Articles | Volume 21, issue 3
https://doi.org/10.5194/os-21-1047-2025
https://doi.org/10.5194/os-21-1047-2025
Research article
 | 
19 Jun 2025
Research article |  | 19 Jun 2025

Sensitivity study of energy transfer between mesoscale eddies and wind-induced near-inertial oscillations

Yu Zhang, Jintao Gu, Shengli Chen, Jianyu Hu, Jinyu Sheng, and Jiuxing Xing

Related authors

Cross–Seasonal Impact of SST Anomalies over the Tropical Central Pacific Ocean on the Antarctic Stratosphere
Yucheng Zi, Zhenxia Long, Jinyu Sheng, Gaopeng Lu, Will Perrie, and Ziniu Xiao
EGUsphere, https://doi.org/10.5194/egusphere-2025-2990,https://doi.org/10.5194/egusphere-2025-2990, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
DalROMS-NWA12 v1.0, a coupled circulation–ice–biogeochemistry modelling system for the northwest Atlantic Ocean: development and validation
Kyoko Ohashi, Arnaud Laurent, Christoph Renkl, Jinyu Sheng, Katja Fennel, and Eric Oliver
Geosci. Model Dev., 17, 8697–8733, https://doi.org/10.5194/gmd-17-8697-2024,https://doi.org/10.5194/gmd-17-8697-2024, 2024
Short summary
A parameterization scheme for the floating wind farm in a coupled atmosphere–wave model (COAWST v3.7)
Shaokun Deng, Shengmu Yang, Shengli Chen, Daoyi Chen, Xuefeng Yang, and Shanshan Cui
Geosci. Model Dev., 17, 4891–4909, https://doi.org/10.5194/gmd-17-4891-2024,https://doi.org/10.5194/gmd-17-4891-2024, 2024
Short summary
Inclusion of the subgrid wake effect between turbines in the wind farm parameterization of WRF
Wei Liu, Xuefeng Yang, Shengli Chen, Shaokun Deng, Peining Yu, and Jiuxing Xing
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2023-174,https://doi.org/10.5194/gmd-2023-174, 2023
Revised manuscript not accepted
Short summary
The impact of the planetary β-effect on the tilting vertical structure of a mesoscale eddy
Shengmu Yang, Jiuxing Xing, Shengli Chen, Jiwei Tian, and Daoyi Chen
Ocean Sci. Discuss., https://doi.org/10.5194/os-2018-39,https://doi.org/10.5194/os-2018-39, 2018
Revised manuscript not accepted
Short summary

Related subject area

Approach: In situ Observations | Properties and processes: Internal waves, turbulence and mixing
Turbulent dissipation along contrasting internal tide paths off the Amazon shelf from AMAZOMIX
Fabius Kouogang, Ariane Koch-Larrouy, Jorge Magalhaes, Alex Costa da Silva, Daphne Kerhervé, Arnaud Bertrand, Evan Cervelli, Fernand Assene, Jean-François Ternon, Pierre Rousselot, James Lee, Marcelo Rollnic, and Moacyr Araujo
Ocean Sci., 21, 1589–1608, https://doi.org/10.5194/os-21-1589-2025,https://doi.org/10.5194/os-21-1589-2025, 2025
Short summary
A global summary of seafloor topography influenced by internal-wave-induced turbulent water mixing
Hans van Haren and Henk de Haas
Ocean Sci., 21, 1125–1140, https://doi.org/10.5194/os-21-1125-2025,https://doi.org/10.5194/os-21-1125-2025, 2025
Short summary
Turbulent erosion of a subducting intrusion in the Western Mediterranean Sea
Giovanni Testa, Mathieu Dever, Mara Freilich, Amala Mahadevan, T. M. Shaun Johnston, Lorenzo Pasculli, and Francesco M. Falcieri
Ocean Sci., 21, 989–1002, https://doi.org/10.5194/os-21-989-2025,https://doi.org/10.5194/os-21-989-2025, 2025
Short summary
Overlapping turbulent boundary layers in an energetic coastal sea
Arnaud F. Valcarcel, Craig L. Stevens, Joanne M. O'Callaghan, and Sutara H. Suanda
Ocean Sci., 21, 965–987, https://doi.org/10.5194/os-21-965-2025,https://doi.org/10.5194/os-21-965-2025, 2025
Short summary
Dissipation ratio and eddy diffusivity of turbulent and salt finger mixing derived from microstructure measurements
Jianing Li, Qingxuan Yang, and Hui Sun
Ocean Sci., 21, 829–849, https://doi.org/10.5194/os-21-829-2025,https://doi.org/10.5194/os-21-829-2025, 2025
Short summary

Cited articles

Alford, M. H.: Improved global maps and 54-year history of wind-work on ocean inertial motions, Geophys. Res. Lett., 30, 122–137, https://doi.org/10.1029/2002GL016614, 2003. 
Alford, M. H., MacKinnon, J. A., and Simmons, H. L.: Near-inertial internal gravity waves in the ocean, Ann. Rev. Mar. Sci., 8, 95–123, https://doi.org/10.1146/annurev-marine-010814-015746, 2016. 
Barkan, R., Srinivasan, K., and Yang, L.: Oceanic mesoscale eddy depletion catalyzed by internal waves, Geophys. Res. Lett., 48, e2021GL094376, https://doi.org/10.1002/essoar.10507068.1, 2021. 
Boyer, T. P., Baranova, O. K., Coleman, C., Garcia, H. E., Grodsky, A., Locarnini, R. A., Mishonov, A. V., Paver, C. R., Reagan, J. R., Seidov, D., Smolyar, I. V., Weathers, K. W., and Zweng, M. M.: NOAA Atlas NESDIS 87, World Ocean Database 2018, NCEI – National Centers for Environmental Information [data set], https://www.ncei.noaa.gov/access/world-ocean-atlas-2018/ (last access: 1 September 2022), 2019. 
Bühler, O. and McIntyre, M. E.: Wave capture and wave–vortex duality, J. Fluid Mech., 534, 67–95, https://doi.org/10.1017/S0022112005004374, 2005. 
Download
Short summary
Current observations at two moorings in the northern South China Sea reveal that mesoscale eddies can transfer energy with near-inertial oscillations (NIOs). Numerical experiments are conducted to investigate important parameters affecting energy transfer between mesoscale eddies and NIOs, which demonstrate that the energy transferred by mesoscale eddies is larger with stronger winds and higher strength of the mesoscale eddy. Anticyclonic eddies can transfer more energy than cyclonic eddies.
Share