Articles | Volume 21, issue 3
https://doi.org/10.5194/os-21-1141-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-21-1141-2025
© Author(s) 2025. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The satellite chlorophyll signature of Lagrangian eddy trapping varies regionally and seasonally within a subtropical gyre
Alexandra E. Jones-Kellett
CORRESPONDING AUTHOR
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
Michael J. Follows
Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
Related authors
Alexandra E. Jones-Kellett and Michael J. Follows
Earth Syst. Sci. Data, 16, 1475–1501, https://doi.org/10.5194/essd-16-1475-2024, https://doi.org/10.5194/essd-16-1475-2024, 2024
Short summary
Short summary
Ocean eddies can limit horizontal mixing, potentially isolating phytoplankton populations and affecting their concentration. We used two decades of satellite data and computer simulations to identify and track eddy-trapping boundaries in the Pacific Ocean for application in phytoplankton research. Although some eddies trap water masses for months, many continuously mix with surrounding waters. A case study shows how eddy trapping can enhance the signature of a phytoplankton bloom.
Leonhard Lücken, Michael J. Follows, Jason G. Bragg, and Sinikka T. Lennartz
EGUsphere, https://doi.org/10.5194/egusphere-2025-2227, https://doi.org/10.5194/egusphere-2025-2227, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
The Microbial Community Model (MCoM) is a flexible biogeochemical modeling framework which resolves a rich set of interactions between photosynthetic and heterotrophic microbes, including cross-feeding, metabolite exchange, and nutrient recycling. As such, it allows to assess community-level effects on elemental turnover emerging from microbial interactions. Its scalability allows to represent both simple pairwise interactions and large, diverse communities.
Alexandra E. Jones-Kellett and Michael J. Follows
Earth Syst. Sci. Data, 16, 1475–1501, https://doi.org/10.5194/essd-16-1475-2024, https://doi.org/10.5194/essd-16-1475-2024, 2024
Short summary
Short summary
Ocean eddies can limit horizontal mixing, potentially isolating phytoplankton populations and affecting their concentration. We used two decades of satellite data and computer simulations to identify and track eddy-trapping boundaries in the Pacific Ocean for application in phytoplankton research. Although some eddies trap water masses for months, many continuously mix with surrounding waters. A case study shows how eddy trapping can enhance the signature of a phytoplankton bloom.
Stephanie Dutkiewicz, Pedro Cermeno, Oliver Jahn, Michael J. Follows, Anna E. Hickman, Darcy A. A. Taniguchi, and Ben A. Ward
Biogeosciences, 17, 609–634, https://doi.org/10.5194/bg-17-609-2020, https://doi.org/10.5194/bg-17-609-2020, 2020
Short summary
Short summary
Phytoplankton are an essential component of the marine food web and earth's carbon cycle. We use observations, ecological theory and a unique trait-based ecosystem model to explain controls on patterns of marine phytoplankton biodiversity. We find that different dimensions of diversity (size classes, biogeochemical functional groups, thermal norms) are controlled by a disparate combination of mechanisms. This may explain why previous studies of phytoplankton diversity had conflicting results.
Sophie Clayton, Stephanie Dutkiewicz, Oliver Jahn, Christopher Hill, Patrick Heimbach, and Michael J. Follows
Biogeosciences, 14, 2877–2889, https://doi.org/10.5194/bg-14-2877-2017, https://doi.org/10.5194/bg-14-2877-2017, 2017
S. Dutkiewicz, A. E. Hickman, O. Jahn, W. W. Gregg, C. B. Mouw, and M. J. Follows
Biogeosciences, 12, 4447–4481, https://doi.org/10.5194/bg-12-4447-2015, https://doi.org/10.5194/bg-12-4447-2015, 2015
Short summary
Short summary
A numerical model is presented that explicitly includes spectral
irradiance and optically important water constituents. The model captures 3-D
biogeochemical, ecosystem, and optical observations, including surface
reflectance analogous to ocean colour satellite observations. Sensitivity
experiments demonstrate the relative importance of each of the water
constituents, and the feedbacks between the light field, fitness of
phytoplankton types, and the biogeochemistry of the ocean.
S. Dutkiewicz, B. A. Ward, J. R. Scott, and M. J. Follows
Biogeosciences, 11, 5445–5461, https://doi.org/10.5194/bg-11-5445-2014, https://doi.org/10.5194/bg-11-5445-2014, 2014
D. Talmy, J. Blackford, N. J. Hardman-Mountford, L. Polimene, M. J. Follows, and R. J. Geider
Biogeosciences, 11, 4881–4895, https://doi.org/10.5194/bg-11-4881-2014, https://doi.org/10.5194/bg-11-4881-2014, 2014
Related subject area
Approach: Remote Sensing | Properties and processes: Biological oceanography and marine ecology
Combining BGC-Argo floats and satellite observations for water column estimations of particulate backscattering coefficient
Analyses of sea surface chlorophyll a trends and variability from 1998 to 2020 in the German Bight (North Sea)
Biophysical coupling of seasonal chlorophyll-a bloom variations and phytoplankton assemblages across the Peninsula Front in the Bransfield Strait
Linking satellites to genes with machine learning to estimate phytoplankton community structure from space
Jorge García-Jimenez, Ana Belén Ruescas, Julia Amorós-López, and Raphaëlle Sauzède
EGUsphere, https://doi.org/10.5194/egusphere-2024-3942, https://doi.org/10.5194/egusphere-2024-3942, 2025
Short summary
Short summary
Estimating Particulate Organic Carbon (POC) relies on proxies like the particulate backscattering coefficient (bbp) derived from BioGeoChemical-Argo (BGC-Argo) floats and satellite data. BGC-Argo floats provide global insights into vertical bio-optical dynamics. This study integrates Sentinel-3 data and machine learning approaches to improve bbp estimates in the top 250 meters of the water column. Results are promising in stable global oceanic areas but less consistent in more dynamic regions.
Felipe de Luca Lopes de Amorim, Areti Balkoni, Vera Sidorenko, and Karen Helen Wiltshire
Ocean Sci., 20, 1247–1265, https://doi.org/10.5194/os-20-1247-2024, https://doi.org/10.5194/os-20-1247-2024, 2024
Short summary
Short summary
We studied the increasing or decreasing of chlorophyll a abundance in the German Bight. Chlorophyll a is the pigment present in algae that allows them to capture energy from the sun and indicates both the growth of the algae and the health of the environment. Most of the German Bight has decreasing chlorophyll a concentration in the analysed period. In addition, about 45 % of the changes happening in chlorophyll a were connected with changes in temperature.
Marta Veny, Borja Aguiar-González, Ángeles Marrero-Díaz, Tania Pereira-Vázquez, and Ángel Rodríguez-Santana
Ocean Sci., 20, 389–415, https://doi.org/10.5194/os-20-389-2024, https://doi.org/10.5194/os-20-389-2024, 2024
Short summary
Short summary
This study examines the seasonal patterns of chlorophyll-a (chl-a) blooms in the Bransfield Strait using remote sensing data supported by novel and historical in situ observations. Through satellite data we show that we can identify two distinct phytoplankton niches along a thermal front known as the Peninsula Front: the Transitional Bellingshausen Water and Transitional Weddell Water pools. These findings enable the first climatological description of the chl-a blooms in the Bransfield Strait.
Roy El Hourany, Juan Pierella Karlusich, Lucie Zinger, Hubert Loisel, Marina Levy, and Chris Bowler
Ocean Sci., 20, 217–239, https://doi.org/10.5194/os-20-217-2024, https://doi.org/10.5194/os-20-217-2024, 2024
Short summary
Short summary
Satellite observations offer valuable information on phytoplankton abundance and community structure. Here, we employ satellite observations to infer seven phytoplankton groups at a global scale based on a new molecular method from Tara Oceans. The link has been established using machine learning approaches. The output of this work provides excellent tools to collect essential biodiversity variables and a foundation to monitor the evolution of marine biodiversity.
Cited articles
Allen, C. B., Kanda, J., and Laws, E.: New production and photosynthetic rates within and outside a cyclonic mesoscale eddy in the North Pacific subtropical gyre, Deep-Sea Res. Pt. I, 43, 917–936, https://doi.org/10.1016/0967-0637(96)00022-2, 1996. a
Andrade-Canto, F. and Beron-Vera, F. J.: Do Eddies Connect the Tropical Atlantic Ocean and the Gulf of Mexico?, Geophys. Res. Lett., 49, 1–11, https://doi.org/10.1029/2022GL099637, 2022. a, b
Andrade-Canto, F., Karrasch, D., and Beron-Vera, F. J.: Genesis, evolution, and apocalypse of Loop Current rings, Phys. Fluids, 32, 116603, https://doi.org/10.1063/5.0030094, 2020. a
Arostegui, M., Gaube, P., Woodworth-Jefcoats, P. A., Kobayashi, D. R., and Braun, C. D.: Anticyclonic eddies aggregate pelagic predators in a subtropical gyre, Nature, 609, 535–540, https://doi.org/10.1038/s41586-022-05162-6, 2022. a, b
Ballarotta, M., Ubelmann, C., Pujol, M. I., Taburet, G., Fournier, F., Legeais, J. F., Faugère, Y., Delepoulle, A., Chelton, D., Dibarboure, G., and Picot, N.: On the resolutions of ocean altimetry maps, Ocean Sci., 15, 1091–1109, https://doi.org/10.5194/os-15-1091-2019, 2019. a
Barone, B., Coenen, A. R., Beckett, S. J., McGillicuddy, D. J., Weitz, J. S., and Karl, D. M.: The ecological and biogeochemical state of the north pacific subtropical gyre is linked to sea surface height, J. Mar. Res., 77, 215–245, https://doi.org/10.1357/002224019828474241, 2019. a, b, c
Barone, B., Church, M. J., Dugenne, M., Hawco, N. J., Jahn, O., White, A. E., John, S. G., Follows, M. J., DeLong, E. F., and Karl, D. M.: Biogeochemical Dynamics in Adjacent Mesoscale Eddies of Opposite Polarity, Global Biogeochem. Cy., 36, e2021GB007115, https://doi.org/10.1029/2021GB007115, 2022. a, b
Bastine, D. and Feudel, U.: Inhomogeneous dominance patterns of competing phytoplankton groups in the wake of an island, Nonlin. Processes Geophys., 17, 715–731, https://doi.org/10.5194/npg-17-715-2010, 2010. a
Benitez-Nelson, C. R., Bidigare, R. R., Dickey, T. D., Landry, M. R., Leonard, C. L., Brown, S. L., Nencioli, F., Rii, Y. M., Maiti, K., Becker, J. W., Bibby, T. S., Black, W., Cai, W.-J., Carlson, C. A., Chen, F., Kuwahara, V. S., Mahaffey, C., McAndrew, P. M., Quay, P. D., Rappé, M. S., Selph, K. E., Simmons, M. P., and Yang, E. J.: Mesoscale Eddies Drive Increased Silica Export in the Subtropical Pacific Ocean, Science, 316, 1017–1021, https://doi.org/10.1126/science.1136221, 2007. a, b
Beron-Vera, F. J., Wang, Y., Olascoaga, M. J., Goni, G. J., and Haller, G.: Objective detection of oceanic eddies and the agulhas leakage, J. Phys. Oceanogr., 43, 1426–1438, https://doi.org/10.1175/JPO-D-12-0171.1, 2013. a, b
Beron-Vera, F. J., Hadjighasem, A., Xia, Q., Olascoaga, M. J., and Haller, G.: Coherent Lagrangian swirls among submesoscale motions, P. Natl. Acad. Sci. USA, 116, 18251–18256, https://doi.org/10.1073/pnas.1701392115, 2019. a, b
Bidigare, R. R., Benitez-Nelson, C., Leonard, C. L., Quay, P. D., Parsons, M. L., Foley, D. G., and Seki, M. P.: Influence of a cyclonic eddy on microheterotroph biomass and carbon export in the lee of Hawaii, Geophys. Res. Lett., 30, 1318, https://doi.org/10.1029/2002GL016393, 2003. a, b
Bracco, A., Provenzale, A., and Scheuring, I.: Mesoscale vortices and the paradox of the plankton, Proc. Roy. Soc. B, 267, 1795–1800, https://doi.org/10.1098/rspb.2000.1212, 2000. a
Brown, S. L., Landry, M. R., Selph, K. E., Jin Yang, E., Rii, Y. M., and Bidigare, R. R.: Diatoms in the desert: Plankton community response to a mesoscale eddy in the subtropical North Pacific, Deep-Sea Res. Pt. I, 55, 1321–1333, https://doi.org/10.1016/j.dsr2.2008.02.012, 2008. a, b, c, d
Calil, P. H. and Richards, K. J.: Transient upwelling hot spots in the oligotrophic North Pacific, J. Geophys. Res.-Oceans, 115, 1–20, https://doi.org/10.1029/2009JC005360, 2010. a, b
Calil, P. H. R., Richards, K. J., Jia, Y., and Bidigare, R. R.: Eddy activity in the lee of the Hawaiian Islands, Deep-Sea Res. Pt. II, 55, 1179–1194, https://doi.org/10.1016/j.dsr2.2008.01.008, 2008. a
Capet, A., Mason, E., Rossi, V., Troupin, C., Faugère, Y., Pujol, I., and Pascual, A.: Implications of refined altimetry on estimates of mesoscale activity and eddy-driven offshore transport in the Eastern Boundary Upwelling Systems, Geophys. Res. Lett., 41, 7602–7610, https://doi.org/10.1002/2014GL061770, 2014. a
Cardoso, C., Caldeira, R. M. A., Relvas, P., and Stegner, A.: Islands as eddy transformation and generation hotspots: Cabo Verde case study, Prog. Oceanogr., 184, 102271, https://doi.org/10.1016/j.pocean.2020.102271, 2020. a
Cetina-Heredia, P., Roughan, M., van Sebille, E., Keating, S., and Brassington, G. B.: Retention and Leakage of Water by Mesoscale Eddies in the East Australian Current System, J. Geophys. Res.-Oceans, 124, 2485–2500, https://doi.org/10.1029/2018JC014482, 2019. a
Chacko, N.: Chlorophyll bloom in response to tropical cyclone Hudhud in the Bay of Bengal: Bio-Argo subsurface observations, Deep-Sea Res. Pt. I, 124, 66–72, https://doi.org/10.1016/j.dsr.2017.04.010, 2017. a
Chaigneau, A., Eldin, G., and Dewitte, B.: Eddy activity in the four major upwelling systems from satellite altimetry (1992–2007), Prog. Oceanogr., 83, 117–123, https://doi.org/10.1016/j.pocean.2009.07.012, 2009. a
Chelton, D. B., Deszoeke, R. A., Schlax, M. G., El Naggar, K., and Siwertz, N.: Geographical variability of the first baroclinic Rossby radius of deformation, J. Phys. Oceanogr., 28, 433–460, https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2, 1998. a
Chelton, D. B., Gaube, P., Schlax, M. G., Early, J. J., and Samelson, R. M.: The influence of nonlinear mesoscale eddies on near-surface oceanic chlorophyll, Science, 334, 328–332, https://doi.org/10.1126/science.1208897, 2011a. a, b, c
Chen, F., Cai, W. J., Wang, Y., Rii, Y. M., Bidigare, R. R., and Benitez-Nelson, C. R.: The carbon dioxide system and net community production within a cyclonic eddy in the lee of Hawaii, Deep-Sea Res. Pt. II, 55, 1412–1425, https://doi.org/10.1016/j.dsr2.2008.01.011, 2008. a
Cheung, S., Nitanai, R., Tsurumoto, C., Endo, H., Ichiro Nakaoka, S., Cheah, W., Lorda, J. F., Xia, X., Liu, H., and Suzuki, K.: Physical Forcing Controls the Basin-Scale Occurrence of Nitrogen-Fixing Organisms in the North Pacific Ocean, Global Biogeochem. Cy., 34, 1–12, https://doi.org/10.1029/2019GB006452, 2020. a
Church, M. J., Mahaffey, C., Letelier, R. M., Lukas, R., Zehr, J. P., and Karl, D. M.: Physical forcing of nitrogen fixation and diazotroph community structure in the North Pacific subtropical gyre, Global Biogeochem. Cy., 23, GB2020, https://doi.org/10.1029/2008GB003418, 2009. a, b
Cipollini, P., Cromwell, D., Challenor, P. G., and Raffaglio, S.: Rossby waves detected in global ocean colour data, Geophys. Res. Lett., 28, 323–326, 2001. a
Clayton, S., Dutkiewicz, S., Jahn, O., and Follows, M. J.: Dispersal, eddies, and the diversity of marine phytoplankton, Limnol. Oceanogr., 3, 182–197, https://doi.org/10.1215/21573689-2373515, 2013. a
CMEMS: Global Ocean Gridded L4 Sea Surface Heights and Derived Variables Reprocessed 1993 Ongoing, Marine Data Store [data set], https://doi.org/10.48670/moi-00148, 2020. a, b
Condie, S. and Condie, R.: Retention of plankton within ocean eddies, Global Ecol. Biogeogr., 25, 1264–1277, https://doi.org/10.1111/geb.12485, 2016. a
Cornec, M., Laxenaire, R., Speich, S., and Claustre, H.: Impact of Mesoscale Eddies on Deep Chlorophyll Maxima, Geophys. Res. Lett., 48, e2021GL093470, https://doi.org/10.1029/2021GL093470, 2021. a, b
Delandmeter, P. and Van Sebille, E.: The Parcels v2.0 Lagrangian framework: New field interpolation schemes, Geosci. Model Dev., 12, 3571–3584, https://doi.org/10.5194/gmd-12-3571-2019, 2019. a
Deogharia, R., Gupta, H., Sil, S., Gangopadhyay, A., and Shee, A.: On the evidence of helico-spiralling recirculation within coherent cores of eddies using Lagrangian approach, Sci. Rep., 14, 1–15, https://doi.org/10.1038/s41598-024-61744-6, 2024. a
Dickey, T. D., Nencioli, F., Kuwahara, V. S., Leonard, C., Black, W., Rii, Y. M., Bidigare, R. R., and Zhang, Q.: Physical and bio-optical observations of oceanic cyclones west of the island of Hawai'i, Deep-Sea Res. Pt. II, 55, 1195–1217, https://doi.org/10.1016/j.dsr2.2008.01.006, 2008. a
Dong, C., Liu, L., Nencioli, F., Bethel, B. J., Liu, Y., Xu, G., Ma, J., Ji, J., Sun, W., Shan, H., Lin, X., and Zou, B.: The near-global ocean mesoscale eddy atmospheric-oceanic-biological interaction observational dataset, Sci. Data, 9, 1–13, https://doi.org/10.1038/s41597-022-01550-9, 2022. a
Doty, M. S. and Oguri, M.: The Island Mass Effect, ICES J. Mar. Sci., 22, 33–37, https://doi.org/10.1093/icesjms/22.1.33, 1956. a
D'Ovidio, F., De Monte, S., Alvain, S., Dandonneau, Y., and Levy, M.: Fluid dynamical niches of phytoplankton types, P. Natl. Acad. Sci. USA, 107, 18366–18370, https://doi.org/10.1073/pnas.1004620107, 2010. a
D'Ovidio, F., De Monte, S., Penna, A. D., Cotté, C., and Guinet, C.: Ecological implications of eddy retention in the open ocean: A Lagrangian approach, J. Phys. A, 46, 254023, https://doi.org/10.1088/1751-8113/46/25/254023, 2013. a
Dugenne, M., Gradoville, M. R., Church, M. J., Wilson, S. T., Sheyn, U., Harke, M. J., Björkman, K. M., Hawco, N. J., Hynes, A. M., Ribalet, F., Karl, D. M., DeLong, E. F., Dyhrman, S. T., Armbrust, E. V., John, S., Eppley, J. M., Harding, K., Stewart, B., Cabello, A. M., Turk-Kubo, K. A., Caffin, M., White, A. E., and Zehr, J. P.: Nitrogen Fixation in Mesoscale Eddies of the North Pacific Subtropical Gyre: Patterns and Mechanisms, Global Biogeochem. Cy., 37, e2022GB007386, https://doi.org/10.1029/2022GB007386, 2023. a, b
Efron, B.: Bootstrap Methods: Another Look at the Jackknife, Ann. Stat., 7, 1–26, https://doi.org/10.1214/aos/1176344552, 1979. a
Faghmous, J. H., Frenger, I., Yao, Y., Warmka, R., Lindell, A., and Kumar, V.: A daily global mesoscale ocean eddy dataset from satellite altimetry, Sci. Data, 2, 1–16, https://doi.org/10.1038/sdata.2015.28, 2015. a, b, c
Falkowski, P. G., Ziemann, D., Kolber, Z., and Bienfang, P. K.: Role of eddy pumping in enhancing primary production in the ocean, Nature, 352, 55–58, https://doi.org/10.1038/352055a0, 1991. a, b, c
Feloy, K., Powell, B. S., and Friedrich, T.: Remote Impacts of Cyclonic Eddies on Productivity Around the Main Hawaiian Islands, J. Geophys. Res.-Oceans, 129, e2023JC020670, https://doi.org/10.1029/2023JC020670, 2024. a
Fennel, K.: The generation of phytoplankton patchiness by mesoscale current patterns, Ocean Dynam., 52, 58–70, https://doi.org/10.1007/s10236-001-0007-y, 2001. a
Flierl, G. R.: Particle Motions in Large-Amplitude Wave Fields, Geophys. Astrophys. Fluid Dynam., 18, 39–74, https://doi.org/10.1080/03091928108208773, 1981. a, b
Fong, A. A., Karl, D. M., Lukas, R., Letelier, R. M., Zehr, J. P., and Church, M. J.: Nitrogen fixation in an anticyclonic eddy in the oligotrophic North Pac, ISME J., 2, 663–676, https://doi.org/10.1038/ismej.2008.22, 2008. a, b, c
Frenger, I.: OceanEddies, GitHub [code], https://github.com/ifrenger/OceanEddies (last access: 13 October 2021), 2021. a
Friedrich, T., Powell, B. S., Stock, C. A., Hahn-Woernle, L., Dussin, R., and Curchitser, E. N.: Drivers of Phytoplankton Blooms in Hawaii: A Regional Model Study, J. Geophys. Res.-Oceans, 126, 1–22, https://doi.org/10.1029/2020JC017069, 2021. a, b, c, d
Froneman, P. W. and Perissinotto, R.: Structure and grazing of the microzooplankton communities of the Subtropical Convergence and a warm-core eddy in the Atlantic sector of the Southern Ocean, Mar. Ecol. Prog. Ser., 135, 237–245, https://doi.org/10.3354/meps135237, 1996. a
Gaube, P., Chelton, D. B., Strutton, P. G., and Behrenfeld, M. J.: Satellite observations of chlorophyll, phytoplankton biomass, and Ekman pumping in nonlinear mesoscale eddies, J. Geophys. Res.-Oceans, 118, 6349–6370, https://doi.org/10.1002/2013JC009027, 2013. a, b, c
Gaube, P., Chelton, D. B., Samelson, R. M., Schlax, M. G., and O'Neill, L. W.: Satellite observations of mesoscale eddy-induced Ekman pumping, J. Phys. Oceanogr., 45, 104–132, https://doi.org/10.1175/JPO-D-14-0032.1, 2015. a, b, c
Gaube, P., J. McGillicuddy, D., and Moulin, A. J.: Mesoscale Eddies Modulate Mixed Layer Depth Globally, Geophys. Res. Lett., 46, 1505–1512, https://doi.org/10.1029/2018GL080006, 2019. a
Geider, R. J.: Light and Temperature Dependence of the Carbon to Chlorophyll a Ratio in Microalgae and Cyanobacteria: Implications for Physiology and Growth of Phytoplankton, New Phytol., 106, 1–34, https://doi.org/10.1111/j.1469-8137.1987.tb04788.x, 1987. a
Gilmartin, M. and Revelante, N.: The `Island Mass' effect on the phytoplankton and primary production of the Hawaiian Islands, Exp. Mar. Biol. Ecol., 16, 181–204, https://doi.org/10.1016/0022-0981(74)90019-7, 1974. a
Glover, D. M., Wroblewski, J. S., and McClain, C. R.: Dynamics of the transition zone in coastal zone color scanner-sensed ocean color in the North Pacific during oceanographic spring, J. Geophys. Res., 99, 7501–7511, https://doi.org/10.1029/93JC02144, 1994. a
Godø, O. R., Samuelsen, A., Macaulay, G. J., Patel, R., Hjøllo, S. S., Horne, J., Kaartvedt, S., and Johannessen, J. A.: Mesoscale eddies are oases for higher trophic marine life, PLoS ONE, 7, e30161, https://doi.org/10.1371/journal.pone.0030161, 2012. a
Goldthwait, S. A. and Steinberg, D. K.: Elevated biomass of mesozooplankton and enhanced fecal pellet flux in cyclonic and mode-water eddies in the Sargasso Sea, Deep-Sea Res. Pt. II, 55, 1360–1377, https://doi.org/10.1016/j.dsr2.2008.01.003, 2008. a
Gower, J. F. R., Denman, K. L., and Holyert, R. J.: Phytoplankton patchiness indicates the fluctuation spectrum of mesoscale oceanic structure, Nature, 288, 157–159, https://doi.org/10.1038/288157a0, 1980. a
Guidi, L., Calil, P. H., Duhamel, S., Björkman, K. M., Doney, S. C., Jackson, G. A., Li, B., Church, M. J., Tozzi, S., Kolber, Z. S., Richards, K. J., Fong, A. A., Letelier, R. M., Gorsky, G., Stemmann, L., and Karl, D. M.: Does eddy-eddy interaction control surface phytoplankton distribution and carbon export in the North Pacific Subtropical Gyre?, J. Geophys. Res.-Biogeo., 117, G02024, https://doi.org/10.1029/2012JG001984, 2012. a
Guo, M., Xiu, P., Chai, F., and Xue, H.: Mesoscale and Submesoscale Contributions to High Sea Surface Chlorophyll in Subtropical Gyres, Geophys. Res. Lett., 46, 13217–13226, https://doi.org/10.1029/2019GL085278, 2019. a, b
Haller, G.: Lagrangian coherent structures, Annu. Rev. Fluid Mech., 47, 137–162, https://doi.org/10.1146/annurev-fluid-010313-141322, 2015. a
Haller, G. and Beron-Vera, F. J.: Coherent Lagrangian vortices: The black holes of turbulence, J. Fluid Mech., 731, 1–10, https://doi.org/10.1017/jfm.2013.391, 2013. a
Haller, G., Hadjighasem, A., Farazmand, M., and Huhn, F.: Defining coherent vortices objectively from the vorticity, J. Fluid Mech., 795, 136–173, https://doi.org/10.1017/jfm.2016.151, 2016. a, b
Harke, M. J., Frischkorn, K. R., Hennon, G. M., Haley, S. T., Barone, B., Karl, D. M., and Dyhrman, S. T.: Microbial community transcriptional patterns vary in response to mesoscale forcing in the North Pacific Subtropical Gyre, Environ. Microbiol., 23, 4807–4822, https://doi.org/10.1111/1462-2920.15677, 2021. a
Hasegawa, D., Lewis, M. R., and Gangopadhyay, A.: How islands cause phytoplankton to bloom in their wakes, Geophys. Res. Lett., 36, L20605, https://doi.org/10.1029/2009GL039743, 2009. a
He, Q., Zhan, H., Cai, S., and Zha, G.: On the asymmetry of eddy-induced surface chlorophyll anomalies in the southeastern Pacific: The role of eddy-Ekman pumping, Prog. Oceanogr., 141, 202–211, https://doi.org/10.1016/j.pocean.2015.12.012, 2016. a
He, Q., Zhan, H., Cai, S., and Zhan, W.: Eddy-Induced Near-Surface Chlorophyll Anomalies in the Subtropical Gyres: Biomass or Physiology?, Geophys. Res. Lett., 48, e2020GL091975, https://doi.org/10.1029/2020GL091975, 2021. a, b
He, Q., Tian, F., Yang, X., and Chen, G.: Lagrangian eddies in the Northwestern Pacific Ocean, J. Oceanol. Limnol., 40, 66–77, https://doi.org/10.1007/s00343-021-0392-7, 2022. a
Hernández-Carrasco, I., Orfila, A., Rossi, V., and Garçon, V.: Effect of small scale transport processes on phytoplankton distribution in coastal seas, Sci. Rep., 8, 8613, https://doi.org/10.1038/s41598-018-26857-9, 2018. a
Hernández-Carrasco, I., Rossi, V., Navarro, G., Turiel, A., Bracco, A., and Orfila, A.: Flow Structures With High Lagrangian Coherence Rate Promote Diatom Blooms in Oligotrophic Waters, Geophys. Res. Lett., 50, e2023GL103688, https://doi.org/10.1029/2023GL103688, 2023. a, b
Huang, J. and Xu, F.: Observational Evidence of Subsurface Chlorophyll Response to Mesoscale Eddies in the North Pacific, Geophys. Res. Lett., 45, 8462–8470, https://doi.org/10.1029/2018GL078408, 2018. a, b
Huang, J., Xu, F., Zhou, K., Xiu, P., and Lin, Y.: Temporal evolution of near-surface chlorophyll over cyclonic eddy lifecycles in the southeastern Pacific, J. Geophys. Res.-Oceans, 122, 6165–6179, https://doi.org/10.1002/2017JC012915, 2017. a
Hubbard, R. and Armstrong, J. S.: Why we don't really know what statistical significance means: Implications for educators, J. Market. Educ., 28, 114–120, https://doi.org/10.1177/0273475306288399, 2006. a
Johnson, L., Siegel, D. A., Thompson, A. F., Fields, E., Erickson, Z. K., Cetinic, I., Lee, C. M., D'Asaro, E. A., Nelson, N. B., Omand, M. M., Sten, M., Traylor, S., Nicholson, D. P., Graff, J. R., Steinberg, D. K., Sosik, H. M., Buesseler, K. O., Brzezinski, M. A., Ramos, I. S., Carvalho, F., and Henson, S. A.: Assessment of oceanographic conditions during the North Atlantic EXport processes in the ocean from RemoTe sensing (EXPORTS) field campaign, Prog. Oceanogr., 220, 103170, https://doi.org/10.1016/j.pocean.2023.103170, 2024. a
Jones-Kellett, A. E.: North Pacific Subtropical Gyre RCLV Atlas (Version 1), Zenodo [data set], https://doi.org/10.5281/zenodo.8139149, 2023a. a
Jones-Kellett, A. E.: RCLVatlas, Zenodo [code], https://doi.org/10.5281/zenodo.7702978, 2023b. a
Jones-Kellett, A. E.: North Pacific Subtropical Gyre RCLV Atlas (Version 2), Zenodo [data set], https://doi.org/10.5281/zenodo.10849221, 2024. a, b
Jones-Kellett, A. E.: RCLV_chl, Zenodo [code], https://doi.org/10.5281/zenodo.15699584, 2025. a
Jönsson, B. F. and Salisbury, J. E.: Episodicity in phytoplankton dynamics in a coastal region, Geophys. Res. Lett., 43, 5821–5828, https://doi.org/10.1002/2016GL068683, 2016. a
Jönsson, B. F., Salisbury, J. E., and Mahadevan, A.: Extending the use and interpretation of ocean satellite data using Lagrangian modelling, Int. J. Remote Sens., 30, 3331–3341, https://doi.org/10.1080/01431160802558758, 2009. a
Jönsson, B. F., Salisbury, J. E., and Mahadevan, A.: Large variability in continental shelf production of phytoplankton carbon revealed by satellite, Biogeosciences, 8, 1213–1223, https://doi.org/10.5194/bg-8-1213-2011, 2011. a
Karl, D. M. and Church, M. J.: Ecosystem structure and dynamics in the North Pacific subtropical gyre: New views of an old ocean, Ecosystems, 20, 433–457, https://doi.org/10.1007/s10021-017-0117-0, 2017. a
Kuwahara, V. S., Nencioli, F., Dickey, T. D., Rii, Y. M., and Bidigare, R. R.: Physical dynamics and biological implications of Cyclone Noah in the lee of Hawai'i during E-Flux I, Deep-Sea Res. Pt. II, 55, 1231–1251, https://doi.org/10.1016/j.dsr2.2008.01.007, 2008. a, b
Landry, M. R., Brown, S. L., Rii, Y. M., Selph, K. E., Bidigare, R. R., Yang, E. J., and Simmons, M. P.: Depth-stratified phytoplankton dynamics in Cyclone Opal, a subtropical mesoscale eddy, Deep-Sea Res. Pt. II, 55, 1348–1359, https://doi.org/10.1016/j.dsr2.2008.02.001, 2008. a, b, c
Lehahn, Y., D'Ovidio, F., Lévy, M., Amitai, Y., and Heifetz, E.: Long range transport of a quasi isolated chlorophyll patch by an Agulhas ring, Geophys. Res. Lett., 38, L16610, https://doi.org/10.1029/2011GL048588, 2011. a
Lehahn, Y., Koren, I., Sharoni, S., D'Ovidio, F., Vardi, A., and Boss, E.: Dispersion/dilution enhances phytoplankton blooms in low-nutrient waters, Nat. Commun., 8, 14868, https://doi.org/10.1038/ncomms14868, 2017. a, b
Letelier, R. M., Karl, D. M., Abbott, M. R., Flament, P., Freilich, M., Lukas, R., and Strub, T.: Role of late winter mesoscale events in the biogeochemical variability of the upper water column of the North Pacific Subtropical Gyre, J. Geophys. Res.-Oceans, 105, 28723–28739, https://doi.org/10.1029/1999jc000306, 2000. a
Lévy, M., Jahn, O., Dutkiewicz, S., Follows, M. J., and D'Ovidio, F.: The dynamical landscape of marine phytoplankton diversity, J. Roy. Soc. Interf., 12, 20150481, https://doi.org/10.1098/rsif.2015.0481, 2015. a, b
Lin, M., Lucas, H. C., and Shmueli, G.: Too big to fail: Large samples and the p-value problem, Informa. Syst. Res., 24, 906–917, https://doi.org/10.1287/isre.2013.0480, 2013. a
Liu, F., Tang, S., Huang, R. X., and Yin, K.: The asymmetric distribution of phytoplankton in anticyclonic eddies in the western South China Sea, Deep-Sea Res. Pt. I, 120, 29–38, https://doi.org/10.1016/j.dsr.2016.12.010, 2017. a
Liu, T. and Abernathey, R.: A global Lagrangian eddy dataset based on satellite altimetry, Earth Syst. Sci. Data, 15, 1765–1778, https://doi.org/10.5194/essd-15-1765-2023, 2023. a
Liu, T., Abernathey, R., Sinha, A., and Chen, D.: Quantifying Eulerian Eddy Leakiness in an Idealized Model, J. Geophys. Res.-Oceans, 124, 8869–8886, https://doi.org/10.1029/2019JC015576, 2019. a, b, c
Liu, T., He, Y., Zhai, X., and Liu, X.: Diagnostics of Coherent Eddy Transport in the South China Sea Based on Satellite Observations, Remote Sens., 14, 1690, https://doi.org/10.3390/rs14071690, 2022. a, b
Liu, X., Wang, M., and Shi, W.: A study of a Hurricane Katrina-induced phytoplankton bloom using satellite observations and model simulations, J. Geophys. Res.-Oceans, 114, C03023, https://doi.org/10.1029/2008JC004934, 2009. a
Liu, Y., Dong, C., Guan, Y., Chen, D., McWilliams, J., and Nencioli, F.: Eddy analysis in the subtropical zonal band of the North Pacific Ocean, Deep-Sea Res. Pt. I, 68, 54–67, https://doi.org/10.1016/j.dsr.2012.06.001, 2012. a
Lumpkin, C. F.: Eddies and Currents of the Hawaiian Islands, PhD thesis, School of Ocean and Earth Science and Technology, University of Hawaii, Manoa, https://www.soest.hawaii.edu/oceanography/graduate-program/archive-files/phd-dissertations/ (last access: 13 March 2024), 1998. a
Macintyre, H. L., Kana, T. M., and Geider, R. J.: The effect of water motion on short-term rates of photosynthesis by marine phytoplankton, Trends Plant Sci., 5, 12–17, https://doi.org/10.1016/S1360-1385(99)01504-6, 2000. a
Mahadevan, A.: The Impact of Submesoscale Physics on Primary Productivity of Plankton, Annu. Rev. Mar. Sci., 8, 161–184, https://doi.org/10.1146/annurev-marine-010814-015912, 2016. a
McAndrew, P. M., Bidigare, R. R., and Karl, D. M.: Primary production and implications for metabolic balance in Hawaiian lee eddies, Deep-Sea Res. Pt. II, 55, 1300–1309, https://doi.org/10.1016/j.dsr2.2008.01.004, 2008. a
McGillicuddy Jr., D. J.: Mechanisms of Physical-Biological-Biogeochemical Interaction at the Oceanic Mesoscale, Annu. Rev. Mar. Sci., 8, 125–159, https://doi.org/10.1146/annurev-marine-010814-015606, 2016. a
Messié, M., Petrenko, A., Doglioli, A. M., Aldebert, C., Martinez, E., Koenig, G., Bonnet, S., and Moutin, T.: The Delayed Island Mass Effect: How Islands can Remotely Trigger Blooms in the Oligotrophic Ocean, Geophys. Res. Lett., 47, e2019GL085282, https://doi.org/10.1029/2019GL085282, 2020. a
Messié, M., Petrenko, A., Doglioli, A. M., Martinez, E., and Alvain, S.: Basin-scale biogeochemical and ecological impacts of islands in the tropical Pacific Ocean, Nat. Geosci., 15, 469–474, https://doi.org/10.1038/s41561-022-00957-8, 2022. a
Mikaelyan, A.: The impact of physical processes on taxonomic composition, distribution and growth of phytoplankton in the open Black Sea, J. Mar. Syst., 208, 103368, https://doi.org/10.1016/j.jmarsys.2020.103368, 2020. a
Nencioli, F., Kuwahara, V. S., Dickey, T. D., Rii, Y. M., and Bidigare, R. R.: Physical dynamics and biological implications of a mesoscale eddy in the lee of Hawai'i: Cyclone Opal observations during E-Flux III, Deep-Sea Res. Pt. II, 55, 1252–1274, https://doi.org/10.1016/j.dsr2.2008.02.003, 2008. a, b, c, d
Nicholson, D., Emerson, S., and Eriksen, C. C.: Net community production in the deep euphotic zone of the subtropical North Pacific gyre from glider surveys, Limnol. Oceanogr., 53, 2226–2236, https://doi.org/10.4319/lo.2008.53.5_part_2.2226, 2008. a
Ntaganou, N., Kourafalou, V., Beron-Vera, F. J., Olascoaga, M. J., Le Hénaff, M., and Androulidakis, Y.: Influence of Caribbean eddies on the Loop current system evolution, Front. Mar. Sci., 10, 961058, https://doi.org/10.3389/fmars.2023.961058, 2023. a
Olaizola, M., Ziemann, D. A., Bienfang, P. K., Walsh, W., and Conquest, L.: Eddy-induced oscillations of the pycnocline affect the floristic composition and depth distribution of phytoplankton in the subtropical Pacific, Mar. Biol., 116, 533–542, https://doi.org/10.1007/BF00355471, 1993. a, b, c, d
Pennington, J. T., Mahoney, K. L., Kuwahara, V. S., Kolber, D. D., Calienes, R., and Chavez, F. P.: Primary production in the eastern tropical Pacific: A review, Prog. Oceanogr., 69, 285–317, https://doi.org/10.1016/j.pocean.2006.03.012, 2006. a
Perruche, C., Rivière, P., Lapeyre, G., Carton, X., and Pondaven, P.: Effects of surface quasi-geostrophic turbulence on phytoplankton competition and coexistence, J. Mar. Res., 69, 105–135, 2011. a
Peterson, T. D., Crawford, D. W., and Harrison, P. J.: Evolution of the phytoplankton assemblage in a long-lived mesoscale eddy in the eastern Gulf of Alaska, Mar. Ecol. Prog. Ser., 424, 53–73, https://doi.org/10.3354/meps08943, 2011. a, b
Polovina, J. J., Howell, E. A., and Abecassis, M.: Ocean’s least productive waters are expanding, Geophys. Res. Lett., 35, L03618, https://doi.org/10.1029/2007GL031745, 2008. a
Provenzale, A.: Transport by Coherent Barotropic Vortices, Annu. Rev. Fluid Mech., 31, 55–93, https://doi.org/10.1146/annurev.fluid.31.1.55, 1999. a
Rii, Y. M., Brown, S. L., Nencioli, F., Kuwahara, V., Dickey, T., Karl, D. M., and Bidigare, R. R.: The transient oasis: Nutrient-phytoplankton dynamics and particle export in Hawaiian lee cyclones, Deep-Sea Res. Pt. II, 55, 1275–1290, https://doi.org/10.1016/j.dsr2.2008.01.013, 2008. a, b, c
Sathyendranath, S., Brewin, R. J., Brockmann, C., Brotas, V., Calton, B., Chuprin, A., Cipollini, P., Couto, A. B., Dingle, J., Doerffer, R., Donlon, C., Dowell, M., Farman, A., Grant, M., Groom, S., Horseman, A., Jackson, T., Krasemann, H., Lavender, S., Martinez-Vicente, V., Mazeran, C., Mélin, F., Moore, T. S., Müller, D., Regner, P., Roy, S., Steele, C. J., Steinmetz, F., Swinton, J., Taberner, M., Thompson, A., Valente, A., Zühlke, M., Brando, V. E., Feng, H., Feldman, G., Franz, B. A., Frouin, R., Gould, R. W., Hooker, S. B., Kahru, M., Kratzer, S., Mitchell, B. G., Muller-Karger, F. E., Sosik, H. M., Voss, K. J., Werdell, J., and Platt, T.: An ocean-colour time series for use in climate studies: The experience of the ocean-colour climate change initiative (OC-CCI), Sensors, 19, 4285, https://doi.org/10.3390/s19194285, 2019. a, b
Schmid, M. S., Cowen, R. K., Robinson, K., Luo, J. Y., Briseño-Avena, C., and Sponaugle, S.: Prey and predator overlap at the edge of a mesoscale eddy: fine-scale, in-situ distributions to inform our understanding of oceanographic processes, Sci. Rep., 10, 921, https://doi.org/10.1038/s41598-020-57879-x, 2020. a
Seki, M. P., Polovina, J. J., Brainard, R. E., Bidigare, R. R., Leonard, C. L., and Foley, D. G.: Biological enhancement at cyclonic eddies tracked with GOES thermal imagery in Hawaiian waters, Geophys. Res. Lett., 28, 1583–1586, https://doi.org/10.1029/2000GL012439, 2001. a, b, c
Ser-Giacomi, E., Martinez-Garcia, R., Dutkiewicz, S., and Follows, M. J.: A Lagrangian model for drifting ecosystems reveals heterogeneity-driven enhancement of marine plankton blooms, Nat. Commun., 14, 6092, https://doi.org/10.1038/s41467-023-41469-2, 2023. a
Shang, X. D., Zhu, H. B., Chen, G. Y., Xu, C., and Yang, Q.: Research on Cold Core Eddy Change and Phytoplankton Bloom Induced by Typhoons: Case Studies in the South China Sea, Adv. Meteorol., 2015, 340432, https://doi.org/10.1155/2015/340432, 2015. a
Strutton, P. G., Trull, T. W., Phillips, H. E., Duran, E. R., and Pump, S.: Biogeochemical Argo Floats Reveal the Evolution of Subsurface Chlorophyll and Particulate Organic Carbon in Southeast Indian Ocean Eddies, J. Geophys. Res.-Oceans, 128, e2022JC018984, https://doi.org/10.1029/2022JC018984, 2023. a, b
Su, J.: The subsurface biological structure of Southern Ocean eddies revealed by BGC-Argo floats, J. Mar. Syst., 220, 103569, https://doi.org/10.1016/j.jmarsys.2021.103569, 2021. a
Tarshish, N., Abernathey, R., Zhang, C., Dufour, C. O., Frenger, I., and Griffies, S. M.: Identifying Lagrangian coherent vortices in a mesoscale ocean model, Ocean Model. 130, 15–28, https://doi.org/10.1016/j.ocemod.2018.07.001, 2018. a
Travis, S. and Qiu, B.: Seasonal Reversal of the Near-Surface Chlorophyll Response to the Presence of Mesoscale Eddies in the South Pacific Subtropical Countercurrent, J. Geophys. Res.-Oceans, 125, e2019JC015752, https://doi.org/10.1029/2019JC015752, 2020. a
Uz, B. M., Yoder, J. A., and Osychny, V.: Pumping of nutrients to ocean surface waters by the action of propagating planetary waves, Nature, 409, 597–600, https://doi.org/10.1038/35054527, 2001. a
Vaillancourt, R. D., Marra, J., Seki, M. P., Parsons, M. L., and Bidigare, R. R.: Impact of a cyclonic eddy on phytoplankton community structure and photosynthetic competency in the subtropical North Pacific Ocean, Deep-Sea Res. Pt. I, 50, 829–847, https://doi.org/10.1016/S0967-0637(03)00059-1, 2003. a, b
Villar, E., Farrant, G. K., Follows, M., Garczarek, L., Speich, S., Audic, S., Bittner, L., Blanke, B., Lepoivre, C., Malviya, S., Pelletier, E., and Romagnan, J.-B.: Environmental characteristics of Agulhas rings affect interocean plankton transport, Science, 348, 6237, https://doi.org/10.1126/science.1261447, 2015. a, b
Vortmeyer-Kley, R., Holtermann, P., Feudel, U., and Gräwe, U.: Comparing Eulerian and Lagrangian eddy census for a tide-less, semi-enclosed basin, the Baltic Sea, Ocean Dynam., 69, 701–717, https://doi.org/10.1007/s10236-019-01269-z, 2019. a
Waga, H., Hirawake, T., and Ueno, H.: Impacts of Mesoscale Eddies on Phytoplankton Size Structure, Geophys. Res. Lett., 46, 13191–13198, https://doi.org/10.1029/2019GL085150, 2019. a
Wang, S., Lin, Y., Gifford, S., Eveleth, R., and Cassar, N.: Linking patterns of net community production and marine microbial community structure in the western North Atlantic, ISME J., 12, 2582–2595, https://doi.org/10.1038/s41396-018-0163-4, 2018. a
Wilson, S. T., Aylward, F. O., Ribalet, F., Barone, B., Casey, J. R., Connell, P. E., Eppley, J. M., Ferron, S., Fitzsimmons, J. N., Hayes, C. T., Romano, A. E., Turk-Kubo, K. A., Vislova, A., Armbrust, E. V., Caron, D. A., Church, M. J., Zehr, J. P., Karl, D. M., and Long, E. F. D.: Coordinated regulation of growth, activity and transcription in natural populations of the unicellular nitrogen-fixing cyanobacterium Crocosphaera, Nat. Microbiol., 2, 17118, https://doi.org/10.1038/nmicrobiol.2017.118, 2017. a
Xiu, P. and Chai, F.: Eddies Affect Subsurface Phytoplankton and Oxygen Distributions in the North Pacific Subtropical Gyre, Geophys. Res. Lett., 47, e2020GL087037, https://doi.org/10.1029/2020GL087037, 2020. a, b, c
Xu, G., Dong, C., Liu, Y., Gaube, P., and Yang, J.: Chlorophyll Rings around Ocean Eddies in the North Pacific, Sci. Rep., 9, 2056, https://doi.org/10.1038/s41598-018-38457-8, 2019. a, b
Yoshida, S., Qiu, B., and Hacker, P.: Wind-generated eddy characteristics in the lee of the island of Hawaii, J. Geophys. Res.-Oceans, 115, C03019, https://doi.org/10.1029/2009JC005417, 2010. a, b
Zhao, D., Xu, Y., Zhang, X., and Huang, C.: Global chlorophyll distribution induced by mesoscale eddies, Remote Sens. Environ., 254, 112245, https://doi.org/10.1016/j.rse.2020.112245, 2021. a
Zhou, K., Benitez-Nelson, C. R., Huang, J., Xiu, P., Sun, Z., and Dai, M.: Cyclonic eddies modulate temporal and spatial decoupling of particulate carbon, nitrogen, and biogenic silica export in the North Pacific Subtropical Gyre, Limnol. Oceanogr., 66, 3508–3522, https://doi.org/10.1002/lno.11895, 2021. a
Co-editor-in-chief
This paper is of high quality, it exemplifies the complexity of detecting ocean eddies (eulerian versus lagrangian, importance of the code parameters of the regions considered), it acknowledges the fact that not all ocean eddies are the same (dynamically talking), and that their effect on plankton is complex. The method presented is well-described, powerful and would allow digging into these biophysical interactions in many different oceanographic settings. It shows that the common view following seminal papers by e.g. McGillicuddy and D. Chelton that consists of "cyclonic eddies -> isopycnals shaoling -> increase phytoplankton biomass" versus "anticyclonic eddies -> isopycnal deepening -> decreased phytoplankton biomass" is too simplistic and needed to be updated.
This paper is of high quality, it exemplifies the complexity of detecting ocean eddies (eulerian...
Short summary
Eddies are rotating ocean vortices up to hundreds of kilometers in diameter that stimulate phytoplankton blooms. We used satellite data and simulations of currents to examine the effect of eddy trapping strength on phytoplankton concentration in the open North Pacific Ocean. Coherent eddies trap phytoplankton, while "leaky" ones have lower concentrations because they mix with surrounding waters. However, contrary to previous theory, eddy-trapped blooms are more prominent in southern latitudes.
Eddies are rotating ocean vortices up to hundreds of kilometers in diameter that stimulate...