Articles | Volume 9, issue 4
https://doi.org/10.5194/os-9-597-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-9-597-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Wave-turbulence scaling in the ocean mixed layer
G. Sutherland
School of Physics and Ryan Institute, National University of Ireland, Galway
School of Physics and Ryan Institute, National University of Ireland, Galway
K. H. Christensen
Norwegian Meteorological Institute, Oslo, Norway
Related authors
No articles found.
Jean Rabault, Trygve Halsne, Ana Carrasco, Anton Korosov, Joey Voermans, Patrik Bohlinger, Jens Boldingh Debernard, Malte Müller, Øyvind Breivik, Takehiko Nose, Gaute Hope, Fabrice Collard, Sylvain Herlédan, Tsubasa Kodaira, Nick Hughes, Qin Zhang, Kai Haakon Christensen, Alexander Babanin, Lars Willas Dreyer, Cyril Palerme, Lotfi Aouf, Konstantinos Christakos, Atle Jensen, Johannes Röhrs, Aleksey Marchenko, Graig Sutherland, Trygve Kvåle Løken, and Takuji Waseda
EGUsphere, https://doi.org/10.48550/arXiv.2401.07619, https://doi.org/10.48550/arXiv.2401.07619, 2024
Short summary
Short summary
We observe strongly modulated waves-in-ice significant wave height using buoys deployed East of Svalbard. We show that these observations likely cannot be explained by wave-current interaction or tide-induced modulation alone. We also demonstrate a strong correlation between the waves height modulation, and the rate of sea ice convergence. Therefore, our data suggest that the rate of sea ice convergence and divergence may modulate wave in ice energy dissipation.
Kirtana Naëck, Jacqueline Boutin, Sebastiaan Swart, Marcel Du Plessis, Liliane Merlivat, Laurence Beaumont, Antonio Lourenco, Francesco d'Ovidio, Louise Rousselet, Brian Ward, and Jean-Baptiste Sallée
EGUsphere, https://doi.org/10.5194/egusphere-2024-2668, https://doi.org/10.5194/egusphere-2024-2668, 2024
Short summary
Short summary
In Summer 2022, a "CARbon Interface OCean Atmosphere"(CARIOCA) drifting buoy observed an anomalously strong ocean carbon sink in the subpolar Southern Ocean associated with large plumes of chlorophyll-a. Lagrangian backward trajectories indicate that these waters originated from the sea ice edge, the previous Spring 2021. Our study highlights the northward migration of the CO2 sink associated with early sea ice retreat.
Trygve Halsne, Kai Håkon Christensen, Gaute Hope, and Øyvind Breivik
Geosci. Model Dev., 16, 6515–6530, https://doi.org/10.5194/gmd-16-6515-2023, https://doi.org/10.5194/gmd-16-6515-2023, 2023
Short summary
Short summary
Surface waves that propagate in oceanic or coastal environments get influenced by their surroundings. Changes in the ambient current or the depth profile affect the wave propagation path, and the change in wave direction is called refraction. Some analytical solutions to the governing equations exist under ideal conditions, but for realistic situations, the equations must be solved numerically. Here we present such a numerical solver under an open-source license.
Johannes Röhrs, Yvonne Gusdal, Edel S. U. Rikardsen, Marina Durán Moro, Jostein Brændshøi, Nils Melsom Kristensen, Sindre Fritzner, Keguang Wang, Ann Kristin Sperrevik, Martina Idžanović, Thomas Lavergne, Jens Boldingh Debernard, and Kai H. Christensen
Geosci. Model Dev., 16, 5401–5426, https://doi.org/10.5194/gmd-16-5401-2023, https://doi.org/10.5194/gmd-16-5401-2023, 2023
Short summary
Short summary
A model to predict ocean currents, temperature, and sea ice is presented, covering the Barents Sea and northern Norway. To quantify forecast uncertainties, the model calculates ensemble forecasts with 24 realizations of ocean and ice conditions. Observations from satellites, buoys, and ships are ingested by the model. The model forecasts are compared with observations, and we show that the ocean model has skill in predicting sea surface temperatures.
Sindre Fritzner, Rune Graversen, Kai H. Christensen, Philip Rostosky, and Keguang Wang
The Cryosphere, 13, 491–509, https://doi.org/10.5194/tc-13-491-2019, https://doi.org/10.5194/tc-13-491-2019, 2019
Short summary
Short summary
In this work, a coupled ocean and sea-ice ensemble-based assimilation system is used to assess the impact of different observations on the assimilation system. The focus of this study is on sea-ice observations, including the use of satellite observations of sea-ice concentration, sea-ice thickness and snow depth for assimilation. The study showed that assimilation of sea-ice thickness in addition to sea-ice concentration has a large positive impact on the coupled model.
Sebastian Landwehr, Scott D. Miller, Murray J. Smith, Thomas G. Bell, Eric S. Saltzman, and Brian Ward
Atmos. Chem. Phys., 18, 4297–4315, https://doi.org/10.5194/acp-18-4297-2018, https://doi.org/10.5194/acp-18-4297-2018, 2018
Short summary
Short summary
The ocean takes up about 25 % of emitted anthropogenic emitted carbon dioxide and thus plays a significant role in the regulation of climate. In order to accurately calculate this uptake, a quantity known as the air–sea gas transfer velocity needs to be determined. This is typically parameterised with mean wind speed, the most commonly used velocity scale for calculating air–sea transfer coefficients. In this article, we propose an alternative velocity scale known as the friction velocity.
Thomas G. Bell, Sebastian Landwehr, Scott D. Miller, Warren J. de Bruyn, Adrian H. Callaghan, Brian Scanlon, Brian Ward, Mingxi Yang, and Eric S. Saltzman
Atmos. Chem. Phys., 17, 9019–9033, https://doi.org/10.5194/acp-17-9019-2017, https://doi.org/10.5194/acp-17-9019-2017, 2017
Short summary
Short summary
The mechanisms that determine the air–sea exchange of gases such as carbon dioxide are not well understood. During a research cruise in the North Atlantic, we simultaneously measured the air–sea transfer of two gases with contrasting solubility over a range in wind and wave conditions. We compare the transfer of these gases to improve understanding of how bubbles from breaking waves may mediate air–sea gas fluxes.
Kai Håkon Christensen, Ana Carrasco, Jean-Raymond Bidlot, and Øyvind Breivik
Ocean Sci., 13, 589–597, https://doi.org/10.5194/os-13-589-2017, https://doi.org/10.5194/os-13-589-2017, 2017
Short summary
Short summary
In this note we investigate when and where we would expect the bottom to influence the dynamics of surface waves. In deep water, where the presence of the bottom is not felt by the waves, modelers can use a simpler description of wave-mean flow interactions; hence, the results are relevant for coupled wave-ocean modeling systems. The most pronounced influence is on the Northwest Shelf during winter, and can sometimes be significant even far from the coast.
Dorothee C. E. Bakker, Benjamin Pfeil, Camilla S. Landa, Nicolas Metzl, Kevin M. O'Brien, Are Olsen, Karl Smith, Cathy Cosca, Sumiko Harasawa, Stephen D. Jones, Shin-ichiro Nakaoka, Yukihiro Nojiri, Ute Schuster, Tobias Steinhoff, Colm Sweeney, Taro Takahashi, Bronte Tilbrook, Chisato Wada, Rik Wanninkhof, Simone R. Alin, Carlos F. Balestrini, Leticia Barbero, Nicholas R. Bates, Alejandro A. Bianchi, Frédéric Bonou, Jacqueline Boutin, Yann Bozec, Eugene F. Burger, Wei-Jun Cai, Robert D. Castle, Liqi Chen, Melissa Chierici, Kim Currie, Wiley Evans, Charles Featherstone, Richard A. Feely, Agneta Fransson, Catherine Goyet, Naomi Greenwood, Luke Gregor, Steven Hankin, Nick J. Hardman-Mountford, Jérôme Harlay, Judith Hauck, Mario Hoppema, Matthew P. Humphreys, Christopher W. Hunt, Betty Huss, J. Severino P. Ibánhez, Truls Johannessen, Ralph Keeling, Vassilis Kitidis, Arne Körtzinger, Alex Kozyr, Evangelia Krasakopoulou, Akira Kuwata, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Claire Lo Monaco, Ansley Manke, Jeremy T. Mathis, Liliane Merlivat, Frank J. Millero, Pedro M. S. Monteiro, David R. Munro, Akihiko Murata, Timothy Newberger, Abdirahman M. Omar, Tsuneo Ono, Kristina Paterson, David Pearce, Denis Pierrot, Lisa L. Robbins, Shu Saito, Joe Salisbury, Reiner Schlitzer, Bernd Schneider, Roland Schweitzer, Rainer Sieger, Ingunn Skjelvan, Kevin F. Sullivan, Stewart C. Sutherland, Adrienne J. Sutton, Kazuaki Tadokoro, Maciej Telszewski, Matthias Tuma, Steven M. A. C. van Heuven, Doug Vandemark, Brian Ward, Andrew J. Watson, and Suqing Xu
Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, https://doi.org/10.5194/essd-8-383-2016, 2016
Short summary
Short summary
Version 3 of the Surface Ocean CO2 Atlas (www.socat.info) has 14.5 million CO2 (carbon dioxide) values for the years 1957 to 2014 covering the global oceans and coastal seas. Version 3 is an update to version 2 with a longer record and 44 % more CO2 values. The CO2 measurements have been made on ships, fixed moorings and drifting buoys. SOCAT enables quantification of the ocean carbon sink and ocean acidification, as well as model evaluation, thus informing climate negotiations.
A. K. Sperrevik, K. H. Christensen, and J. Röhrs
Ocean Sci., 11, 237–249, https://doi.org/10.5194/os-11-237-2015, https://doi.org/10.5194/os-11-237-2015, 2015
S. Landwehr, S. D. Miller, M. J. Smith, E. S. Saltzman, and B. Ward
Atmos. Chem. Phys., 14, 3361–3372, https://doi.org/10.5194/acp-14-3361-2014, https://doi.org/10.5194/acp-14-3361-2014, 2014
B. Scanlon, G. A. Wick, and B. Ward
Ocean Sci., 9, 977–986, https://doi.org/10.5194/os-9-977-2013, https://doi.org/10.5194/os-9-977-2013, 2013
T. G. Bell, W. De Bruyn, S. D. Miller, B. Ward, K. H. Christensen, and E. S. Saltzman
Atmos. Chem. Phys., 13, 11073–11087, https://doi.org/10.5194/acp-13-11073-2013, https://doi.org/10.5194/acp-13-11073-2013, 2013
N. O'Sullivan, S. Landwehr, and B. Ward
Ocean Sci., 9, 855–866, https://doi.org/10.5194/os-9-855-2013, https://doi.org/10.5194/os-9-855-2013, 2013
Related subject area
Approach: In situ Observations | Depth range: Mixed Layer | Geographical range: Deep Seas: North Atlantic | Phenomena: Turbulence and Mixing
Microstructure observations during the spring 2011 STRATIPHYT-II cruise in the northeast Atlantic
E. Jurado, H. A. Dijkstra, and H. J. van der Woerd
Ocean Sci., 8, 945–957, https://doi.org/10.5194/os-8-945-2012, https://doi.org/10.5194/os-8-945-2012, 2012
Cited articles
Agrawal, Y. C., Terray, E. A., Donelan, M. A., Hwang, P. A., and Williams III, A. J.: Enhanced dissipation of kinetic energy beneath surface waves, Nature, 359, 219–220, 1992.
Anis, A. and Moum, J. M.: Surface Wave-Turbulence Interactions: Scaling $\epsilon$(z) near the Sea Surface, J. Phys. Oceanogr., 25, 2025–2045, 1995.
Babanin, A. V. and Haus, B. K.: On the Existence of Water Turbulence Induced by Nonbreaking Surface Waves, J. Phys. Oceanogr., 39, 2675–2679, 2009.
Bouws, E., Draper, L., Shearman, E. D. R., Laing, A. K., Feit, D., Mass, W., Eide, L. I., Francis, P., Carter, D. J. T., and Battjes, J. A.: Guide to Wave analysis and forecasting. WMO-No. 702, World Meteorological Organization, 2nd Edn., 1998.
Burchard, H. L.: Simulating the Wave-Enhanced Layer under Breaking Surface Waves with Two-Equation Turbulence Models, J. Phys. Oceanogr., 31, 3133–3145, 2001.
Christensen, K. H., Röhrs, J., Ward, B., Drivdal, M., and Broström, G.: Surface Wave Measurements Using a Ship Mounted Ultrasonic Altimeter, in: AGU Ocean Sciences Meeting (Salt Lake City, Utah), poster, 2012.
Churchill, J. H. and Csanady, G. T.: Near-Surface Measurements of Quasi-Lagrangian Velocities in Open Water, J. Phys. Oceanogr., 13, 1669–1680, 1983.
Craig, P. D. and Banner, M. L.: Modelling wave-enhanced turbulence in the ocean surface layer, J. Phys. Oceanogr., 24, 2546–2559, 1994.
de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and Iudicone, D.: Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology, J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2006JC004051, 2004.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, 2011.
Denman, K. and Gargett, A. E.: Biological-physical interactions in the upper ocean: The role of vertical and small scale transport processes, Annu. Rev. Fluid Mech., 27, 225–255, 1989.
Dillon, T. M., Richman, J. G., Hansen, C. G., and Pearson, M. D.: Near-surface turbulence measurements in a lake, Nature, 290, 390–392, 1981.
Drennan, W. M., Donelan, M. A., Terray, E. A., and Katsaros, K. B.: Ocean Turbulence Dissipation Measurements in SWADE, J. Phys. Oceanogr., 26, 808–815, 1996.
Efron, B. and Gong, G.: A leisurely look at the bootstrap, the jacknife and cross-validation, Am. Stat., 37, 36–48, 1983.
Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: Bulk parameterization of air-sea fluxes for Tropical Ocean-Global Atmosphere Coupled-Ocean Atmosphere Response Experiment, J. Geophys. Res., 101, 3747–3764, 1996.
Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., and Edson, J. B.: Bulk Parameterization of Air-Sea Fluxes: Updates and Verification for the COARE Algorithm, J. Climate, 16, 571–591, 2003.
Gargett, A. E.: Ocean Turbulence, Annu. Rev. Fluid Mech., 21, 419–451, 1989.
Garrett, C.: Processes in the surface mixed layer of the ocean, Dynam. Atmos. Oceans, 23, 19–34, 1996.
Gerbi, G. P., Trowbridge, J. H., Terray, E. A., Plueddemann, A. J., and Kukulka, T.: Observations of Turbulence in the Ocean Surface Boundary Layer: Energetics and Transport, J. Phys. Oceanogr., 39, 1077–1096, 2009.
Grant, A. L. and Belcher, S. E.: Characteristics of Langmuir Turbulence in the Ocean Mixed Layer, J. Phys. Oceanogr., 39, 1871–1887, 2009.
Greenan, B. J., Oakey, N. S., and Dobson, F. W.: Estimates of Dissipation in the Ocean Mixed Layer Using a Quasi-Horizontal Microstructure Profiler, J. Phys. Oceanogr., 31, 992–1004, 2001.
Huang, C. J. and Qiao, F.: Wave-turbulence interaction and its induced mixing in the upper ocean, J. Geophys. Res., 115, c04026, https://doi.org/10.1029/2009JC005853, 2010.
Janssen, P. A. E. M.: Ocean wave effects on the daily cycle in SST, J. Geophys. Res., 117, C00J32, https://doi.org/10.1029/2012JC007943, 2012.
Jones, I. S. F. and Kenney, B. C.: The scaling of vertical velocity fluctutations in the surface mixed layer, J. Geophys. Res., 82, 1392–1396, 1977.
Kitaigorodskii, S. A., Donelan, M. A., Lumley, J. L., and Terray, E. A.: Wave-turbulence interactions in the upper ocean: Part II, J. Phys. Oceanogr., 13, 1988–1999, 1983.
Lorke, A. and Peeters, F.: Toward a unified scaling relation for interfacial fluxes, J. Phys. Oceanogr., 36, 955–961, 2006.
Macoun, P. and Lueck, R.: Modelling the spatial response of the airfoil shear probe using different sized probes, J. Atmos. Ocean. Tech., 21, 284–297, 2004.
McWilliams, J. C., Sullivan, P. P., and Moeng, C. H.: Langmuir turbulence in the ocean, J. Fluid Mech., 334, 1–30, 1997.
Moum, J. N., Gregg, M. C., Lien, R. C., and Carr, M. E.: Comparison of Turbulence Kinetic Energy Dissipation Rate Estimates from Two Ocean Microstructure Profilers, J. Phys. Oceanogr., 12, 346–366, 1995.
Noh, Y., Min, H. S., and Raasch, S.: Large Eddy Simulation of the Ocean Mixed Layer: The Effect of Wave Breaking and Langmuir Circulation, J. Phys. Oceanogr., 34, 720–735, 2004.
Oakey, N. S. and Elliott, J. A.: Dissipation within the surface mixed layer, J. Phys. Oceanogr., 12, 171–185, 1982.
Osborn, T. R.: Vertical profiling of velocity microstructure, J. Phys. Oceanogr., 4, 109–115, 1974.
Osborn, T. R.: Estimates of the local rate of vertical diffusion from dissipation measurements, J. Phys. Oceanogr., 10, 83–89, 1980.
Osborn, T. R., Farmer, D. M., abd S A Thorpe, S. V., and Cure, M.: Measurements of bubble plumes and turbulence froma submarine, Atmos. Ocean, 30, 419–440, 1992.
Richman, J. and Garrett, C.: The transfer of energy and momentum by the wind to the surface mixed layer, J. Phys. Oceanogr., 7, 876–881, 1977.
Soloviev, A. V., Vershinsky, N. V., and Bezverchnii, V. A.: Small scale turbulence measurements in the thin surface layer of the ocean, Deep-Sea Res., 35, 1859–1874, 1988.
Stevens, C. L. and Smith, M. J.: Temperature Microstructure beneath Surface Gravity Waves, J. Atmos. Ocean. Tech., 21, 1747–1757, 2004.
Stevens, C., Ward, B., Law, C., and Walkington, M.: Surface layer mixing during the SAGE ocean fertilization experiment, Deep-Sea Res. Pt. II, 58, 776–785, 2011.
Stewart, R. W. and Grant, H. L.: Determination of the rate of dissipation of turbulent energy near the sea surface in the presence of waves, J. Geophys. Res., 67, 3177–3180, 1962.
Stips, A., Burchard, H., Bolding, K., Prandke, H., Simon, A., and Wüest, A.: Measurement and simulation of viscous dissipation in the wave affected surface layer, Deep-Sea Res. Pt. II, 52, 1133–1155, 2005.
Teixeira, M. A. C.: The influence of Langmuir turbulence on the scaling for the dissipation rate in the oceanic boundary layer, J. Geophys. Res., 117, C05015, https://doi.org/10.1029/2011JC007235, 2012.
Terray, E. A., Donelan, M. A., Agrawal, Y. C., Drennan, W. M., Kahma, K. K., Williams III, A. J., Hwang, P. A., and Kitaigorodskii, S. A.: Estimates of Kinetic Energy Dissipation under Breaking Waves, J. Phys. Oceanogr., 26, 792–807, 1996.
Thomson, R. E. and Fine, I. V.: Estimating Mixed Layer Depth from Oceanic Profile Data, J. Phys. Oceanogr., 20, 319–329, 2003.
Ward, B. and T. Fristedt, Air-Sea Interaction Profiler: Autonomous Upper Ocean Measurements, in Proceedings of the 3rd US/EU-Baltic International Symposium, Talinn, May, 2008.
Wüest, A., Piepke, G., and Van Senden, D.: Turbulent kinetic energy balance as a tool for estimating vertical diffusivity in wind-forced stratified waters, Limnol. Oceanogr., 45, 1388–1400, 2000.
Yamazaki, H., Osborn, T., and Squires, K. D.: Direct numerical simulation of planktonic contact in turbulent flow, J. Plankton Res., 13, 629–643, 1991.
Zappa, C. J., McGillis, W. R., Raymond, P. A., Edson, J. B., Hintsa, E. J., Zemmelink, H. J., Dacey, J. W. H., and Ho, D. T.: Environmental turbulent mixing controls of air-water gas exchange in marine and aquatic systems, Geophys. Res. Lett., 34, l10601, https://doi.org/10.1029/2006GL028790, 2007.
Zhang, H. M. and Talley, L. D.: Heat and buoyancy budgets and mixing rates in the Indian and global Oceans, J. Phys. Oceanogr., 28, 1961–1978, 1998.