Articles | Volume 3, issue 2
26 Apr 2007
26 Apr 2007

Tidal modulation of two-layer hydraulic exchange flows

L. M. Frankcombe and A. McC. Hogg

Abstract. Time-dependent, two layer hydraulic exchange flow is studied using an idealised shallow water model. It is found that barotropic time-dependent perturbations, representing tidal forcing, increase the baroclinic exchange flux above the steady hydraulic limit, with flux increasing monotonically with tidal amplitude (measured either by height or flux amplitude over a tidal period). Exchange flux also depends on the non-dimensional tidal period, γ, which was introduced by by Helfrich (1995). When tidal amplitude is characterised by the barotropic flux amplitude, exchange flux is a monotonic function of γ as predicted by Helfrich (1995). However, the relationship between the (imposed) free surface amplitude and flux amplitude is complicated by reflections within the channel and by the baroclinic response of the two layer system, leading to a non-monotonic relationship between the height amplitude and γ.