Articles | Volume 20, issue 3
https://doi.org/10.5194/os-20-661-2024
Copyright waived. This work has been dedicated to the public domain (Creative Commons Public Domain Dedication).
https://doi.org/10.5194/os-20-661-2024
Copyright waived. This work has been dedicated to the public domain (Creative Commons Public Domain Dedication).
Impact of Hurricane Irma on coral reef sediment redistribution at Looe Key Reef, Florida, USA
U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL 33701, USA
Zachery Fehr
Cherokee Nation System Solutions, Tulsa, OK 74166, USA
Selena Johnson
U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL 33701, USA
David Zawada
U.S. Geological Survey, St. Petersburg Coastal and Marine Science Center, St. Petersburg, FL 33701, USA
Related authors
Christopher S. Moore, Robert H. Byrne, and Kimberly K. Yates
EGUsphere, https://doi.org/10.5194/egusphere-2022-1493, https://doi.org/10.5194/egusphere-2022-1493, 2023
Preprint archived
Short summary
Short summary
This paper presents time series measurements of pH, dissolved inorganic carbon, and total alkalinity for organic rich estuarine water. The efficacy of sample preservation is examined by comparing results obtained with and without additions of the HgCl2. Our results show that addition of HgCl2 affects titration alkalinity and subsequently pH. Accurate analyses can be achieved using improvements in sample preservation techniques for carbonate system measurements in organic-rich estuarine waters.
Nancy G. Prouty, Kimberly K. Yates, Nathan Smiley, Chris Gallagher, Olivia Cheriton, and Curt D. Storlazzi
Biogeosciences, 15, 2467–2480, https://doi.org/10.5194/bg-15-2467-2018, https://doi.org/10.5194/bg-15-2467-2018, 2018
Short summary
Short summary
Coral reefs provide critical shoreline protection and important services, such as marine habitat, tourism, fishing, and recreation. However, coral reefs are being threatened by global climate change. If we are to understand how reefs will response to climate change, we must also understand how local conditions may impact the reefs. Our study offers a first glimpse into how human inputs of nutrients might add an additional stressor to reef health.
Kimberly K. Yates, David G. Zawada, Nathan A. Smiley, and Ginger Tiling-Range
Biogeosciences, 14, 1739–1772, https://doi.org/10.5194/bg-14-1739-2017, https://doi.org/10.5194/bg-14-1739-2017, 2017
Short summary
Short summary
We report regional-scale erosion of coral reef ecosystems in the Atlantic, Caribbean, and Pacific oceans determined by measuring changes in seafloor elevation. The magnitude of seafloor elevation loss has increased local sea level rise, causing water depths not predicted until near 2100, placing coastal communities at elevated and accelerating risk from hazards such as waves, storms, and tsunamis. Our results have broad implications for coastal resource and safety management.
K. K. Yates, C. S. Rogers, J. J. Herlan, G. R. Brooks, N. A. Smiley, and R. A. Larson
Biogeosciences, 11, 4321–4337, https://doi.org/10.5194/bg-11-4321-2014, https://doi.org/10.5194/bg-11-4321-2014, 2014
Christopher S. Moore, Robert H. Byrne, and Kimberly K. Yates
EGUsphere, https://doi.org/10.5194/egusphere-2022-1493, https://doi.org/10.5194/egusphere-2022-1493, 2023
Preprint archived
Short summary
Short summary
This paper presents time series measurements of pH, dissolved inorganic carbon, and total alkalinity for organic rich estuarine water. The efficacy of sample preservation is examined by comparing results obtained with and without additions of the HgCl2. Our results show that addition of HgCl2 affects titration alkalinity and subsequently pH. Accurate analyses can be achieved using improvements in sample preservation techniques for carbonate system measurements in organic-rich estuarine waters.
Nancy G. Prouty, Kimberly K. Yates, Nathan Smiley, Chris Gallagher, Olivia Cheriton, and Curt D. Storlazzi
Biogeosciences, 15, 2467–2480, https://doi.org/10.5194/bg-15-2467-2018, https://doi.org/10.5194/bg-15-2467-2018, 2018
Short summary
Short summary
Coral reefs provide critical shoreline protection and important services, such as marine habitat, tourism, fishing, and recreation. However, coral reefs are being threatened by global climate change. If we are to understand how reefs will response to climate change, we must also understand how local conditions may impact the reefs. Our study offers a first glimpse into how human inputs of nutrients might add an additional stressor to reef health.
Kimberly K. Yates, David G. Zawada, Nathan A. Smiley, and Ginger Tiling-Range
Biogeosciences, 14, 1739–1772, https://doi.org/10.5194/bg-14-1739-2017, https://doi.org/10.5194/bg-14-1739-2017, 2017
Short summary
Short summary
We report regional-scale erosion of coral reef ecosystems in the Atlantic, Caribbean, and Pacific oceans determined by measuring changes in seafloor elevation. The magnitude of seafloor elevation loss has increased local sea level rise, causing water depths not predicted until near 2100, placing coastal communities at elevated and accelerating risk from hazards such as waves, storms, and tsunamis. Our results have broad implications for coastal resource and safety management.
K. K. Yates, C. S. Rogers, J. J. Herlan, G. R. Brooks, N. A. Smiley, and R. A. Larson
Biogeosciences, 11, 4321–4337, https://doi.org/10.5194/bg-11-4321-2014, https://doi.org/10.5194/bg-11-4321-2014, 2014
Cited articles
Awadallah, M.O.M., Malmquist, C., Stickler, M., and Alfredsen, K.: Quantitative evaluation of bathymetric LiDAR sensors and acquisition approaches in Lærdal River in Norway, Remote Sens., 15, 263, https://doi.org/10.3390/rs15010263, 2023.
Ball, M. M., Shinn, E. A., and Stockman, K. W.: The geologic effects of Hurricane Donna in south Florida, J. Geol., 75, 583–597, 1967.
Bhatia, K. T., Vecchi, G. A., Knutson, T. R., Murakami, H., Kossin, J., Dixon, K. W., and Whitlock, C. E.: Recent increases in tropical cyclone intensification rates, Nat. Commun., 10, 1–9, https://doi.org/10.1038/s41467-019-08471-z, 2019.
Bohnsack, J. A., Cantillo, A. Y., and Bello, M. J.: Resource survey of Looe Key National Marine Sanctuary 1983, NOAA Technical Memorandum, NOS NCCOS CCMA 160, NMFS-SEFSC-478, NOAA LISD Current References 2002–8, https://www.aoml.noaa.gov/general/lib/CEDAR_files/cedar106.pdf (last access: 20 May 2024), 2002.
Brandt, M. E. and McManus, J. W.: Disease incidence is related to bleaching extent in reef building corals, Ecology, 90, 2859–2867, https://doi.org/10.1890/08-0445.1, 2009.
Bruno, J. F., Sweatman, H., Precht, W. F., Selig, E. R., Virginia, and Schutte, V. G. W.: Assessing evidence of phase shifts from coral to macroalgal dominance on coral reefs, Ecology, 9, 1478–1484, https://doi.org/10.1890/08-1781.1, 2009.
Cangialosi, J. P., Latto, A. S., and Berg, R.: National Hurricane Center tropical cyclone report Hurricane Irma (AL112017) 24 September 2021, Tropical Cyclone Report, AL112017, https://www.nhc.noaa.gov/data/tcr/AL112017_Irma.pdf (last access: 20 May 2024), 2021.
Carter, A. B., Collier, C., Coles, R., Lawrence, E., and Rasheed, M. A.: Community-specific “desired” states for seagrasses through cycles of loss and recovery, J. Environ. Manage., 314, 115059, https://doi.org/10.1016/j.jenvman.2022.115059, 2022.
Choquette, P. W. and Pray, L. C.: Geologic nomenclature and classification of porosity in sedimentary carbonates, AAPG Bull., 54, 207–250, https://doi.org/10.1306/5D25C98B-16C1-11D7-8645000102C1865D, 1970.
Dobbelaere, T., Curcic, M., Henaff, M. L., and Hanert, E.: Impacts of Hurricane Irma (2017) on wave-induced ocean transport processes, Ocean Model., 171, 1–13, https://doi.org/10.1016/j.ocemod.2022.101947, 2022.
Elsner, J. B., Kossin, J. P., and Jagger, T. H.: The increasing intensity of the strongest tropical cyclones, Nature, 455, 92–95, https://doi.org/10.1038/nature07234, 2008.
Fehr, Z. F. and Yates, K. K.: Underwater photographic reconnaissance and habitat data collection in the Florida Keys–a procedure for ground truthing remotely sensed bathymetric data, USGS Open-File Report, 2020–1118, 13 pp., https://doi.org/10.3133/ofr20201118, 2020.
Fehr, Z. W., Zawada, D. G., and Yates, K. K.: Seafloor elevation and volume change analyses from 2016 to 2019 along the Florida Reef Tract, USA, U.S. Geological Survey data release, USGS [data set], https://doi.org/10.5066/P9CHC95D, 2021.
Fernandez-Diaz, J. C., Glennie, C. L., Carter, W. E., Shrestha, R. L., Sartori, M. P., Singhania, A., Legleiter, C. J., and Overstreet, B. T.: Early results of simultaneous terrain and shallow water bathymetry mapping using a single-wavelength airborne LiDAR sensor, IEEE J. Sel. Top. Appl. Earth Obs., 7, 623–635, 2014.
Ferrario, F., Beck, M. W., Storlazzi, C. D., Miheli, F., Shepard, C. C., and Airoldi, L.: The effectiveness of coral reefs for coastal hazard risk reduction and adaption, Nat. Commun., 5, 3794, https://doi.org/10.1038/ncomms4794, 2014.
Finkl, C. W.: Leaky valves in the littoral sediment budgets: loss of nearshore sand to deep offshore zones via chutes in barrier reef systems, southeast coast of Florida, USA, J. Coast. Res., 20, 605–611, https://doi.org/10.2112/1551-5036(2004)020[0605:LVILSB]2.0.CO;2, 2004.
Finkl, C. W. and Andrews, J. L.: Shelf geomorphology along the southeast Florida Atlantic continental platform: Barrier coral reefs, nearshore bedrock, and morphosedimentary features, J. Coast. Res., 244, 823–849, https://doi.org/10.2112/08A-0001.1, 2008.
Finkl, C. W. and Vollmer, H. M.: Methods for investigating sediment flux under high-energy conditions on the Southeast Florida continental shelf using laser airborne depth sounding (LADS) in a geographic information system (GIS) dataframe, J. Coast. Res., 33, 452–462, https://doi.org/10.2112/JCOASTRES-D-16A-00014.1, 2017.
Florida Department of Environmental Protection: Florida's coral reefs, https://floridadep.gov/rcp/rcp/content/floridas-coral-reefs#:~:text=Florida is the only state,spiny lobster, snapper and grouper (last access: 7 September 2023), 2023.
Florida Fish and Wildlife Conservation Commission-Fish and Wildlife Research Institute, Unified Florida Coral Reef Tract Map v2.0, FWC-FWRI [data set], http://ocean.floridamarine.org/IntegratedReefMap/UnifiedReefTract.htm (last access: 20 May 2024), 2015.
Florida Reef Resilience Program: In Florida Reef Resilience Program Disturbance Response Monitoring and Hurricane Irma Rapid Reef Assessment Quick Look Report: Summer 2017, https://repository.library.noaa.gov/view/noaa/15575 (last access: 28 November 2021), 2017.
Fredericks, J. J., Reynolds, B. J., Farmer, A. S., Yates, K. K., and Zawada, D. G.: Multibeam bathymetry data collected in December 2017, February and March 2018 at Looe Key, the Florida Keys, U.S. Geological Survey data release, USGS [data set], https://doi.org/10.5066/P9P2V7L0, 2019.
Fourqurean, J. W. and Rutten, L. M.: The impact of Hurricane Georges on soft-bottom, back reef communities: site-and species-specific effects in south Florida seagrass beds, B. Mar. Sci., 75, 239–257, 2004.
Gorstein, M., Dillard, M. K., Loerzel, J., Edwards, P. E. T., and Levine, A S.: National coral reef monitoring program socioeconomic monitoring component: summary findings for South Florida, 2014, NOAA Technical Memorandum, CRCP 25, https://doi.org/10.7289/V5VH5KV5, 2016.
Hall, M. O., Furman, B. T., Merello, M., and Durako, M. J.: Recurrence of Thalassia testudnum seagrass die-off in Florida Bay, USA: initial observations, Mar. Ecol. Prog. Ser., 560, 243–249, https://doi.org/10.3354/meps11923, 2016.
Hall, E. R., Wickes, L., Burnett, L. E., Scott, G. I., Hernandez, D., Yates, K. K., Barbero, L., Reimer, J., Baalousha, M., Bennett-Mintz, J., Cai, W. J., Craig, K., Devoe, M. R., Fisher, W. S., Hathaway, T. K., Jewett, E. B., Johnson, Z., Keener, P., Mordecai, R. S., Noakes, S., Phillips, C., Sandifer, P. A., Schnetzer, A., and Styron J.: Acidification in the U.S. Southeast: causes, potential consequences and the role of the Southeast Ocean and Coastal Acidification Network, Front. Mar. Sci., 7, 548, https://doi.org/10.3389/fmars.2020.00548, 2020.
Hastings, K., Hesp, P., and Kendrick, G. A.: Seagrass loss associated with boat moorings at Rottnest Island, Western Australia, Ocean Coastal Manage., 26, 225–246, https://doi.org/10.1016/0964-5691(95)00012-Q, 1995.
Hatcher, G. A., Kranenbug, C. J., Warrick, J. A., Bosse, S. T., Zawada, D. G., Yates, K. K., and Johnson, S. A.: Overlapping seabed images and location data acquired using the SQUID-5 system at Looe Key, Florida, in July 2021, with structure-from-motion derived point cloud, digital elevation model and orthomosaic of submerged topography, U.S. Geological Survey data release, USGS [data set], https://doi.org/10.5066/P9WSF09G, 2022.
Hubbard, D. K.: Sedimentation as a control of reef development: St. Croix, U.S.V.I., Coral Reefs, 5, 117–125, 1986.
Hubbard, D. K., Sadd, J. L., and Roberts, H. H.: The role of physical processes in controlling sediment transport patterns on the insular shelf of St. Croix, US Virgin Islands, Proceedings of the Fourth International Coral Reef Symposium, Manila, 1, 399–404, 1981.
Hughes, T. P.: Catastrophes, phase shifts, and large-scale degradation of Caribbean coral reef, Science, 265, 1547–1551, https://doi.org/10.1126/science.265.5178.1547, 1994.
Hughes, T. P., Kerry, J. T., Álvarez-Noriega, M., Álvarez-Romero, J. G., Anderson, K. D., Baird, A. H., Babcock, R. C., Beger, M., Bellwood, D. R., Berkelmans, R., Bridge, T. C., Butler, I. R., Byrne, M., Cantin, N. E., Comeau, S., Connolly, S. R., Cumming, G. S., Dalton, S. J., Diaz-Pulido, G, Eakin, C. M., Figueira, W. F., Gilmour, J. P., Harrison, H. B., Heron, S. F., Hoey, A. S., Hobbs, J. A., Hoogenboom, M. O., Kennedy, E. V., Kuo, C., Lough, J. M., Lowe, R. J., Liu, G., McCulloch, M. T., Malcolm, H. A., McWilliam, M. J., Pandolfi, J. M., Pears, R. J., Pratchett, M. S., Schoepf, V., Simpson, T., Skirving, W. J., Sommer, B., Torda, G., Wachenfeld, D. R., Willis, B. L., and Wilson, S. K.: Global warming and recurrent mass bleaching of corals, Nature, 543, 373–377, https://doi.org/10.1038/nature21707, 2017.
Jackson, J., Donovan, M., Cramer, K., and Lam, V. (Eds.): Status and trends of Caribbean coral reefs: 1970–2012, Global Coral Reef Monitoring Network, IUCN, Gland, Switzerland, 306 pp., https://www.iucn.org/content/status-and-trends-caribbean-coral-reefs-1970-2012 (last access: 20 May 2024), 2014.
Joyner, J. L., Sutherland, K. P., Kemp, D. W., Berry, B., Griffin, A., Porter, J. W., Amador, M. H., Noren, H. K., and Lipp, E. K.: Systematic analysis of white pox disease in Acropora palmata in the Florida Keys and role of Serratia marcescens, Appl. Environ. Microb., 81, 4451–4457, https://doi.org/10.1128/AEM.00116-15, 2015.
Keller, B. and Donahue, S.: Florida Keys National Marine Sanctuary U.S. Environmental Protection Agency State of Florida 2002—03 Sanctuary Science Report: An Ecosystem Report Card, in: U.S. Department of Commerce, National Oceanic and Atmospheric Administration, National Ocean Service, Office of National Marine Sanctuaries, Florida Keys National Marine Sanctuary, Marathon, FL, http://sanctuaries.noaa.gov/science/conservation/pdfs/Keller1.pdf (last access: 28 November 2021), 2006.
Kinzel, P. J., Wright, C. W., Nelson, J. M., and Burman, A. R: Evaluation of an experimental LiDAR for surveying a shallow, braided, sand-bedded river, J. Hydraul. Eng., 133, 838–842, https://doi.org/10.1061/(ASCE)0733-9429(2007)133:7(838), 2007.
Kirkman, H. and Kirkman, J.: Long-term seagrass meadow monitoring near Perth, Western Australia, Aquat. Bot., 67, 319–332, https://doi.org/10.1016/S0304-3770(00)00097-8, 2000.
Knowlton, N.: Thresholds and multiple stable states in coral reef community dynamics, Am. Zool., 32, 674–682, https://doi.org/10.1093/icb/32.6.674, 1992.
Knowlton, N.: The future of coral reefs, P. Natl. Acad. Sci. USA, 98, 5419–5425, https://doi.org/10.1073/pnas.091092998, 2001.
Knutson, T., Camargo, S. J., Chan, J. C., Emanuel, K., Ho, C.-H., Kossin, J., Mohapatra, M., Satoh, M., Sugi, M., Walsh, K. and Wu, L.: Tropical cyclones and climate change assessment: Part II: Projected response to anthropogenic warming, B. Am. Meteor. Soc., 101, E303–E322, https://doi.org/10.1016/j.tcrr.2020.01.004, 2020.
Kobelt, J. N., Sharp, W. C., Miles, T. N, and Feehan, C. J.: Localized Impacts of Hurricane Irma on Diadema antillarum and Coral Reef Community Structure, Estuar. Coast., 43, 1133–1143, https://doi.org/10.1007/s12237-019-00665-4, 2020.
Krause, J. R., Lopes, C. C., Wilson, S. S., Boyer, J. N., Briceño, H. O., and Fourqurean, J. W.: Status and trajectories of soft-bottom benthic communities of the South Florida Seascape revealed by 25 years of seagrass and water quality monitoring data, Estuar. Coast., 46, 477-493, https://doi.org/10.1007/s12237-022-01158-7, 2023.
Krediet, C. J., Ritchie, K. B., and Teplitski, M.: The importance and status of Florida coral reefs: questions and answers, SL305/SS518, 8/2009, EDIS 2010, Gainesville, FL, https://doi.org/10.32473/edis-ss518-2009, 2010.
Kuffner, I. B., Lidz, B. H., Hudson, J. H., and Anderson, J. S.: A century of ocean warming on Florida Keys coral reefs: historic in situ observations, Estuar. Coast., 38, 1085–1096, https://doi.org/10.1007/s12237-014-9875-5, 2015.
Lapointe B. E. and Clark, M. W.: Nutrient inputs from the watershed and coastal eutrophication in the Florida Keys, Estuaries, 15, 465–476, https://doi.org/10.2307/1352391, 1992.
Lee, T. N. and Williams, E.: Mean distribution and seasonal variability of coastal currents and temperature in the Florida Keys with implications for larval recruitment, B. Mar. Sci., 64, 35–56, 1999.
Legleiter, C. J., Overstreet, B. T., Glennie, C. L., Pan, Z., Fernandez-Diaz, J. C., and Singhania, A: Evaluating the capabilities of the CASI hyperspectral imaging system and Aquarius bathymetric LiDAR for measuring channel morphology in two distinct river environments, Earth Surf. Proc. Land., 41, 344–363, 2016.
Lessios, H. A., Cubit, J. D., Robertson, D. R., Shulman, M. J., Parker, M. R., Garrity, S. D., and Levings, S. C.: Mass mortality of Diadema antillarum on the Caribbean coast of Panama, Coral Reefs, 3, 173–182, https://doi.org/10.1007/BF00288252, 1984.
Lidz, B. H., Reich C. D., and Shinn, E. A.: Regional Quaternary submarine geomorphology in the Florida Keys, GSA Bulletin, 115, 845–866, https://doi.org/10.1130/0016-7606(2003)115<0845:RQSGIT>2.0.CO;2, 2003.
Lidz, B. H., Reich, C. D., and Shinn, E. A.: Systematic mapping of bedrock and habitats along the Florida Reef Tract–Central Key Largo to Halfmoon Shoal (Gulf of Mexico), USGS Professional Paper, 1751, https://doi.org/10.3133/pp1751, 2007.
Littler, M. M., Littler, D. S., and Lapointe, B. E.: Baseline studies of herbivory and eutrophication on dominant reef communities of Looe Key National Marine Sanctuary, NOAA Technical Memorandum, NOS MEMD 1, https://repository.library.noaa.gov/view/noaa/2424 (last access: 20 May 2024), 1986.
Lohr, K. E., Ripple, K., and Patterson, J. T.: Differential disturbance effects and phenotypic plasticity among outplanted corals at patch and fore reef sites, J. Nat. Conserv., 55, 1–7, https://doi.org/10.1016/j.jnc.2020.125827, 2020.
Malmstadt, J., Scheitlin, K., and Elsner, J.: Florida hurricanes and damage costs, Southeastern Geographer, 49, 108–131, 2009.
Miller, M., Bourque, A., and Bohnsack, J.: An analysis of the loss of acroporid corals at Looe Key, Florida, USA: 1983–2000, Coral Reefs, 21, 179–182, https://doi.org/10.1007/s00338-002-0228-7, 2002.
Moberg, F. and Folke, C.: Ecological goods and services of coral reef ecosystems, Ecol. Econ., 29, 215–233, https://doi.org/10.1016/S0921-8009(99)00009-9, 1999.
Morris, J. T., Enochs, I. C., Besemer, N., Viehman, T. S., Groves, S. H., Blondeau, J., Ames, C., Towle, E. K., Grove, L. J. W., and Manzello, D. P.: Low net carbonate accretion characterizes Florida's coral reef, Sci. Rep., 12, 19582, https://doi.org/10.1038/s41598-022-23394-4, 2022.
Muehllehner, N., Langdon C., Venti, A., and Kadko, D.: Dynamics of carbonate chemistry, production, and calcification of the Florida Reef Tract (2009–2010): evidence for seasonal dissolution, Global Biogeochem. Cy., 30, 661–688, https://doi.org/10.1002/2015GB005327, 2016.
Mumby, P. J.: The impacts of exploiting grazers (Scaridae) on the dynamics of Caribbean coral reefs, Ecol. Appl., 16, 747–769, https://doi.org/10.1890/1051-0761(2006)016[0747:TIOEGS]2.0.CO;2, 2006.
Murphy, K. A., Zawada, D. G., and Yates, K. K.: Subsampling Large-Scale Digital Elevation Models to Expedite Geospatial Analyses in Coastal Regions, J. Coast. Res., 38, 1236–1245, https://doi.org/10.2112/JCOASTRES-D-22-00015.1, 2022.
NASA: National Aeronautics and Space Administration, Earth Observing System and Information System (EOSDIS), Worldview Imagery, https://worldview.earthdata.nasa.gov/?v=-87.91450071116984,13.429741986895111,-73.74396320747232,36.509348902639495&t=2017-09-13-T14:29:26Z (last access: 20 May 2024), 2023.
National Geodetic Survey: 2018–2019 NOAA NGS Topobathy Lidar DEM Hurricane Irma: Miami to Marquesas Keys, FL, NOAA Office for Coastal Management [data set], https://www.fisheries.noaa.gov/inport/item/63018 (last access: 20 May 2024), 2022.
NHC: National Oceanic and Atmospheric Administration, National Hurricane Center: NOAA NHC – Irma storm track – best track + advisories, https://doi.org/10.4211/hs.aa5c9982a4694a19be2fa9299b78e5ca, 2018.
NOAA: National Oceanic and Atmospheric Administration, National Ocean Service, Office for Coastal Management, Digital Coast – Historical Hurricane Tracks, https://www.coast.noaa.gov/hurricanes/#map=4/32/-80 (last access: 20 May 2024), 2022a.
NOAA: National Oceanic and Atmospheric Administration, National Weather Service, Detailed meteorological summary on Hurricane Irma, technical summary, https://www.weather.gov/tae/Irma_technical_summary (last access: 20 May 2024), 2022b.
NOAA Fisheries: Restoring seven iconic reefs: a mission to recover the coral reefs of the Florida Keys, https://media.fisheries.noaa.gov/dam-migration/restoring_seven_iconic_reefs_-_a_mission_to_recover_the_coral_reefs_of_the_florida_keys.pdf (last access: 26 January 2023), 2022.
NOAA-NOS: National Oceanic and Atmospheric Administration – National Ocean Service, Tides and Currents Station 8723970, https://tidesandcurrents.noaa.gov/stationhome.html?id=8723970 (last access: 7 September 2023), 2023.
Norström, A. V., Nyström, M., Lokrantz, J., and Folke, C.: Alternative states of coral reefs: beyond coral–macroalgae shifts, Mar. Ecol. Prog. Ser., 376, 295–306, 2009.
Office for Coastal Management: 2016 NOAA NGS Topobathy Lidar DEM: Florida Keys Outer Reef Block 01, NOAA Office for Coastal Management [data set], https://www.fisheries.noaa.gov/inport/item/48373 (last access: 20 May 2024), 2017.
Orr, D. W. and Ogden, J. C.: The impact of Hurricane Andrew on the ecosystems of South Florida, Conserv. Biol., 6, 488–490, https://doi.org/10.1046/j.1523-1739.1992.06040488.x, 1992.
Patriquin, D. G.: “Migration” of blowouts in seagrass beds at Barbados and Carriacou, West Indies, and its ecological and geological implications, Aquat. Bot., 1, 163–189, https://doi.org/10.1016/0304-3770(75)90021-2, 1975.
Patterson, K. L., Porter, J. W., Ritchie, K. B., Poison, S. W., Mueller, E., Peters, E. C., Santavy, D. L., and Smith, G. W.: The etiology of white pox, a lethal disease of the Caribbean elkhorn coral, Acropora palmata, P. Natl. Acad. Sci. USA, 99, 8725–8730, https://doi.org/10.1073/pnas.092260099, 2002.
Perkins, R. D. and Enos, P.: Hurricane Betsy in the Florida-Bahama area: geologic effects and comparison with hurricane Donna, J. Geol., 76, 710–717, https://doi.org/10.1086/627394, 1968.
Porter, J. W., Dustan, P., Jaap, W. C., Patterson, K. L., Kosmynin, V., Meier, O. W., Patterson, M. E., and Parsons, M.: Patterns of spread of coral disease in the Florida Keys, Hydrobiologia, 460, 1–24, https://doi.org/10.1007/978-94-017-3284-0_1, 2001.
Randall, C. and van Woesik, R.: Contemporary white-band disease in Caribbean corals driven by climate change, Nat. Clim. Change 5, 375–379, https://doi.org/10.1038/nclimate2530, 2015.
Riazi, A., Vila-Concejo, A., Salles, T., and Türker, U.: Improved drag coefficient and settling velocity for carbonate sands, Sci. Rep., 10, 9465, https://doi.org/10.1038/s41598-020-65741-3, 2020.
Rice, M. M., Ezzat, L., and Burkepile, D. E.: Corallivory in the Anthropocene: interactive effects of anthropogenic stressors and corallivory on coral reefs, Front. Mar. Sci., 5, 525, https://doi.org/10.3389/fmars.2018.00525, 2019.
Rogers, C. S.: Responses of coral reefs and reef organisms to sedimentation, Mar. Ecol. Prog. Ser., 62, 185–202, https://doi.org/10.3354/meps062185, 1990.
Ruzicka, R. R., Colella, M. A., Porter, J. W., Morrison, J. M., Kidney, J. A., Brinkhuis, V., Lunz, K. S., Macaulay, K. A., Bartlett, L. A., Meyers, M. K., and Colee, J.: Temporal changes in benthic assemblages on Florida Keys reefs 11 years after the 1997/1998 El Niño, Mar. Ecol. Prog. Ser., 489, 125–141, https://doi.org/10.3354/meps10427, 2013.
Schmoker, J. W. and Halley, R. B.: Carbonate porosity versus depth: a predictable relation for South Florida, AAPG Bull., 66, 2561–2570, https://doi.org/10.1306/03B5AC73-16D1-11D7-8645000102C1865D, 1982.
Simmons, K. R., Bohnenstiehl, D. R., and Eggleston, D. B.: Spatiotemporal Variation in Coral Assemblages and Reef Habitat Complexity among Shallow Fore-Reef Sites in the Florida Keys National Marine Sanctuary, Diversity, 14, 153, https://doi.org/10.3390/d14030153, 2022.
Soto, I. M., Muller Karger, F. E., Hallock, P., and Hu, C.: Sea surface temperature variability in the Florida Keys and its relationship to coral cover, J. Mar. Biol., 2011, 981723, https://doi.org/10.1155/2011/981723, 2011.
Storlazzi, C. D., Reguero, B. G., Yates, K. K., Cumming, K. A., Cole, A. D., Shope, J. B., Gaido, L., C., Zawada, D. G., Arsenault, S. R., Fehr, Z. W., Nickel, B. A., and Beck, M. W.: Rigorously valuing the impact of projected coral reef degradation on coastal hazard risk in Florida, USGS Open-File Report, 2021-1055, 38 pp., https://doi.org/10.3133/ofr20211055, 2021.
Takesue, R. K., Sherman, C., Ramirez, N. I., Reyes, A. O., Cheriton, O. M., Rios, R. V., and Storlazzi, C. D.: Land-based sediment sources and transport to southwest Puerto Rico coral reefs after Hurricane Maria, May 2017 to June 2018, Estuar. Coast. Shelf S., 259, 1–12, https://doi.org/10.1016/j.ecss.2021.107476, 2021.
Tilmant, J. T., Curry, R. W., Jones, R. D., Szmant, A., Zieman, J. C., Flora, M., Robblee, M. B., Smith, D., Snow, R. W., and Wanless, H.: Hurricane Andrew's effect on marine resources, BioScience, 44, 230–237, https://doi.org/10.2307/1312227, 1994.
Tonina, D., McKean, J. A., Benjankar, R. M., Wright, C. W., Goode, J. R., Chen, Q., Reeder, W. J., Carmichael, R. A., and Edmondson, M. R.: Mapping river bathymetries: evaluating topobathymetric LiDAR survey, Earth Surf. Proc. Land., 44, 507–520, https://onlinelibrary.wiley.com/doi/10.1002/esp.4513, 2019.
Torres-Garcia, L. M., Dalyander, P. S., Long, J. W., Zawada, D. G., Yates, K. K., Moore, C., and Olabarrieta, M.: Hydrodynamics and sediment mobility processes over a degraded senile coral reef, J. Geophys. Res-Oceans., 123, 7053–7066, https://doi.org/10.1029/2018JC013892, 2018.
Towle, E., Geiger E., Grove, J., Groves, S., Viehman, S., Johnson, M., Blondeau, J., Stein, J., Gorstein, M., Borque, A., Acosta, A., Johnson, M., Feeley, M., Pagan, F., MacLaughlin, L., Lohr, K., Lustic, C., Bohnsack, K., Bohnsack, J., Manzello, D., Enochs, I., Koss, K., Edwards, K., Edwards, P., Bruckner, A., Thanner, S., Herbig, J., Montenero, K., Wusinich-Mendez, D., Gregg, K., Kelble, C., Moore, T., Rutten, L., Kramer, P., Quinn, P., Ault, E., Ault, J., Fangman, S., Fleming, C., Gilliam, D., Kilfoyle, K., Walker, B., and Lirman, D.: Coral reef condition: a status report for Florida's Coral Reef, NOAA Coral Reef Conservation Program and the University of Maryland Center for Environmental Science, https://www.coris.noaa.gov/monitoring/status_report/docs/FL_508_compliant.pdf (last access: 20 May 2024), 2020.
Viehman, S., Gittings, S., Groves, S., Moore, J., Moore, T., and Stein, J.: NCCOS Assessment: Coral Disturbance Response Monitoring (DRM) along the Florida Reef Tract Following Hurricane Irma from 2017-10-09 to 2017-10-18 (NCEI Accession 0179071), NOAA National Centers for Environmental Information [data set], https://doi.org/10.25921/sscd-6h41, 2018.
Walker, B.: Southeast Florida reef-wide Post-Irma coral disease surveys, Florida Department of Environmental Protection, 37 pp., https://floridadep.gov/sites/default/files/Southeast-Florida-Reef-Wide-Post-Irma-Coral-Disease-Surveys_0.pdf (last access: 20 May 2024), 2018.
Walter, L. M., Ku, T. C. W., Muehlenbachs, K., Patterson, W. P., and Bonnell, L.: Controls on the δ13C of dissolved inorganic carbon in marine pore waters: an integrated case study of isotope exchange during syndepositional recrystallization of biogenic carbonate sediments (South Florida Platform, USA), Deep-Sea Res. Pt. II, 54, 1163–1200, https://doi.org/10.1016/j.dsr2.2007.04.014, 2007.
Walton, C., Hayes, N. K., and Gilliam, D. S.: Impacts of a regional, multi-year, multi-species coral disease outbreak in southeast Florida, Front. Mar. Sci., 5, 323, https://doi.org/10.3389/fmars.2018.00323, 2018.
Warner, J. C., Armstrong, B., He, R., and Zambon, J. B.: Development of a Coupled Ocean-Atmsophere-Wave-Sediment Transport (COAWST) Modeling System, Ocean Model., 35, 230–244, https://doi.org/10.1016/j.ocemod.2010.07.010, 2010.
Williams, D. and Miller, M.: Attributing mortality among drivers of population decline in Acropora palmata in the Florida Keys (USA), Coral Reefs, 31, 369–382, https://doi.org/10.1007/s00338-011-0847-y, 2012.
Wilkinson, C. R.: Global change and coral reefs: impacts on reefs, economies and human culture, Glob. Change Biol., 2, 547–558, https://doi.org/10.1111/j.1365-2486.1996.tb00066.x, 1996.
Wilson, S. S., Furman, B. T., Hall, M. O., and Fourqurean, J. W.: Assessments of Hurricane Irma impacts on South Florida seagrass communities using long-term monitoring programs, Estuar. Coast., 43, 1119–1132, https://doi.org/10.1007/s12237-019-00623-0, 2020.
Xian, S., Feng, K., Lin, N., Marsooli, R., Chavas, D., Chen, J., and Hatzikyriakou, A.: Brief communication: Rapid assessment of damaged residential buildings in the Florida Keys after Hurricane Irma, Nat. Hazards Earth Syst. Sci., 18, 2041–2045, https://doi.org/10.5194/nhess-18-2041-2018, 2018.
Yates, K. K., Zawada, D. G., Smiley, N. A., and Tiling-Range, G.: Divergence of seafloor elevation and sea level rise in coral reef ecosystems, Biogeosciences, 14, 1739–1772, https://doi.org/10.5194/bg-14-1739-2017, 2017.
Yates, K. K., Zawada, D. G., and Arsenault, S. R.: Seafloor elevation change from 2016 to 2017 at Looe Key, Florida Keys–Impacts from Hurricane Irma (ver. 2.0, November 2020), U.S. Geological Survey data release, USGS [data set], https://doi.org/10.5066/P937LNZF, 2019a.
Yates, K. K., Zawada, D. G., Murphy, K. A., and Arsenault, S. R.: Seafloor elevation change from 2004 to 2016 at Looe Key, Florida Keys, U.S. Geological Survey data release, USGS [data set], https://doi.org/10.5066/P9JTOOMB, 2019b.
Yates, K. K., Arsenault, S. R., Fehr, Z. W., and Murphy, K. A.: Seafloor elevation change from the 1930s to 2016 along the Florida Reef Tract, USA, U. S. Geological Survey data release, USGS [data set], https://doi.org/10.5066/P9NXNX61, 2021.
Yoshida, K., Kajikawa, Y., Nishiyama, S., Islam, M. T., Adachi, S., and Sakai, K.: Three-dimensional numerical modelling of floods in river corridor with complex vegetation quantified using airborne LiDAR imagery, J. Hydraul. Res., 61, 88–108, https://doi.org/10.1080/00221686.2022.2106596, 2023.
Zieg, J. A. and Zawada, D. G.: Seafloor Elevation Change Analysis Tool, U. S. Geological Survey software release, USGS [code], https://doi.org/10.5066/P9D5UUZ0, 2021.
Zitello, A. G., Bauer, L. J., Battista, T. A., Mueller, P. W., Kendall, M. S., and Monaco, M. E.: Shallow-water benthic habitats of St. John, U.S. Virgin Islands, NOAA technical memorandum NOS NCCOS, Silver Spring, MD, 96, 53 pp., https://repository.library.noaa.gov/view/noaa/543 (last access: 20 May 2024), 2009.
Co-editor-in-chief
This paper, using pre-storm, immediate post-storm and recovery data, quantifies seafloor elevation and volume change within the Looe Key Reef system of the Florida Keys Reef Tract over a 2.5-year period from 2016–2019 and to examine impacts from category-4 Hurricane Irma and post-storm re-equilibration of seafloor sediments. The study highlights the need to data collected over seasonal and annual time periods to improve characterization and understanding of short-term (event-driven, seasonal, interannual) and long-term (decadal to multi-decadal) rates and processes of seafloor change and help guide benthic habitat post-storm recovery and restoration efforts in topographically complex coral reef systems.
This paper, using pre-storm, immediate post-storm and recovery data, quantifies seafloor...
Short summary
Global understanding of storm-driven sediment transport along coral reefs and its impact on species and habitats is limited. Measurement of seafloor elevation and volume change due to a category 4 hurricane showed rapid burial of coral reef habitats and migration of large seafloor features due to the storm. Post-storm erosion rates were 2 orders of magnitude greater than historical rates, indicating areas of seafloor instability that could be less suitable for restoration of benthic species.
Global understanding of storm-driven sediment transport along coral reefs and its impact on...