Articles | Volume 21, issue 6
https://doi.org/10.5194/os-21-2787-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/os-21-2787-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Atmospheric cold pools abruptly reverse thermohaline features in the ocean skin layer
Center of Marine Sensors, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
Samuel M. Ayim
Center of Marine Sensors, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
Leonie Jaeger
Center of Marine Sensors, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
Jens Meyerjürgens
Center of Marine Sensors, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
Mariana Ribas-Ribas
Center of Marine Sensors, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
Oliver Wurl
Center of Marine Sensors, Institute for Chemistry and Biology of the Marine Environment, Carl von Ossietzky University of Oldenburg, Wilhelmshaven, Germany
Related authors
Michelle Albinus, Thomas H. Badewien, Lisa Gassen, Oliver Wurl, and Jens Meyerjürgens
EGUsphere, https://doi.org/10.5194/egusphere-2025-4953, https://doi.org/10.5194/egusphere-2025-4953, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This study reveals how short-lived and narrow freshwater-driven ocean "light" filaments form and evolve within tidal fronts. Using multi-platform in situ observations, it is shown that these submesoscale features can rapidly form and reshape in near-surface waters, influencing how energy and heat alter just below the ocean-atmosphere interface.
Riaz Bibi, Mariana Ribas-Ribas, Leonie Jaeger, Carola Lehners, Lisa Gassen, Edgar Cortés, Jochen Wollschläger, Claudia Thölen, Hannelore Waska, Jasper Zöbelein, Thorsten Brinkhoff, Isha Athale, Rüdiger Röttgers, Michael Novak, Anja Engel, Theresa Barthelmeß, Josefine Karnatz, Thomas Reinthaler, Dmytro Spriahailo, Gernot Friedrichs, Falko Schäfer, and Oliver Wurl
EGUsphere, https://doi.org/10.5194/egusphere-2025-1773, https://doi.org/10.5194/egusphere-2025-1773, 2025
Short summary
Short summary
A multidisciplinary mesocosm study was conducted to investigate biogeochemical processes and their relationships in the sea-surface microlayer and underlying water during an induced phytoplankton bloom. Phytoplankton-derived organic matter, fuelled microbial activity and biofilm formation, supporting high bacterial abundance. Distinct temporal patterns in biogeochemical parameters and greater variability in the sea-surface microlayer highlight its influence on air–sea interactions.
Michelle Albinus, Thomas H. Badewien, Lisa Gassen, Oliver Wurl, and Jens Meyerjürgens
EGUsphere, https://doi.org/10.5194/egusphere-2025-4953, https://doi.org/10.5194/egusphere-2025-4953, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This study reveals how short-lived and narrow freshwater-driven ocean "light" filaments form and evolve within tidal fronts. Using multi-platform in situ observations, it is shown that these submesoscale features can rapidly form and reshape in near-surface waters, influencing how energy and heat alter just below the ocean-atmosphere interface.
Carsten Rauch, Lisa Deyle, Leonie Jaeger, Edgar Fernando Cortés-Espinoza, Mariana Ribas-Ribas, Josefine Karnatz, Anja Engel, and Oliver Wurl
EGUsphere, https://doi.org/10.5194/egusphere-2025-4833, https://doi.org/10.5194/egusphere-2025-4833, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
Microsensors measuring oxygen and temperature were used to gain high-resolution profiles across the surface of a water basin, in which an algal bloom was induced. These novel data show that the oxygen at the sea surface is highly influenced by algal blooms, while the temperature is only indirectly affected by them. Since algal blooms occur globally, this has considerable implications for calculating global air-sea exchanges of gases or heat, especially under low-wind conditions.
Lina A. Holthusen, Hermann W. Bange, Thomas H. Badewien, Julia C. Muchowski, Tina Santl-Temkiv, Jennie Spicker Schmidt, Oliver Wurl, and Damian L. Arévalo-Martínez
EGUsphere, https://doi.org/10.5194/egusphere-2025-4056, https://doi.org/10.5194/egusphere-2025-4056, 2025
Short summary
Short summary
In spring 2023, in the Fram Strait, we investigated the near-surface distribution of the greenhouse gases methane and nitrous oxide in open leads and under sea ice to address the lack of observations in the Arctic Ocean. The study area acted as a source for both gases, and the onset of sea ice melt affected their concentrations and emissions. Surface-active substances accumulated in the sea-surface microlayer of open leads during an algal bloom, potentially attenuating greenhouse gas emissions.
Amavi N. Silva, Surandokht Nikzad, Theresa Barthelmeß, Anja Engel, Hartmut Hermann, Manuela van Pinxteren, Kai Wirtz, Oliver Wurl, and Markus Schartau
EGUsphere, https://doi.org/10.5194/egusphere-2025-4050, https://doi.org/10.5194/egusphere-2025-4050, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
We conducted the first meta-analysis combining marine and freshwater studies to understand organic matter enrichment in the surface microlayer. Nitrogen-rich, particulate compounds are often enriched, with patterns varying by multiple factors. We recommend tracking both absolute concentrations and normalized enrichment patterns to better assess ecological conditions. Our study also introduces improved statistical methods for analyzing and comparing surface microlayer data.
Ander López-Puertas, Oliver Wurl, Sanja Frka, and Mariana Ribas-Ribas
EGUsphere, https://doi.org/10.5194/egusphere-2025-2090, https://doi.org/10.5194/egusphere-2025-2090, 2025
Short summary
Short summary
We studied how daily cycles affect inorganic carbon variables in the ocean's surface microlayer. Using data from three full days and nights off the Croatian coast, we found that thermohaline properties and key indicators like pH and pCO₂ change significantly from day to night. Ignoring nighttime conditions may lead to global carbon budget errors and highlights the need for continuous ocean observations.
Riaz Bibi, Mariana Ribas-Ribas, Leonie Jaeger, Carola Lehners, Lisa Gassen, Edgar Cortés, Jochen Wollschläger, Claudia Thölen, Hannelore Waska, Jasper Zöbelein, Thorsten Brinkhoff, Isha Athale, Rüdiger Röttgers, Michael Novak, Anja Engel, Theresa Barthelmeß, Josefine Karnatz, Thomas Reinthaler, Dmytro Spriahailo, Gernot Friedrichs, Falko Schäfer, and Oliver Wurl
EGUsphere, https://doi.org/10.5194/egusphere-2025-1773, https://doi.org/10.5194/egusphere-2025-1773, 2025
Short summary
Short summary
A multidisciplinary mesocosm study was conducted to investigate biogeochemical processes and their relationships in the sea-surface microlayer and underlying water during an induced phytoplankton bloom. Phytoplankton-derived organic matter, fuelled microbial activity and biofilm formation, supporting high bacterial abundance. Distinct temporal patterns in biogeochemical parameters and greater variability in the sea-surface microlayer highlight its influence on air–sea interactions.
Lisa Deyle, Thomas H. Badewien, Oliver Wurl, and Jens Meyerjürgens
Earth Syst. Sci. Data, 16, 2099–2112, https://doi.org/10.5194/essd-16-2099-2024, https://doi.org/10.5194/essd-16-2099-2024, 2024
Short summary
Short summary
A dataset from the North Sea of 85 surface drifters from 2017–2021 is presented. Surface drifters enable the analysis of ocean currents by determining the velocities of surface currents and tidal effects. The entire North Sea has not been studied using drifters before, but the analysis of ocean currents is essential, e.g., to understand the pathways of plastic. The results show that there are strong tidal effects in the shallow North Sea area and strong surface currents in the deep areas.
Manuela van Pinxteren, Tiera-Brandy Robinson, Sebastian Zeppenfeld, Xianda Gong, Enno Bahlmann, Khanneh Wadinga Fomba, Nadja Triesch, Frank Stratmann, Oliver Wurl, Anja Engel, Heike Wex, and Hartmut Herrmann
Atmos. Chem. Phys., 22, 5725–5742, https://doi.org/10.5194/acp-22-5725-2022, https://doi.org/10.5194/acp-22-5725-2022, 2022
Short summary
Short summary
A class of marine particles (transparent exopolymer particles, TEPs) that is ubiquitously found in the world oceans was measured for the first time in ambient marine aerosol particles and marine cloud waters in the tropical Atlantic Ocean. TEPs are likely to have good properties for influencing clouds. We show that TEPs are transferred from the ocean to the marine atmosphere via sea-spray formation and our results suggest that they can also form directly in aerosol particles and in cloud water.
Cited articles
Allen, M. R. and Ingram, W. J.: Constraints on future changes in climate and the hydrologic cycle, Nature, 419, 224–232, https://doi.org/10.1038/nature01092, 2002.
Asher, W. E., Jessup, A. T., Branch, R., and Clark, D.: Observations of rain-induced near-surface salinity anomalies, J. Geophys. Res. Oceans, 119, 5483-5500, https://doi.org/10.1002/2014jc009954, 2014.
Ashton, I. G., Shutler, J. D., Land, P. E., Woolf, D. K., and Quartly, G. D.: A sensitivity analysis of the impact of rain on regional and global sea-air fluxes of CO2, PloS one, 11, https://doi.org/10.1371/journal.pone.0161105, 2016.
Börner, R., Haerter, J. O., and Fiévet, R.: DiuSST: a conceptual model of diurnal warm layers for idealized atmospheric simulations with interactive sea surface temperature, Geosci. Model Dev., 18, 1333–1356, https://doi.org/10.5194/gmd-18-1333-2025, 2025.
Boutin, J., Martin, N., Reverdin, G., Morisset, S., Yin, X., Centurioni, L., and Reul, N.: Sea surface salinity under rain cells: SMOS satellite and in situ drifters observations, J. Geophys. Res. Oceans, 119, 5533–5545, 2014.
Brilouet, P. E., Bouniol, D., Couvreux, F., Ayet, A., Granero-Belinchon, C., Lothon, M., and Mouche, A.: Trade wind boundary layer turbulence and shallow precipitating convection: New insights combining SAR images, satellite brightness temperature, and airborne in situ measurements, Geophys. Res. Lett., 50, e2022GL102180, https://doi.org/10.1029/2022GL102180, 2023.
Cayan, D. R.: Latent and sensible heat flux anomalies over the northern oceans: Driving the sea surface temperature, J. Phys. Oceanogr., 22, 859–881, https://doi.org/10.1175/1520-0485(1992)022<0859:lashfa>2.0.co;2, 1992.
Chou, S.-H., Zhao, W., and Chou, M.-D.: Surface heat budgets and sea surface temperature in the Pacific warm pool during TOGA COARE, Journal of Climate, 13, 634–649, https://doi.org/10.1175/1520-0442(2000)013<0634:shbass>2.0.co;2, 2000.
de Szoeke, S. P., Skyllingstad, E. D., Zuidema, P., and Chandra, A. S.: Cold pools and their influence on the tropical marine boundary layer, J. Atmos. Sci., 74, 1149–1168, 2017.
Donlon, C. J., Nightingale, T. J., Sheasby, T., Turner, J., Robinson, I. S., and Emergy, W. J.: Implications of the oceanic thermal skin temperature deviation at high wind speed, Geophys. Res. Lett., 26, 2505–2508, https://doi.org/10.1029/1999gl900547, 1999.
Durack, P. J.: Ocean salinity and the global water cycle, Oceanography, 28, 20–31, https://doi.org/10.5670/oceanog.2015.03, 2015.
Edson, J. B., Jampana, V., Weller, R. A., Bigorre, S. P., Plueddemann, A. J., Fairall, C. W., Miller, S. D., Mahrt, L., Vickers, D., and Hersbach, H.: On the exchange of momentum over the open ocean, J. Phys. Oceanogr., 43, 1589–1610, 2013.
Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., and Edson, J. B.: Bulk parameterization of air–sea fluxes: Updates and verification for the COARE algorithm, 16, 571-591, https://doi.org/10.1175/1520-0442(2003)016<0571:bpoasf>2.0.co;2, 2003.
Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment, J. Geophys. Res.-Oceans, 101, 3747–3764, https://doi.org/10.1029/95jc03205, 1996a.
Fairall, C. W., Bradley, E. F., Rogers, D. P., Edson, J. B., and Young, G. S.: Bulk parameterization of air-sea fluxes for tropical ocean-global atmosphere coupled-ocean atmosphere response experiment, J. Geophys. Res.-Oceans, 101, 3747–3764, https://doi.org/10.1029/95jc03205, 1996b.
Fairall, C. W., Bradley, E. F., Godfrey, J. S., Wick, G. A., Edson, J. B., and Young, G. S.: Cool-skin and warm-layer effects on sea surface temperature, J. Geophys. Res.-Oceans, 101, 1295–1308, https://doi.org/10.1029/95jc03190, 1996c.
Folland, C. K. and Parker, D. E.: Observed variations of sea surface temperature, https://doi.org/10.1007/978-94-009-2093-4_2, 1990.
Francis, J. and Skific, N.: Evidence linking rapid Arctic warming to mid-latitude weather patterns, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 373, 20140170, https://doi.org/10.1098/rsta.2014.0170, 2015.
Gassen, L., Badewien, T. H., Ewald, J., Ribas-Ribas, M., and Wurl, O.: Temperature and Salinity Anomalies in the Sea Surface Microlayer of the South Pacific during Precipitation Events, J. Geophys. Res.-Oceans, e2023JC019638, https://doi.org/10.1029/2023jc019638, 2023.
Gassen, L., Ayim, S. M., Badewien, T. H., Ribas-Ribas, M., and Wurl, O.: Wind speed effects on rainfall-induced salinity and temperature anomalies at the sea surface microlayer at mid-latitudes, Elem. Sci. Anth., 12, 00004, https://doi.org/10.1525/elementa.2024.00004, 2024a.
Gassen, L., Ayim, S. M., Emig, S., Holthusen, L. A., Jaeger, L., Lagemann, M., Lehners, C., Ribas-Ribas, M., and Wurl, O.: High-resolution measurements of essential climate variables in the North Sea from the autonomous surface vehicle HALOBATES during RV Heincke cruise HE609, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.968800, 2024b.
Gassen, L., Ayim, S. M., Riaz, B., Edgar, C., Holthusen, L. A., Jaeger, L., Lehners, C., Ribas-Ribas, M., and Wurl, O.: High-Resolution Measurements of Essential Climate Variables in the Harbor of Bremerhaven from the Autonomous Surface Vehicle HALOBATES during RV Heincke Cruise HE614, PANGAEA [data set], https://doi.org/10.1594/PANGAEA.974851, 2025.
Gentemann, C. L., Donlon, C. J., Stuart-Menteth, A., and Wentz, F. J.: Diurnal signals in satellite sea surface temperature measurements, Geophys. Res. Lett., 30, https://doi.org/10.1029/2002gl016291, 2003.
Gill, A. E. and Niller, P. P.: The theory of the seasonal variability in the ocean, Deep Sea Research and Oceanographic Abstracts, 141–177, https://doi.org/10.1016/0011-7471(73)90049-1, 1973.
Gosnell, R., Fairall, C. W., and Webster, P. J.: The sensible heat of rainfall in the tropical ocean, J. Geophys. Res. Oceans, 100, 18437–18442, https://doi.org/10.1029/95jc01833, 1995.
Ho, D. T., Zappa, C. J., McGillis, W. R., Bliven, L. F., Ward, B., Dacey, J. W. H., Schlosser, P., and Hendricks, M. B.: Influence of rain on air-sea gas exchange: Lessons from a model ocean, J. Geophys. Res. Oceans, 109, https://doi.org/10.1029/2003JC001806, 2004.
Jessup, A. T., Zappa, C. J., Loewen, M. R., and Hesany, V.: Infrared remote sensing of breaking waves, Nature, 385, 52–55, https://doi.org/10.1038/385052a0, 1997.
Katsaros, K. B.: The aqueous thermal boundary layer, Bound.-Layer Meteorol., 18, 107–127, https://doi.org/10.1007/bf00117914, 1980.
Katsaros, K. B. and Buettner, K. J. K.: Influence of rainfall on temperature and salinity of the ocean surface, J. Appl. Meteorol. Climatol., 15–18, https://doi.org/10.1175/1520-0450(1969)008<0015:iorota>2.0.co;2, 1969.
Kirsch, B., Ament, F., and Hohenegger, C.: Convective cold pools in long-term boundary layer mast observations, Mon. Weather Rev., 149, 811–820, 2021.
Leibovich, S.: The form and dynamics of Langmuir circulations, Annu. Rev. Fluid Mech., 15, 391–427, https://doi.org/10.1146/annurev.fl.15.010183.002135, 1983.
Liepert, B. G. and Kukla, G. J.: Decline in global solar radiation with increased horizontal visibility in Germany between 1964 and 1990, J. Clim., 10, 2391–2401, 1997.
Liss, P. S. and Duce, R. A.: The sea surface and global change, https://doi.org/10.1017/CBO9780511525025, 1997.
Liss, P. S., Watson, A. J., Bock, E. J., Jähne, B., Asher, W., Frew, N., Hasse, L., Korenowski, G., Merlivat, L., Phillips, L., and others: Report group 1-physical processes in the microlayer and the air-sea exchange of trace gases, 1–33, https://doi.org/10.1017/cbo9780511525025.002, 1997.
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs Seawater (GSW) oceanographic toolbox, 127, 1–28, 2011.
Minnett, P. J.: Radiometric measurements of the sea-surface skin temperature: The competing roles of the diurnal thermocline and the cool skin, Int. J. Remote Sens., 24, 5033–5047, https://doi.org/10.1080/0143116031000095880, 2003.
Moulin, A. J., Moum, J. N., Shroyer, E. L., and Hoecker‐Martínez, M.: Freshwater lens fronts propagating as buoyant gravity currents in the equatorial Indian Ocean, J. Geophys. Res. Oceans, 126, e2021JC017186, https://doi.org/10.1029/2021jc017186, 2021.
Murray, M. J., Allen, M. R., Merchant, C. J., Harris, A. R., and Donlon, C. J.: Direct observations of skin-bulk SST variability, Geophys. Res. Lett., 27, 1171–1174, https://doi.org/10.1029/1999gl011133, 2000.
Parc, L., Bellenger, H., Bopp, L., Perrot, X., and Ho, D. T.: Global ocean carbon uptake enhanced by rainfall, Nat. Geosci., 17, 851–857, 2024.
Phan, C. M.: Stability of a floating water droplet on an oil surface, Langmuir, 30, 768–773, https://doi.org/10.1021/la403830k, 2014.
Phan, C. M., Allen, B., Peters, L. B., Le, T. N., and Tade, M. O.: Can water float on oil?, Langmuir, 28, 4609–4613, https://doi.org/10.1021/la204820a, 2012.
Price, J. F., Weller, R. A., and Pinkel, R.: Diurnal cycling: Observations and models of the upper ocean response to diurnal heating, cooling, and wind mixing, J. Geophys. Res.-Oceans, 91, 8411–8427, https://doi.org/10.1029/jc091ic07p08411, 1986.
Qiao, F., Yuan, Y., Deng, J., Dai, D., and Song, Z.: Wave–turbulence interaction-induced vertical mixing and its effects in ocean and climate models, Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci., 374, 20150201, https://doi.org/10.1098/rsta.2015.0201, 2016.
Renfrew, I. A., Moore, G. K., Guest, P. S., and Bumke, K.: A comparison of surface layer and surface turbulent flux observations over the Labrador Sea with ECMWF analyses and NCEP reanalyses, J. Phys. Oceanogr., 32, 383–400, https://doi.org/10.1175/1520-0485(2002)032<0383:acosla>2.0.co;2, 2002.
Ribas-Ribas, M., Hamizah Mustaffa, N. I., Rahlff, J., Stolle, C., and Wurl, O.: Sea Surface Scanner (S3): A Catamaran for High-Resolution Measurements of Biogeochemical Properties of the Sea Surface Microlayer, J. Atmos. Oceanic Technol., 34, 1433–1448, https://doi.org/10.1175/jtech-d-17-0017.1, 2017.
Schlemmer, L. and Hohenegger, C.: The formation of wider and deeper clouds as a result of cold-pool dynamics, J. Atmos. Sci., 71, 2842–2858, 2014.
Schlüssel, P., Emery, W. J., Grassl, H., and Mammen, T.: On the bulk-skin temperature difference and its impact on satellite remote sensing of sea surface temperature, J. Geophys. Res.-Oceans, 95, 13341-13356, https://doi.org/10.1029/jc095ic08p13341, 1990.
Schlüssel, P., Soloviev, A. V., and Emery, W. J.: Cool and freshwater skin of the ocean during rainfall, Bound.-Layer Meteorol., 82, 439–474, https://doi.org/10.1023/a:1000225700380, 1997.
Shinki, M., Wendeberg, M., Vagle, S., Cullen, J. T., and Hore, D. K.: Characterization of adsorbed microlayer thickness on an oceanic glass plate sampler, Limnol. Oceanogr. Methods, 10, 728–735, https://doi.org/10.4319/lom.2012.10.728, 2012.
Singh, P. and Joseph, D. D.: Fluid dynamics of floating particles, J. Fluid Mech., 530, 31–80, https://doi.org/10.1017/s0022112005003575, 2005.
Soloviev, A. V., Lukas, R., Donelan, M. A., Haus, B. K., and Ginis, I.: The air-sea interface and surface stress under tropical cyclones, Sci. Rep., 4, 5306, https://doi.org/10.1038/srep05306, 2014.
Sura, P., Newman, M., and Alexander, M. A.: Daily to decadal sea surface temperature variability driven by state-dependent stochastic heat fluxes, J. Phys. Oceanogr., 36, 1940–1958, https://doi.org/10.1175/jpo2948.1, 2006.
Ten Doeschate, A., Sutherland, G., Bellenger, H., Landwehr, S., Esters, L., and Ward, B.: Upper ocean response to rain observed from a vertical profiler, J. Geophys. Res. Oceans, 124, 3664–3681, https://doi.org/10.1029/2018JC014060, 2019.
Ummenhofer, C. C. and Meehl, G. A.: Extreme weather and climate events with ecological relevance: a review, Philos. Trans. R. Soc. Lond. B Biol. Sci., 372, 20160135, https://doi.org/10.1098/rstb.2016.0135, 2017.
Vickers, D. and Mahrt, L.: Evaluation of the air-sea bulk formula and sea-surface temperature variability from observations, J. Geophys. Res. Oceans, 111, https://doi.org/10.1029/2005JC003323, 2006.
Watson, A. J., Schuster, U., Shutler, J. D., Holding, T., Ashton, I. G. C., Landschützer, P., Woolf, D. K., and Goddijn-Murphy, L.: Revised estimates of ocean-atmosphere CO2 flux are consistent with ocean carbon inventory, Nat. Commun., 11, 4422, https://doi.org/10.1038/s41467-020-18203-3, 2020.
Webster, P. J., Clayson, C. A., and Curry, J. A.: Clouds, radiation, and the diurnal cycle of sea surface temperature in the tropical western Pacific, J. Clim., 9.8, 1712–1730, https://doi.org/10.1175/1520-0442(1996)009<1712:CRATDC>2.0.CO;2, 1996.
Williams, E. and Stanfill, S.: The physical origin of the land-ocean contrast in lightning activity, Compt. Rendus Phys., 3, 1277–1292, https://doi.org/10.1016/s1631-0705(02)01407-x, 2002.
Wurl, O., Miller, L., Röttgers, R., and Vagle, S.: The distribution and fate of surface-active substances in the sea-surface microlayer and water column, Mar. Chem., 115, 1–9, https://doi.org/10.1016/j.marchem.2009.04.007, 2009.
Wurl, O., Wurl, E., Miller, L., Johnson, K., and Vagle, S.: Formation and global distribution of sea-surface microlayers, Biogeosciences, 8, 121–135, https://doi.org/10.5194/bg-8-121-2011, 2011.
Wurl, O., Landing, W. M., Mustaffa, N. I. H., Ribas-Ribas, M., Witte, C. R., and Zappa, C. J.: The ocean's skin layer in the tropics, J. Geophys. Res. Oceans, 124, 59–74, https://doi.org/10.1029/2018jc014021, 2019.
Wurl, O., Gassen, L., Badewien, T. H., Braun, A., Emig, S., Holthusen, L. A., Lehners, C., Meyerjürgens, J., and Ribas, M. R.: HALOBATES: An Autonomous Surface Vehicle for High-Resolution Mapping of the Sea Surface Microlayer and Near-Surface Layer on Essential Climate Variables, J. Atmos. Oceanic Technol., 41, 1197–1211, https://doi.org/10.1175/jtech-d-24-0021.1, 2024.
Yokoi, S., Katsumata, M., and Yoneyama, K.: Variability in surface meteorology and air‐sea fluxes due to cumulus convective systems observed during CINDY/DYNAMO. J. Geophys. Res. Atmos., 119, 2064–2078, https://doi.org/10.1002/2013jd020621, 2014.
Yu, L.: Global variations in oceanic evaporation (1958-2005): The role of the changing wind speed, J. Clim., 20, 5376–5390, https://doi.org/10.1175/2007jcli1714.1, 2007.
Zappa, C. J., Jessup, A. T., and Yeh, H.: Skin layer recovery of free-surface wakes: Relationship to surface renewal and dependence on heat flux and background turbulence, J. Geophys. Res.-Oceans, 103, 21711–21722, https://doi.org/10.1029/98jc01942, 1998.
Zuidema, P., Torri, G., Muller, C., and Chandra, A.: A survey of precipitation-induced atmospheric cold pools over oceans and their interactions with the larger-scale environment, Surv. Geophys., 38, 1283–1305, 2017.
Short summary
This study investigates how abrupt weather changes, such as shifts in air temperature, wind speed and precipitation, impact temperature and salinity in the ocean’s skin layer (upper first millimetre). Two events in the harbour of Bremerhaven and one event in the North Sea revealed that the skin layer reacts instantly, with greater temperature changes than those at a depth of 100 cm, underscoring its key role in air-sea interactions and climate dynamics.
This study investigates how abrupt weather changes, such as shifts in air temperature, wind...
Special issue