trends of sea ice concentration 

and sea ice thickness. The re-weighting mechanism of the AFTER-SSIM algorithm guarantees a performance 

improvement in sea ice volume simulations as new information is added. Finally, the ranked models have been 

combined to estimate the future Arctic sea ice volume and navigation possibility through the Arctic Northern Sea 

Route. Results show that the proposed algorithm reduces the uncertainty among models, sea ice volume will 15 

continue to shrink in the future, and the open periods for 1A super vessels are likely to reach to five months 

ranging from August to December in 2030. 

1 Introduction 

In a warming climate, the sea ice extent of the Arctic region has shown a consistent decrease, ranging between 

3.5% and 4.1% every decade from 1979 to 2012 (Stocker et al. 2013). This has contributed to the extended open 20 

duration of the Arctic routes and drawn international attention to energy exploration, shipping industry, and its 

regional ecosystem. The focus of research has shifted from sea-ice loss trends to the open period of the Arctic 

water (Wang & Overland, 2015).  

Global climate models (GCMs) provided from the Coupled Model Intercomparison Project (CMIP5, Taylor et al. 

2012) are currently prevalent in the projection of future sea-ice conditions as the most advanced climate models 25 

available for the scientific cycles, showing a continued shrinking and thinning in the sea ice in all future scenarios 

(Massonnet et al. 2012).  

However, large uncertainty exists in the current GCMs for future sea ice projections, caused by the discrepancies 

in initial conditions or physical processes in the ocean or atmospheric simulation as well as the differences in grid 

resolution ( Hawkins & Sutton, 2009; Stroeve et al., 2012; Wang & Overland, 2012; Swart et al., 2015; Wu et al., 30 
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2018), which block the accurate estimate for the open duration of Arctic routes. Despite these uncertainties, GCMs 

are powerful tools to understand the future changes in Arctic sea ice. Wang & Overland, (2009) pointed out that 

these models could be applied in projections with careful evaluation. Wang & Overland, (2015) have reduced 37 

GCMs to 12 models by taking both the mean trends and seasonal cycles of the September sea ice extent (SSIE) 

projections from 1981 to 2005 into consideration.  35 

Since 2006, four future scenarios called the Representative Concentration Pathways (RCPs) have been used in all 

GCMs and defined by their total radiative forcing (a cumulative measure of human emissions of greenhouse gas), 

i.e. RCP26, RCP45, RCP60, and RCP85 (van Vuuren et al. 2011). The number of realisations of these 12 GCMs 

extends to 101, leading to new uncertainty. Therefore, this study tries to further access the model performance of 

101 candidate realisations from 2006 to 2018 and find a reasonable way to reduce the uncertainty existing in the 40 

selected models under different emission scenarios.  

Generally, there are two ways to improve the precision of projections; one is to find the model that best fits reality, 

while the other is to combine estimates with multi-models. In the 1970s, these combined methods were doubted 

by some researchers due to their lack of theoretical justification (Newbold and Granger 1974). Another argument 

is that a single best model can be found based on all the information provided by these individual forecasters 45 

instead of combining them. However, views have changed over the past 20 years and optimal estimates often face 

the danger of overfitting (e.g. regression) and lead to high instability. Thus, building such a model is not usually 

feasible (Yang 2001). Combining estimates is a constructive way that helps to reduce the variability (Chen and 

Yang 2007). Additionally, few studies have focused on the spatial distribution performance of models, which has 

been widely evaluated in other meteorological elements (Basharin et al. 2016; Shi et al. 2017). Additionally, the 50 

error method (e.g. relative error, root mean square error), widely used in previous literature (Wang and Overland 

2015a, 2009, 2012; Massonnet et al. 2011; Stroeve et al. 2012; Liu et al. 2013), cannot suitably fit the difference 

in spatial distribution (Zhou et al. 2004). Therefore, a combined method called the adaptive forecasting through 

exponential re-weighting (AFTER) algorithm is incorporated in this study to evaluate the performance of GCMs 

and reduce the uncertainty in future sea-ice projections. The Structural Similarity Index Measure (SSIM) algorithm 55 

is introduced to study the similarity of spatial distribution between model output and observed data in both seasonal 

cycles and mean states. To improve the explanation of physical mechanisms (Shu et al. 2015), sea ice thickness is 

also taken into account in the calculations.  
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The rest of this manuscript is organised as follows: Section 2 introduces the data used in this study and their 

features compared with the previous study. The AFTER-SSIM approach, the model ranking workflow, and future 60 

sea ice projections are introduced in Section 3. Section 4 shows the results of the model evaluation and combined 

estimates of future sea ice volume; consequently, the open period of the Arctic water can also be obtained.    

2 Data description 

2.1 PIOMAS data  

Spatial consistency, temporal length, and completeness are key factors in data evaluation (Melia et al. 2015). 65 

Therefore, Pan-Arctic Ice-Ocean Modelling and Assimilation System (PIOMAS) sea-ice reanalysis data are used 

to estimate the observed sea ice condition in this study (Zhang and Rothrock 2003). Despite the uncertainty in the 

PIOMAS data, the current observation values (i.e. ICEsat or CryoSat-2) have limited spatial coverage and temporal 

scale, which restrict the model evaluation ability. Large uncertainty and bias still exist in the inversion methods of 

satellites for driving factors (i.e. sea ice concentration (SIC), sea ice age, and snow depth). The sea ice thickness 70 

of the PIOMAS data was observed to fit well with the observations (ICESat field) with less than a 0.1 mean 

difference and high pattern correlation (r > 0.8). The spatial patterns, seasonal cycles, and trends in sea ice 

thickness (SIT) are realistically reproduced due to atmospheric reanalysis forcings (Labe et al. 2018). Therefore, 

PIOMAS data have been widely used to represent observations in several studies (Shu et al. 2015; Labe et al. 

2018). For temporal consistency, SIC and SIT data were provided by PIOMAS in this study.  75 

2.2 Multi-model data 

Twelve GCMs, identified by Wang & Overland, (2015), are used for further evaluation: ACCESS1.0, ACCESS1.3, 

CCSM4, CESM1(CAM5.1), EC-EARTH, HadGEM2-AO, HadGEM2-CC, HadGEM2-ES, MIROC-ESM, 

MIROC-ESM-CHEM, MPI-ESM-LR, and MPI-ESM-MR. There are 101 ensemble candidates from these 12 

models in all emission scenarios. SIC and SIT data are derived from the 12 CMIP5 models to compare with the 80 

PIOMAS data. Table 1 presents the basic characteristics of the selected GCMs, where each model has different 

spatial resolution and ensemble members.  
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2.3 Data processing 

Data from GCMs and PIOMAS with different resolutions are interpolated into the same 1° × 1° resolution. The 

monthly data, 𝑋 are divided into two parts: the seasonal cycle, 𝑋̅ and the long-term trend with anomalies, 𝑋̂ as 85 

follows: 

𝑋 = 𝑋̅ + 𝑋̂,                                                                                                  (1) 

2.4 Spatial variation of sea ice 

The spatial variation of sea ice between the current mean state (2006–2018) and historical mean state (1979–2005) 

in March and September, respectively, derived from the PIOMAS data can be seen in Figure 1. Both in March and 90 

September, the coverage of sea ice has shrunk compared to the historical period; the decrease in September is more 

evident than that in March. In March, the reduction of the mean SIC mainly occurs in the Sea of Okhotsk, Barents 

Sea, and part of the Greenland Sea; in September, the reduction area contains the Beaufort Sea, Chukchi Sea, East 

Siberian Sea, and Laptev Sea, which extends to 80°𝑁.  

The current mean SIT has thinned down compared to the historical mean SIT. Most of the Arctic area shows a 95 

larger reduction of SIT in September than in March. The SIT throughout the Arctic area is no more than 2 meters. 

For these two months, the variation of mean SIT is more informative than that of mean SIC, especially in the 

central area, where sea ice thinning can occur without major variations in the local SIC (Melia et al. 2015).  

Considering the changes in the spatial distribution for both the mean SIC and mean SIT, the sea ice conditions 

have varied much. The Northern Sea Routes along the coast of the Chukchi Sea, East Siberian Sea, Laptev Sea, 100 

Kara Sea, and Barents Sea begin to be ice-free in September during the current period, as well as the Northwest 

Passages along the coast of the Beaufort Sea. Therefore, it is necessary to further evaluate model performance in 

the new period. 

2.5 Temporal variation of sea ice 

Sea ice volume (SIV), which takes both SIC and SIT into consideration, is a good index for the evaluation of 105 

model performance (Shu et al. 2015). SIV can be calculated as the sum of the grid cell area of, that is, the SIC and 

SIT of each grid cell, which can be represented as follows:   

𝑆𝐼𝑉 = ∑ ∑ 𝑆𝐼𝑇(𝑙𝑜𝑛, 𝑙𝑎𝑡) ∙ 𝑆𝐼𝐶(𝑙𝑜𝑛, 𝑙𝑎𝑡) ∙ 2𝜋𝑟2 ∙ (𝑠𝑖𝑛 (
𝑙𝑎𝑡+1

180
∙ 𝜋) − 𝑠𝑖𝑛 (

𝑙𝑎𝑡

180
∙ 𝜋) /360)90

𝑙𝑎𝑡=66.5
180
𝑙𝑜𝑛=−180 ,      (2) 
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where 𝑟 is radius of the earth; 𝑙𝑜𝑛 and 𝑙𝑎𝑡 represent the longitude and latitude of the gird, respectively.  

Note that although the SIV values from the PIOMAS data are model simulations with data assimilation, they can 110 

competently assess the GCMs’ performances. The change in monthly average SIV between the historical period 

and current period can be seen in Figure 2. Compared to the historical period, the SIV has suffered shrunk every 

month during the current period. In spring, the SIV reaches its peak in April at 29.5 × 103𝑘𝑚3 in the historical 

mean (1979-2005) and at 23.4 × 103𝑘𝑚3  in the current mean (2006-2018). The smallest SIV appears in 

September at 13.3 × 103𝑘𝑚3 in the historical mean and at 5.8 × 103𝑘𝑚3 in the current mean. Additionally, SIV 115 

reaches its minimum in September 2012 at 3.79 × 103𝑘𝑚3, which might have been caused by an unusually strong 

storm in the central Arctic basin from April to August 2012 (Parkinson and Comiso 2013).  

Compared to the period of 1979–2005, the estimated negative trend in SIV is approximately -35.4% from 2006–

2018. Additionally, during most of the 2006–2018 period, SIV shows a downward trend with three rebounds in 

2008, from 2013–2014, and in 2018. Swart et al. (2015) posited that sea ice change is driven by external forcing 120 

and internal variability. SIV rebounds when the effect of the internal variability masks the external forcing. Overall, 

SIV shows much new information in the period 2006–2018 and is worth studying further. 

3 Methods 

3.1 Structural Similarity Index Measure (SSIM) 

Wang et al. (2004) proposed an objective method for accessing the structural similarity between two images. This 125 

method has been widely used in measuring the image quality. Compared to the traditional error methods, this new 

method termed as the Structural Similarity Index Measure (SSIM) and can better depict the difference in the spatial 

distribution between two data sets. The formula of the SSIM can be presented as follows: 

𝑆𝑆𝐼𝑀(𝑋𝑚𝑜𝑑, 𝑋𝑜𝑏𝑠) = 𝑙(𝑋𝑚𝑜𝑑, 𝑋𝑜𝑏𝑠)𝛼 ∙ 𝑐(𝑋𝑚𝑜𝑑, 𝑋𝑜𝑏𝑠)𝛽 ∙ 𝑠(𝑋𝑚𝑜𝑑, 𝑋𝑜𝑏𝑠)𝛾,                                     (3) 

where 𝑙(𝑋𝑚𝑜𝑑, 𝑋𝑜𝑏𝑠) represents the variation of mean value, 𝑐(𝑋𝑚𝑜𝑑, 𝑋𝑜𝑏𝑠) is the variation of deviation, and 130 

s(𝑋𝑚𝑜𝑑, 𝑋𝑜𝑏𝑠) stands for the structure variation, which can be presented as follows: 

𝑙(𝑋𝑚𝑜𝑑, 𝑋𝑜𝑏𝑠) =
(2𝜇𝑥𝑚𝑜𝑑

𝜇𝑥𝑜𝑏𝑠
+𝐶1)

(𝜇𝑥𝑚𝑜𝑑
2 +𝜇𝑥𝑜𝑏𝑠

2 +𝐶1)
,                                                                           (4) 

𝑐(𝑋𝑚𝑜𝑑, 𝑋𝑜𝑏𝑠) =
2𝜎𝑥𝑚𝑜𝑑

𝜎𝑥𝑜𝑏𝑠
+𝐶2

𝜎𝑥𝑚𝑜𝑑
2 +𝜎𝑥𝑜𝑏𝑠

2 +𝐶2
,                                                                             (5) 

https://doi.org/10.5194/os-2020-35
Preprint. Discussion started: 13 May 2020
c© Author(s) 2020. CC BY 4.0 License.



6 

 

s(𝑋𝑚𝑜𝑑, 𝑋𝑜𝑏𝑠) =
𝜎𝑥𝑚𝑜𝑑𝑥𝑜𝑏𝑠

+𝐶3

𝜎𝑥𝑚𝑜𝑑
𝜎𝑥𝑜𝑏𝑠

+𝐶3
,                                                                              (6) 

where 𝜇 is the mean value of 𝑋, σ is the standard deviation of 𝑋, 𝐶1, 𝐶2, 𝐶3 are constants to avoid the system 135 

unstability. If we suppose 𝛼 = 𝛽 = 𝛾 = 1, 𝐶3 = 𝐶2/2, then the Eq. (3) can be rewritten as follows: 

𝑆𝑆𝐼𝑀(𝑋𝑚𝑜𝑑, 𝑋𝑜𝑏𝑠) =
(2𝜇𝑥𝑚𝑜𝑑

𝜇𝑥𝑜𝑏𝑠
+𝐶1)(2𝜎𝑥𝑚𝑜𝑑𝑥𝑜𝑏𝑠

+𝐶2)

(𝜇𝑥𝑚𝑜𝑑
2 +𝜇𝑥𝑜𝑏𝑠

2 +𝐶1)(𝜎𝑥𝑚𝑜𝑑
2 +𝜎𝑥𝑜𝑏𝑠

2 +𝐶2)
,                                                      (7) 

Let us assume a random matrix 𝐴 of 10 × 10, ranging from 0 to 1, If 10 is added to the last element, we can 

obtain matrix 𝐵. If we add 1 or -1 randomly to each element, matrix 𝐶 can be obtained. We compare matrix 𝐵 

and 𝐶 with the original matrix 𝐴 respectively; the root mean square error (RMSE) of these two are the same, 140 

while the SSIM of matrix B and A is larger than that of matrix C and A, showing that matrix 𝐵 is structurally 

more similar to matrix A than matrix 𝐶 (see Figure 3). This example presents the advantage of SSIM over the 

RMSE for spatial distribution analysis. 

Using this method, we evaluate the structural similarity of the seasonal cycles and the long-term trends in SIC 

between the GCMs and PIOMAS data, as well as that in SIT. The four scores can be written as follows:  145 

𝑆𝐶𝑗
𝑠𝑖𝑐 =

1

𝑀
∑ 𝑆𝑆𝐼𝑀(𝑋̅𝑚𝑜𝑑𝑗𝑚

𝑠𝑖𝑐 , 𝑋̅𝑝𝑖𝑜
𝑠𝑖𝑐

𝑚
)𝑀

𝑘=1 ,                                                                         (8) 

𝑆𝐶𝑗
𝑠𝑖𝑡 =

1

𝑀
∑ 𝑆𝑆𝐼𝑀(𝑋̅𝑚𝑜𝑑𝑗𝑚

𝑠𝑖𝑡 , 𝑋̅𝑝𝑖𝑜
𝑠𝑖𝑡

𝑚
)𝑀

𝑘=1 ,                                                                          (9) 

𝑆𝑇𝑗
𝑠𝑖𝑐 =

1

𝑀
∑ 𝑆𝑆𝐼𝑀(𝑋̂𝑚𝑜𝑑𝑗𝑚

𝑠𝑖𝑐 , 𝑋̂𝑝𝑖𝑜
𝑠𝑖𝑐

𝑚
)𝑀

𝑘=1 ,                                                                        (10) 

𝑆𝑇𝑗
𝑠𝑖𝑡 =

1

𝑀
∑ 𝑆𝑆𝐼𝑀(𝑋̂𝑚𝑜𝑑𝑗𝑚

𝑠𝑖𝑡 , 𝑋̂𝑝𝑖𝑜
𝑠𝑖𝑡

𝑚
)𝑀

𝑘=1 ,                                                                        (11) 

where 𝑆𝐶𝑗
𝑠𝑖𝑐 and 𝑆𝐶𝑗

𝑠𝑖𝑡 are the similarities in the seasonal cycles of SIC (CSIC) and SIT (CSIT) between the 𝑗th 150 

ensemble member of GCMs and PIOMAS data, respectively; 𝑆𝑇𝑗
𝑠𝑖𝑐 and 𝑆𝑇𝑗

𝑠𝑖𝑡 are the similarities in the long-

term trends of SIC (TSIC) and SIT (TSIT) between the 𝑗th ensemble member of GCMs and PIOMAS data, 

respectively; and 𝑀 is the number of the time series.  
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3.2 AFTER-SSIM method 

Yan (2001) first proposed the scheme of the AFTER algorithm to develop combinations for better forecasts. 155 

Simulations and real data examples have shown the advantages and applications of the AFTER algorithm 

(Altavilla and Grauwe 2010; Rapach and Strauss 2008; Sánchez 2008; Shu et al. 2009), which is defined as: 

𝑊𝑖,𝑗 =

∏ 𝑠̂𝑘,𝑗
−1/2

exp (−𝜆𝐿(
𝑌𝑘−𝑦̂𝑘,𝑗

𝑠̂𝑘,𝑗
))𝑖−1

𝑘=1

∑ ∏ 𝑠̂𝑘,𝑗
−1/2

exp (−𝜆𝐿(
𝑌𝑘−𝑦̂𝑘,𝑗

𝑠̂𝑘,𝑗
))𝑖−1

𝑘=1
𝐽

𝑗′=1

,                                                                     (12) 

where 𝑊𝑖,𝑗 is the weight of each model 𝑗 ∈ 𝛩 at each time 𝑖 ∈ Ι; note that ∑ 𝑊𝑖,𝑗
∞
𝑗=1 = 1 for 𝑖 ≥ 1, 𝜆 is a tuning 

parameter to control the degree of weighting dependence on the predictive performance (Wei and Yang 2011). 160 

The L1 loss function used in this manuscript can be written as follows:  

𝐿(
𝑌𝑘−𝑦̂𝑘,𝑗

𝑠̂𝑘,𝑗
) = |

𝑌𝑘−𝑦̂𝑘,𝑗

𝑠̂𝑘,𝑗
|,                                                                                      (13) 

The variance 𝑠̂𝑘,𝑗 can be estimated as follows: 

𝑠̂𝑘,𝑗 =
1

𝑖−1
∑ |𝑌𝑘 − 𝑦̂𝑘,𝑗|𝑖−1

𝑘=1 ,                                                                                  (14) 

Generally, relative error is used in majority of the studies to distribute the weights of candidate models (e.g. Wei 165 

and Yang 2012; Yang 2001), where 𝑌𝑘 represents the PIOMAS data at time 𝐾, while 𝑦̂𝑘,𝑗 represents the 𝑗th 

model data at time 𝐾. In this study, instead of relative error, a new form has been established to represent the 

difference between the model outputs and PIOMAS data, which can be presented as follows: 

𝑌𝑘 − 𝑦̂𝑘,𝑗 = 𝑒𝑥𝑝 (−2 ∙ (𝛼1𝑆𝐶𝑗
𝑠𝑖𝑐 + 𝛼2𝑆𝐶𝑗

𝑠𝑖𝑡 + 𝛼3𝑆𝑇𝑗
𝑠𝑖𝑐 + 𝛼4𝑆𝐶𝑗

𝑠𝑖𝑐)),                                (15) 

where 𝑆𝐶𝑗
𝑠𝑖𝑐 , 𝑆𝐶𝑗

𝑠𝑖𝑡 , 𝑆𝑇𝑗
𝑠𝑖𝑐 , 𝑆𝐶𝑗

𝑠𝑖𝑐 , 𝑗 ∈ Θ are derived from SSIM, 𝛼 is the weight vector, and ∑ 𝛼𝑚
4
𝑚=1 = 1. Note 170 

that, the weight factor in this study has been optimised by the genetic algorithm (GA) (Whitley 1994). 

The ensemble forecast procedure 𝑦̂𝑖
∗ can be represented as: 

𝑦̂𝑖
∗ = ∑ 𝑊𝑖,𝑗𝑗∈Θ 𝑦̂𝑖,𝑗,                                                                       (16) 

where 𝑖 is the projection time.  

If we rewrite Eq. (11), a form closely related to the Bayesian update can be found: 175 
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𝑊𝑖,𝑗 =
𝑊𝑖−1,𝑗𝑒𝑥𝑝(−𝜆𝐿(

𝑌𝑘−𝑦̂𝑘,𝑗

𝑠̂𝑘,𝑗
)) 

∑ 𝑊𝑖−1,𝑗′𝑒𝑥𝑝𝑗′ (−𝜆𝐿(
𝑌𝑘−𝑦̂𝑘,𝑗

𝑠̂𝑘,𝑗
))

,                                                            (17) 

After each additional observation, the weights of each model can be updated. Thus, we call this algorithm adaptive 

forecasting through an exponential re-weighting method. Specifically, the common AFTER algorithm is termed 

as AFTER-RE and the new form AFTER algorithm is termed as AFTER-SSIM. 

3.3 Navigability of the Arctic routes 180 

The navigability of the Arctic Routes can be represented by the Ice Numeral (IN) index derived from the Arctic 

Ice Regime Shipping System (AIRSS), where both SIC and SIT are taken into consideration (Howell and Yackel 

2004; Smith and Stephenson 2013; Stephenson and Smith 2015; CanadaTransport 1998). The IN is given by 

𝐼𝑁 = 𝐶𝑎𝐼𝑀𝑎 + 𝐶𝑏𝐼𝑀𝑏 + ⋯ + 𝐶𝑛𝐼𝑀𝑛,                  (18) 

where 𝐶𝑛  is the concentration in tenths of ice type 𝑛 and 𝐼𝑀𝑛  is the Ice Multiplier for ice type 𝑛. Ice-type 

describes the specific stage of ice development, which is closely related to the ice age and thickness. Ice Multipliers 185 

(a series of integers), determined by ship class and ice type, are used to illustrate the impact of sea ice type on a 

specific vessel. 𝐼𝑀 < 0 reflects the ice obstacle effects on vessels. Ice types are determined by CanadaTransport, 

(1998) and Johnston, (2017). Note that the area can be navigable only if the IN index is larger than zero. Details 

regarding the ice type and Ice Multiplier can be seen in Tables 2 and 3. 

3.4 Work flow 190 

The workflow of the proposed method can be seen in Figure 4. In Step 1, the PIOMAS data and model are 

interpolated into the same 1° × 1° resolution, and the original data are separated into the seasonal cycles and long-

term trends with anomalies. In Step 2, the seasonal cycle in the model data is compared with that in the PIOMAS 

data by the SSIM method to reflect the model’s reaction to the seasonal variation of the solar cycle. The SSIM 

method is also used to calculate the long-term trends between multi-models and PIOMAS to reflect the model’s 195 

fidelity to the real world. In Step 3, we proposed an AFTER-SSIM algorithm to calculate the weights for every 

model and generate an ensemble forecast for the future sea ice volume (SIV), where the seasonal cycle scores 

(CSIC/CSIT), as well as the long-term trend scores (TSIC/TSIT), are incorporated into the loss function and 

variance estimation. The parameters in the AFTER-SSIM algorithm can be optimised by GA. Additionally, the 
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candidate realisations are ranked in terms of their weights. In Step 4, the calculated weights are used to modify the 200 

SIC and SIT fields; then, the future open period of the Arctic sea routes can be obtained.     

4 Results and Discussion 

4.1 Scores from SSIM between GCMs and PIOMAS data 

A total of 101 candidate members from the 12 models were selected by Wang & Overland, (2015) in all emission 

scenarios. Based on the workflow proposed in Section 3.1, we can obtain four kinds of SSIM scores for each 205 

ensemble model (see Figure 5). From Figure 5, all the realisations have better performances in the simulation of 

seasonal cycles than in long-term trends. The average scores of the seasonal cycles between all GCMs and 

PIOMAS data can reach 0.7717 for SIC and 0.7427 for SIT. HadGEM2-AO, HadGEM2-CC, and HadGEM2-ES 

show better performances in the simulation of the seasonal cycles of SIC, while MPI-ESM-LR and MPI-ESM-

MR show the best performances in the simulation of the seasonal cycles of SIT. MIROC-ESM, MIROC-ESM-210 

CHEM, MPI-ESM-LR, and MPI-ESM-MR have advantages in modelling SIT trends, while MPI-ESM-LR and 

MPI-ESM-MR have advantages in simulating SIC trends. 

4.2 Model rank based on sea ice volume  

To further rank the models in terms of their performance in sea ice conditions, we introduce these four SSIM 

scores together into the AFTER algorithm as its loss function; their weights can be determined by GA. SIV is used 215 

as an index to measure the model performance of both SIC and SIT. The simulation results can be seen in Table 4 

and Figure 6.  

Table 4 compares the simulation performance of SIV based on different methods and their stability by computing 

the RMSE between GCMs and PIOMAS data. The variable 𝑛 represents the number of months used in the training 

from 2006–2017; all 12 months in 2018 are used to test the model performance. AFTER-SSIM is the proposed 220 

method in this study, AFTER-RE is the AFTER algorithm that uses relative error as the loss function, LR is the 

linear regression method, GRNN is the generalised regression neural network, RF represents the random forest 

algorithm, Mean is the average outcome of all the models, and Single is the optimal model among the realisations. 

From Table 4, RF has the lowest RMSE if the samples are less than 144 but becomes large when the sample 

number reaches 144, thus, demonstrating some instability.   225 
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The AFTER-SSIM algorithm has the second-lowest RMSE among all the schemes with robust stability. The 

GRNN algorithm shows good performances in both RMSE and stability, while the model performance of LR 

deteriorates rapidly as the number of samples decreases.  

The difference between AFTER-SSIM and AFTER-RE is the choice of loss functions. The SSIM approach can 

determine more information than the RE method, which was discussed in Section 3.1; thus, AFTER-SSIM has a 230 

lower RMSE than AFTER-RE. Additionally, the weights of the AFTER-SSIM algorithm can be updated by adding 

new observations (see Eq. (17)) to steadily improve the accuracy of combined forecasts in SIV, showing 

advantages over the GRNN and RF algorithms. Overall, AFTER-SSIM is a good tool to obtain combined forecasts. 

Then, the weights of candidate realisations can be obtained by the AFTER-SSIM algorithm (see Figure 6). The 

top 34 candidate realisations, only accounting for 33% of the total members, contribute 90.7% of the weight in the 235 

combined forecast, as listed in Table 5. Considering Figure 6 and Table 5, the candidate realisations from MPI-

ESM-LR have the largest weights (41.27%), followed by candidate realisations from MPI-ESM-MR (11.18%), 

CCSM4 (24.73%), MIROC-ESM (6.99%), and MIROC-ESM-CHEM (6.53%), which are key factors in the 

combined projection. Models from ACCESS1.0, ACCESS1.3, CESM4, EC-EARTH, HADGEM2-AO, 

HADGEM2-CC, and HADGEM2-ES have relative low weights and contribute less to the combined projection.  240 

Then, Shannon’s entropy is used as a tool to measure the variation of uncertainty between the initial candidate 

realisations and ranked models (Shannon, 1948). The formula can be written as follows: 

𝑈𝑘 = ∑ −𝑝𝑘𝑙𝑛(𝑝𝑘)ℑ
𝑗=1 , k=1, 2,                                                              (19) 

where 𝑈1  is the uncertainty of original candidate realisations, 𝑈2  is the uncertainty of the ranked candidate 

realisations, and 𝑝𝑘 , 𝑘 = 1, 2 represents the possibility of each model. For the original candidate realisations, the 245 

possibility 𝑝1 for each model is equal to 1/101, while for the ranked models the possibility 𝑝2 for each model is 

substituted by the weights derived from the AFTER-SSIM algorithm. Hence, the uncertainty is reduced from 

4.6152(𝑙𝑛101) to 3.9061 (≈ 𝑙𝑛50) by the AFTER-SSIM algorithm, indicating that the information originally 

scattered in the 101 candidate realisations has been concentrated into approximately 50 models.  

Instead of selecting the models, all the candidate realisations are combined with the obtained weights of the 250 

historical data reconstruction and future projection for SIV (see Figure 7). In Figure 7, the reconstruction of SIV 

by the AFTER-SSIM algorithm, based on the optimal loss function (red line), fits the PIOMAS data (black line) 

well, except for the simulation of some extreme values (e.g. the high values in 2006, 2008–2009 and 2015 and the 
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low values in 2010–2013 and 2016–2017). This issue can be explained by the predictability of CMIP5 models and 

reliability of observations. For CMIP5 models, most large-scale physical sea ice processes, including basic 255 

thermodynamic and dynamic changes, have been well understood and represented (Hunke et al. 2011). However, 

some details in the small-scale sea ice dynamic process and mechanical deformation require closer examination 

(Girard et al. 2009; Hutchings et al. 2011). Some snow processes such as wind redistribution, vapour transport, 

and snow particle changes are not contained in the models (Lecomte et al. 2011). Studies show that the internal 

variability of sea ice has accounted for 30–50% of the total observed sea ice change since 1979 (Ding et al. 2017). 260 

The sensitivity of sea ice to atmospheric circulation changes in CMIP5 models is lower than what has been 

observed (Rosenblum and Eisenman 2017). For example, research has suggested that the record low SIV in 2012 

may have been caused by an unusually strong storm in the central Arctic basin from April to August 2012 

(Parkinson and Comiso 2013), which cannot be represented well by CMIP5 models. This has made the 

reconstructed SIV appear higher than PIOMAS data. Regarding observation precision, studies have shown that 265 

the satellite retrieval algorithms of SIV often neglect snow thickness changes (Bunzel et al. 2018), as well as 

numerous geophysical parameter assumptions (e.g. seawater, snow load, and snow and sea ice densities) 

(Zygmuntowska et al. 2014). The current main obstacle to improving the projection of SIV is the lack of long-

term and reliable SIV estimates (Massonnet et al. 2018).  

Regardless of the extreme cases, an obvious decrease trend can be seen in the period of 2019–2030 in terms of our 270 

combined forecast. Similar to the 2006–2018 period, the change in SIV in the future will not be a consistent 

shrinking as it might rebound in 2020–2021, 2023–2024, and 2028–2029.   

4.3 Navigability for future Arctic Northern Sea Route 

For further exploration of the navigability of the Arctic Northern Sea Route, we combined all the candidate 

realisations with their weights to predict the opening period of the Northern Sea Route in 2030. The SIC and SIT 275 

data from 101 candidate realisations are sorted into 11 categories (i.e.𝐶𝑛 , 𝑛 = {0, 1, … , 10}) and 9 categories (i.e. 

ice type), respectively. Then the possibility of navigability on each grid can be calculated as follow: 

𝑃𝑖 = ∑ (𝐶𝑖𝑗 × 𝐼𝑀𝑖𝑗 × 𝑊𝑗)𝑁
𝑗=1 ,   𝑖𝑓  (𝐶𝑖𝑗 × 𝐼𝑀𝑗) > 0, 𝑖 ∈ Θ,                                                 (20) 

where 𝑁 is the number of candidate realisations and 𝑊𝑗 , 𝑗 = 1, … , 𝑁 is the weight of each model. The possibility 

of navigability for 1A super vessels (the most advanced ice-strengthened vessels) on Northern Sea Route for each 280 
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month in 2030 can be seen in Figure 8. It is likely that in the South Barents Sea and Kara Sea, 1A super vessels 

will be navigable throughout 2030. For the Northern Sea Routes, 1A super vessels are unlikely (less than 60%) to 

be permitted to sail north of 80°𝑁 throughout most of 2030. The Laptev Sea, East Siberian Sea, and Chukchi Sea 

are likely (more than 80%) to be interconnected when August comes, lasting until December. Therefore, the 

possibility of 1A super vessels navigating on the Northern Sea Routes for 5 months (from August to December) 285 

in 2030 is more than 80%.   

4.4 Summary 

This study proposes a new algorithm called AFTER-SSIM to evaluate the performance of 101 selected global 

climate models under four different emission scenarios, appearing since 2006.  

The SSIM approach is incorporated into the algorithm as a loss function to obtain more information on the spatial 290 

distribution between model outputs and PIOMAS data, allowing the AFTER-SSIM algorithm to perform better 

than the AFTER-RE algorithm. The GA method is used to optimise the parameters in seasonal cycles and long-

term trends of SIC and SIT. The re-weighting mechanism of the AFTER-SSIM algorithm ensures the improved 

performance in SIV simulations as new information is added, showing better performances than other listed 

regression methods.  295 

The combined forecasts in SIV with 101 global climate models show that there will be an obvious decrease trend 

with some rebounds from 2019 to 2030. The invalidity of extreme SIV projection reveals that closer examination 

is needed for both the physical processes and parameterisations in global climate models as well as to obtain more 

reliable and long-term observations.  

The ranked models are combined to calculate the navigation possibility for 1A super vessels through the Northern 300 

Sea Route in 2030. A possibility beyond 80% indicates that the open period can reach five months, ranging from 

August to December in 2030.  
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Model  

Number 
Model Name Country Spatial Resolution 

Ensemble members 

(RCP) Reference 

26 45 60 85 

1 ACCESS1.0 Australia 
tripolar, 1° × 1°, 

refinement at the equator 
 1  1 (Bi et al. 2013) 

2 ACCESS1.3 Australia 
tripolar, 1° × 1°, 

refinement at the equator 
 1  1 (Bi et al. 2013) 

3 CCSM4 USD 
dipolar, 1.11° × (0.27 −

0.54)°, NP in Greenland 
5 6 6 6 

(Gent and 

Danabasoglu 2011) 

4 CESM1 USD 
dipolar, 1.11° × (0.27 −

0.54)°, NP in Greenland 
3   1 

(Gent and 

Danabasoglu 2011) 

5 EC-EARTH Europe 
tripolar, 1° × 1°, 

refinement at the equator 
2 10  10 

(Fichefet and 

Maqueda 1999) 

6 HadGEM2-ES UK (1 − 0.3)° × 1° 4 4 4 5 
(Mclaren et al. 

2006) 

7 HadGEM2-CC UK (1 − 0.3)° × 1° 1 1 1 1 
(Mclaren et al. 

2006) 

8 HadGEM2-AO Korea (1 − 0.3)° × 1°  1  3 
(Mclaren et al. 

2006) 

9 MIROC-ESM Japan ~1.4° × 1° 1 1 1 2 
(Watanabe et al. 

2011) 

10 
MIROC-ESM-

CHEM 
Japan ~1.4° × 1° 1 1 1 1 

(Watanabe et al. 

2011) 

11 MPI-ESM-LR Germany ~1.5° × 1.5° 3 3  3 (Notz et al. 2013) 

12 MPI-ESM-MR Germany ~0.4° × 0.4° 1 3  1 (Notz et al. 2013) 

Sum    21 32 13 35  

 

    

420     Table 1: Basic features of the 12 CMIP5 models used for analysis. 
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Table 2: Ice Type (CanadaTransport, 1998; Johnston, 2017). 

Ice Type Characteristic 

Open Water 
Newly formed ice, include ice crystal, grease like ice, crushed ice clusters, etc. These types of ice are 

loosely frozen together and can only been seen while floating. The ice thickness is less than 10 cm. 

Grey 
Young ice has a thickness of 10–15 cm, which is lower than that of nilas and is easy to expand and 

break.  

Grey-white Young ice has a thickness of 15–30 cm. 

Thin first year 

1st stage 
One-year ice, of which the formation time does not exceed one winter, has a thickness of 30–50 cm. 

Thin first year 

2nd stage 
One-year ice, of which the formation time does not exceed one winter, has a thickness of 50–70 cm. 

Medium first 

year 
One-year ice has a thickness of 70–120 cm.  

Thick first year One-year ice has a thickness of 120–220 cm. 

Second year Adult ice, which has gone through at least one summer melting, has a thickness of 220–250 cm. 

Multiyear Multiyear ice, which has gone through at least two summer meltings, has a thickness beyond 250 cm. 

Table 3: Ice Multiplier for 1A Super (CanadaTransport 1998). 

 
Open 

Water 

Grey 

Ice 

Grey 

White 

Ice 

Thin First Year 

1st Stage 

Thin FIRST 

Year 2nd 

Stage 

Medium 

First 

Year 

Thick 

First 

Year 

Second 

Year 

Multi 

Year 

1A Super 2 2 2 2 2 1 -1 -3 -4 

Table 4: Comparison for the simulation performance of SIV based on different methods and their stability (n is the 425 

number of months used in the training from 2006–2017; all 12 months in 2018 are used to test the model performance) 

Method/Sample n=96 n=108 n=120 n=132 n=144 

AFTER-SSIM 0.6323 0.6325 0.6132 0.6083 0.6157  

AFTER-RE 2.2619 2.1641 2.1818 2.0157 2.0951 

LR 23.3325 19.4949 8.2884 2.5963 0.9145 

GRNN 0.8858 0.7012 0.7682 0.8693 0.6035 

RF 0.4155 0.4526 0.3908 0.5342 0.7478 

Mean 3.6871 3.6871 3.6871 3.6871 3.6871 

Single member  1.2802 1.2802 1.2802 1.2802 1.2802 

Table 5: The top 34 candidate realisations and their weights. 

Rank Model Number of  Weights Cumulative weight  
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Members 

1 MPI-ESM-LR 9 0.4127 0.4127 

2 CCSM4 15 0.2473 0.6600 

3 MPI-ESM-MR 4 0.1118 0.7718 

4 MIROC-ESM 3 0.0699 0.8417 

5 MIROC-ESM-CHEM 3 0.0653 0.9070 

  

Figure 1: Variation of SIC (a) and SIT (b) between the current mean state (2006–2018) and historical mean state (1979–

2005) in March and September. 430 
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Figure 2: Variation of the SIV; the red line represents the monthly mean SIV from 1979–2005, and the blue line is the 

monthly mean SIV from 2006–2018. Compared to the mean state from 2006–2018, the monthly SIV change is 

represented as a light blue error bar and the yearly change is represented by black dots. 

 435 

Figure 3: Example for structure similarity analysis. 
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Figure 4: Work flow of the proposed method. 
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Figure 5: Model evaluation and selection with four scores. 440 

 

Figure 6: Weight of each candidate model derived by AFTER-SSIM. 
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Figure 7. Reconstruction and future projections for SIV based on AFTER-SSIM algorithm (The black line represents 

the PIOMAS data and the red line is the simulation of SIV based on the AFTER-SSIM, where the loss function has 445 

been optimised by a GA algorithm). 

 

Figure 8. Possibility of navigability for 1A super vessels on the Northern Sea Route for every month in the year of 2030 

with 101 combined candidate realisations.  

  450 
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