Articles | Volume 9, issue 2
https://doi.org/10.5194/os-9-249-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
https://doi.org/10.5194/os-9-249-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Manifestation of two meddies in altimetry and sea-surface temperature
I. Bashmachnikov
Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lissabon, Portugal
Departamento de Engenharia Geográfica, Geofísica e Energia (DEGGE), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lissabon, Portugal
D. Boutov
Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lissabon, Portugal
J. Dias
Centro de Oceanografia, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lissabon, Portugal
Departamento de Engenharia Geográfica, Geofísica e Energia (DEGGE), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lissabon, Portugal
Related authors
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Anna V. Vesman, Igor L. Bashmachnikov, Pavel A. Golubkin, and Roshin P. Raj
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-109, https://doi.org/10.5194/os-2020-109, 2020
Revised manuscript not accepted
Short summary
Short summary
Atlantic Waters carry heat and salt towards Arctic. The goal of this study was to study how the heat flux changes with its journey to the north. It was shown that despite the fact that there is some connection between variability of the heat flux near the shores of Norway and heat fluxes in the northern part of the Fram Strait. There are different processes governing this variability, which results in a different tendencies in the southern and northern regions of the study.
I. Bashmachnikov, Â. Nascimento, F. Neves, T. Menezes, and N. V. Koldunov
Ocean Sci., 11, 803–827, https://doi.org/10.5194/os-11-803-2015, https://doi.org/10.5194/os-11-803-2015, 2015
I. Bashmachnikov, F. Neves, Â. Nascimento, J. Medeiros, I. Ambar, J. Dias, and X. Carton
Ocean Sci., 11, 215–236, https://doi.org/10.5194/os-11-215-2015, https://doi.org/10.5194/os-11-215-2015, 2015
Short summary
Short summary
The present study defines new interpolation functions for hydrological data. These functions are applied to generate climatological maps of temperature-salinity distribution with a 25m depth interval and a 30km space interval (MEDTRANS data set). The MEDTRANS climatology gives more details of the distribution of water characteristics in the subtropical northeastern Atlantic than other alternative climatologies and is able to reproduce a number of dynamic features described in the literature.
Hanna K. Lappalainen, Tuukka Petäjä, Timo Vihma, Jouni Räisänen, Alexander Baklanov, Sergey Chalov, Igor Esau, Ekaterina Ezhova, Matti Leppäranta, Dmitry Pozdnyakov, Jukka Pumpanen, Meinrat O. Andreae, Mikhail Arshinov, Eija Asmi, Jianhui Bai, Igor Bashmachnikov, Boris Belan, Federico Bianchi, Boris Biskaborn, Michael Boy, Jaana Bäck, Bin Cheng, Natalia Chubarova, Jonathan Duplissy, Egor Dyukarev, Konstantinos Eleftheriadis, Martin Forsius, Martin Heimann, Sirkku Juhola, Vladimir Konovalov, Igor Konovalov, Pavel Konstantinov, Kajar Köster, Elena Lapshina, Anna Lintunen, Alexander Mahura, Risto Makkonen, Svetlana Malkhazova, Ivan Mammarella, Stefano Mammola, Stephany Buenrostro Mazon, Outi Meinander, Eugene Mikhailov, Victoria Miles, Stanislav Myslenkov, Dmitry Orlov, Jean-Daniel Paris, Roberta Pirazzini, Olga Popovicheva, Jouni Pulliainen, Kimmo Rautiainen, Torsten Sachs, Vladimir Shevchenko, Andrey Skorokhod, Andreas Stohl, Elli Suhonen, Erik S. Thomson, Marina Tsidilina, Veli-Pekka Tynkkynen, Petteri Uotila, Aki Virkkula, Nadezhda Voropay, Tobias Wolf, Sayaka Yasunaka, Jiahua Zhang, Yubao Qiu, Aijun Ding, Huadong Guo, Valery Bondur, Nikolay Kasimov, Sergej Zilitinkevich, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 22, 4413–4469, https://doi.org/10.5194/acp-22-4413-2022, https://doi.org/10.5194/acp-22-4413-2022, 2022
Short summary
Short summary
We summarize results during the last 5 years in the northern Eurasian region, especially from Russia, and introduce recent observations of the air quality in the urban environments in China. Although the scientific knowledge in these regions has increased, there are still gaps in our understanding of large-scale climate–Earth surface interactions and feedbacks. This arises from limitations in research infrastructures and integrative data analyses, hindering a comprehensive system analysis.
Anna V. Vesman, Igor L. Bashmachnikov, Pavel A. Golubkin, and Roshin P. Raj
Ocean Sci. Discuss., https://doi.org/10.5194/os-2020-109, https://doi.org/10.5194/os-2020-109, 2020
Revised manuscript not accepted
Short summary
Short summary
Atlantic Waters carry heat and salt towards Arctic. The goal of this study was to study how the heat flux changes with its journey to the north. It was shown that despite the fact that there is some connection between variability of the heat flux near the shores of Norway and heat fluxes in the northern part of the Fram Strait. There are different processes governing this variability, which results in a different tendencies in the southern and northern regions of the study.
I. Bashmachnikov, Â. Nascimento, F. Neves, T. Menezes, and N. V. Koldunov
Ocean Sci., 11, 803–827, https://doi.org/10.5194/os-11-803-2015, https://doi.org/10.5194/os-11-803-2015, 2015
I. Bashmachnikov, F. Neves, Â. Nascimento, J. Medeiros, I. Ambar, J. Dias, and X. Carton
Ocean Sci., 11, 215–236, https://doi.org/10.5194/os-11-215-2015, https://doi.org/10.5194/os-11-215-2015, 2015
Short summary
Short summary
The present study defines new interpolation functions for hydrological data. These functions are applied to generate climatological maps of temperature-salinity distribution with a 25m depth interval and a 30km space interval (MEDTRANS data set). The MEDTRANS climatology gives more details of the distribution of water characteristics in the subtropical northeastern Atlantic than other alternative climatologies and is able to reproduce a number of dynamic features described in the literature.
Cited articles
Arbic, B. K., Scott, R. B., Chelton, D. B., Richman, J. G., and Shriver, J. F.: Effects of stencil width on surface ocean geostrophic velocity and vorticity estimation from gridded satellite altimeter data, J. Geophys. Res., 117, C03029, https://doi.org/10.1029/2003JC001952, 2012.
AVISO: Altimeter products, produced by Ssalto/Duacs and distributed by Aviso, with support from CNES, available at: http://www.aviso.oceanobs.com, last access: 1 November 2011.
Bashmachnikov, I. and Carton, X.: Surface signature of Mediterranean water eddies in the North-East Atlantic: effect of the upper ocean stratification, Ocean Sci. Discuss., 9, 2457–2491, https://doi.org/10.5194/osd-9-2457-2012, 2012.
Bashmachnikov, I., Machin, F., Mendonca, A., and Martins, A.: In-situ and remote sensing signature of meddies east of the Mid-Atlantic ridge, J. Geophys. Res., 114, C05018, https://doi.org/10.1029/2008JC005032, 2009a.
Bashmachnikov, I., Mohn, C., Pelegrí, J. L., Martins, A., Machín, F., Jose, F., and White, M.: Interaction of Mediterranean water eddies with Sedlo and Seine seamounts, Subtropical Northeast Atlantic, Deep-Sea Res. II, 56, 2593–2605, 2009b.
Carton, X., Daniault, N., Alves, J., Cherubin, L., and Ambar, I.: Meddy dynamics and interaction with neighboring eddies southwest of Portugal: Observations and modelling, J. Geophys. Res., 115, C06017, https://doi.org/10.1029/2009JC005646, 2010.
Cenedese, C.: Laboratory experiments on mesoscale vortices colliding with a seamount, J. Geophys. Res., 107, 3053, https://doi.org/10.1029/2000JC000599, 2002.
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of nonlinear mesoscale eddies, Progr. Oceanogr., 91, 167–216, 2011.
Dewar, W. K. and Meng, H.: The propagation of submesoscale vortices, J. Phys. Oceanogr., 25, 1745–1770, 1995.
Egbert, G. D. and Erofeeva, S. Y.: Efficient inverse modeling of barotropic ocean tides, J. Atmos. Oceanic Technol., 19, 183–204, 2002.
Filyushkin, B. N., Sokolovskiy, M. A., Kozhelupova, N. G., and Vaginac, I. M.: Reflection of Intrathermocline Eddies on the Ocean Surface, Dokl. Earth Sci., 439, 986–989, 2011.
Fu, L.-L. and Cazenav, A.: Satellite Altimetry and Earth Sciences – A Handbook of Techniques and Applications, International Geophysics Series 69, Academic Press, London, 463 pp., 2001.
Isern-Fontanet, J., Garcia-Ladona, E., and Font, J.: Identification of marine eddies from altimetric maps, J. Atmos. Oceanic Technol., 20, 772–778, 2003.
Käse R. H. and Zenk, W.: Reconstructed Mediterranean salt lens trajectories, J. Phys. Oceanogr., 17, 158–163, 1987.
Mariano, A. J. and Brown, O. B.: Efficient objective analysis of dynamically heterogeneous and nonstationary fields via the parameter matrix, Deep-Sea Res., 39, 1255–1271, 1992.
Morel, Y.: The influence of the upper thermocline currents on intrathermocline eddies, J. Phys. Oceanogr., 25, 3247–3252, 1995.
MUR: Multi-scale Ultra-high Resolution Sea Surface Temperature, provided by Jet Propulsion Laboratory at California Institute of Technology, http://mur.jpl.nasa.gov/InformationText.php, last access: 1 November 2011.
Oliveira, P. B., Serra, N., Fiúza, A. F. G., and Ambar, I.: A study of meddies using simultaneous in-situ and satellite observations, in: Satellites, Oceanography and Society, Elsevier Oceanography Series 63, Elsevier, Amsterdam, 125–148, 2000.
Paillet, J., Le Cann, B., Carton, X., Morel, Y., and Serpette, A.: Dynamics and evolution of a northern meddy, J. Phys. Oceanogr., 32, 55–79, 2002.
Pingree, R. D.: The droguing of Meddy Pinball and seeding with ALACE floats, J. Mar. Biol. Assoc. UK, 75, 235–252, 1995.
Pingree, R. D. and Le Cann, B.: A shallow meddy (a Smeddy) from the secondary mediterranean salinity maximum, J. Geophys. Res., 98, 20169–20185, 1993a.
Pingree, R. D. and Le Cann, B.: Structure of a meddy (Bobby 92) southeast of the Azores, Deep-Sea Res. I, 40, 2077–2103, 1993b.
Polvani, L. M.: Two-layer geostrophic vortex dynamics. Part 2. Alignment and two-layer V-states, J. Fluid Mech., 225, 241–270, 1991.
RADS: Radar Altimeter Database System, provided by Delft Institute for Earth-Oriented Space research (DEOS), The Netherlands, http://rads.tudelft.nl/rads/rads.shtml, last access: 1 November 2011.
Richardson, P. L. and Tychensky, A.: Meddy trajectories in the Canary Basin measured during the Semaphore Experiment, 1993–1995, J. Geophys. Res., 103, 25029–25045, 1998.
Richardson, P. L., Bower, A. S., and Zenk, W.: A census of Meddies tracked by floats, Progr. Oceanogr., 45, 209–250, 2000.
Schultz Tokos, K., Hinrichsen, H. H., and Zenk, W.: Merging and migration of two meddies, J. Phys. Oceanogr., 24, 2129–2141, 1994.
Shoosmith, D. R., Richardson, P. L., Bower, A. S., and Rossby, H. T.: Discrete eddies in the northern North Atlantic as observed by looping RAFOS floats, Deep-Sea Res. II, 52, 627–650, 2005.
Siedler, G., Armi, L., and Muller, T. J.: Meddies and decadal changes at the Azores front from 1980 to 2000, Deep-Sea Rese. II, 52, 585–604, 2005.
Stammer, D., Hinrichsen, H. H., and Käse, R. H.: Can meddies be detected by satellite altimetry?, J. Geophys. Res., 96, 7005–7014, 1991.
Tychensky, A. and Carton, X.: Hydrological and dynamical characteristics of Meddies in the Azores region: a paradigm for baroclinic vortex dynamics, J. Geophys. Res., 103, 25061–25079, 1998.
Van Leeuwen, P. J.: The propagation mechanism of a vortex on the β plane, J. Phys. Oceanogr., 37, 2316–2330, 2007.
Vandermeirsch, F., Morel, Y,. and Sutyrin, G.: Net advective effect of a vertically sheared current on a coherent vortex, J. Phys. Oceanogr., 31, 2210–2225, 2001.
Vandermeirsch, F. O., Carton, X. J., and Morel, Y. G.: Interaction between an eddy and a zonal jet – Part I, Dyn. Atmos. Oceans, 36, 247–270, 2003.
WOA09: World Ocean Atlas 2009, available at: http://www.nodc.noaa.gov/OC5/WOA09/pubwoa09.html (last access: 1 November 2011), 2010.
Wu, J. Z., Ma, H. Y., and Zhou, M. D.: Vorticity and Vortex Dynamics, Springer, Berlin, 780 pp., 2006.