Articles | Volume 20, issue 6
https://doi.org/10.5194/os-20-1441-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-20-1441-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Upper-ocean changes with hurricane-strength wind events: a study using Argo profiles and an ocean reanalysis
Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO, USA
Donata Giglio
Department of Atmospheric and Oceanic Sciences, University of Colorado Boulder, Boulder, CO, USA
Addison Hu
Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
Mikael Kuusela
Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
Kimberly M. Wood
Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
Ann B. Lee
Department of Statistics and Data Science, Carnegie Mellon University, Pittsburgh, PA, USA
Related authors
No articles found.
Giovanni Seijo-Ellis, Donata Giglio, Gustavo Marques, and Frank Bryan
Geosci. Model Dev., 17, 8989–9021, https://doi.org/10.5194/gmd-17-8989-2024, https://doi.org/10.5194/gmd-17-8989-2024, 2024
Short summary
Short summary
A CESM–MOM6 regional configuration of the Caribbean Sea was developed in response to the rising need for high-resolution models for climate impact studies. The configuration is validated for the period 2000–2020 and improves significant errors in a low-resolution model. Oceanic properties are well represented. Patterns of freshwater associated with the Amazon River are well captured, and the mean flows of ocean waters across multiple passages in the Caribbean Sea agree with observations.
Michael Stanley, Mikael Kuusela, Brendan Byrne, and Junjie Liu
Atmos. Chem. Phys., 24, 9419–9433, https://doi.org/10.5194/acp-24-9419-2024, https://doi.org/10.5194/acp-24-9419-2024, 2024
Short summary
Short summary
To serve the uncertainty quantification (UQ) needs of 4D-Var data assimilation (DA) practitioners, we describe and justify a UQ algorithm from carbon flux inversion and incorporate its sampling uncertainty into the final reported UQ. The algorithm is mathematically proved, and its performance is shown for a carbon flux observing system simulation experiment. These results legitimize and generalize this algorithm's current use and make available this effective algorithm to new DA domains.
Addison J. Hu, Mikael Kuusela, Ann B. Lee, Donata Giglio, and Kimberly M. Wood
Adv. Stat. Clim. Meteorol. Oceanogr., 10, 69–93, https://doi.org/10.5194/ascmo-10-69-2024, https://doi.org/10.5194/ascmo-10-69-2024, 2024
Short summary
Short summary
We introduce a new statistical framework to estimate the change in subsurface ocean temperature following the passage of a tropical cyclone (TC). Our approach combines tools handling seasonal variations and spatial dependence in the data, culminating in a three-dimensional characterization of the interaction between TCs and the ocean. Our work allows us to obtain new scientific insights, and we expect it to be generally applicable to studying the impact of TCs on other ocean phenomena.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Related subject area
Approach: In situ Observations | Properties and processes: Interactions with the atmosphere or cryosphere
Hydrography and circulation below Fimbulisen Ice Shelf, East Antarctica, from 14 years of moored observations
Subsurface floats in the Filchner Trough provide the first direct under-ice tracks of the circulation on shelf
Turbulent heat flux dynamics along the Dotson and Getz ice-shelf fronts (Amundsen Sea, Antarctica)
Impact of Extratropical Cyclones on Coastal Circulation in a Semi-Enclosed Bay within the Humboldt Current System
On the short-term response of entrained air bubbles in the upper ocean: a case study in the north Adriatic Sea
Julius Lauber, Tore Hattermann, Laura de Steur, Elin Darelius, and Agneta Fransson
Ocean Sci., 20, 1585–1610, https://doi.org/10.5194/os-20-1585-2024, https://doi.org/10.5194/os-20-1585-2024, 2024
Short summary
Short summary
Recent studies have highlighted the potential vulnerability of the East Antarctic Ice Sheet to atmospheric and oceanic changes. We present new insights from observations from three oceanic moorings below Fimbulisen Ice Shelf from 2009 to 2023. We find that relatively warm water masses reach below the ice shelf both close to the surface and at depth with implications for the basal melting of Fimbulisen.
Jean-Baptiste Sallée, Lucie Vignes, Audrey Minière, Nadine Steiger, Etienne Pauthenet, Antonio Lourenco, Kevin Speer, Peter Lazarevich, and Keith W. Nicholls
Ocean Sci., 20, 1267–1280, https://doi.org/10.5194/os-20-1267-2024, https://doi.org/10.5194/os-20-1267-2024, 2024
Short summary
Short summary
In the Weddell Sea, we investigated how warm deep currents and cold waters containing freshwater released from the Antarctic are connected. We used autonomous observation devices that have never been used in this region previously and that allow us to track the movement and characteristics of water masses under the sea ice. Our findings show a dynamic interaction between warm masses, providing key insights to understand climate-related changes in the region.
Blandine Jacob, Bastien Y. Queste, and Marcel D. du Plessis
EGUsphere, https://doi.org/10.5194/egusphere-2024-2076, https://doi.org/10.5194/egusphere-2024-2076, 2024
Short summary
Short summary
Few observations exist in the Amundsen Sea. Consequently, studies rely on models (e.g. ERA5) to investigate how the atmosphere affects ocean variability (e.g. sea-ice formation). We use data collected along ice shelves to show that cold, dry air blowing from Antarctica triggers large ocean heat loss which is underestimated by ERA5. We then use an ocean model to show that this bias has an important impact on the ocean with implications for ice formation forecasts.
Josse Contreras-Rojas, Piero Mardones, and Marcus Sobarzo
EGUsphere, https://doi.org/10.5194/egusphere-2024-1822, https://doi.org/10.5194/egusphere-2024-1822, 2024
Short summary
Short summary
Our study explores how a semi-enclosed bay in the Humboldt Current System, responds to the passage of extratropical cyclones. Using ERA5 data and ADCP observations, we found that intense north winds associated with these cyclones drive surface water into the gulf, creating pressure gradients that alter coastal currents and might reduce residence times. Our findings enhance our understanding of wind-driven coastal dynamics, impacting marine ecosystems and coastal management globally.
Alvise Benetazzo, Trygve Halsne, Øyvind Breivik, Kjersti Opstad Strand, Adrian H. Callaghan, Francesco Barbariol, Silvio Davison, Filippo Bergamasco, Cristobal Molina, and Mauro Bastianini
Ocean Sci., 20, 639–660, https://doi.org/10.5194/os-20-639-2024, https://doi.org/10.5194/os-20-639-2024, 2024
Short summary
Short summary
We investigated the behaviour of air bubble plumes in the upper ocean in various stormy conditions. We conducted a field experiment in the North Adriatic Sea using high-resolution sonar. We found that bubble penetration depths respond rapidly to wind and wave forcings and can be triggered by the cooling of the water masses. We also found a strong connection between bubble depths and theoretical CO2 gas transfer. Our findings have implications for air–sea interaction studies.
Cited articles
Anthes, R. A. and Chang, S. W.: Response of the hurricane boundary layer to changes of sea surface temperature in a numerical model, J. Atmos. Sci., 35, 1240–1255, https://doi.org/10.1175/1520-0469(1978)035<1240:ROTHBL>2.0.CO;2, 1978. a
Argo: Argo float data and metadata from global data assembly centre (Argo GDAC), Seanoe [data set], https://doi.org/10.17882/42182, 2000. a, b, c
Balaguru, K., Foltz, G. R., Leung, L. R., and Emanuel, K. A.: Global warming-induced upper-ocean freshening and the intensification of super typhoons, Nat. Commun., 7, 1–8, 2016. a
Balaguru, K., Foltz, G. R., and Leung, L. R.: Increasing magnitude of hurricane rapid intensification in the central and eastern tropical Atlantic, Geophys. Res. Lett., 45, 4238–4247, 2018. a
Balaguru, K., Foltz, G. R., Leung, L. R., Kaplan, J., Xu, W., Reul, N., and Chapron, B.: Pronounced impact of salinity on rapidly intensifying tropical cyclones, B. Am. Meteorol. Soc., 101, E1497–E1511, 2020. a
Bender, M. A. and Ginis, I.: Real-case simulations of hurricane–ocean interaction using a high-resolution coupled model: Effects on hurricane intensity, Mon. Weather Rev., 128, 917–946, 2000. a
Bhatia, K. T., Vecchi, G. A., Knutson, T. R., Murakami, H., Kossin, J., Dixon, K. W., and Whitlock, C. E.: Recent increases in tropical cyclone intensification rates, Nat. Commun., 10, 635, https://doi.org/10.1038/s41467-019-08471-z, 2019. a
Bittig, H. C., Maurer, T. L., Plant, J. N., Schmechtig, C., Wong, A. P. S., Claustre, H., Trull, T. W., Udaya Bhaskar, T. V. S., Boss, E., Dall’Olmo, G., Organelli, E., Poteau, A., Johnson, K. S., Hanstein, C., Leymarie, E., Le Reste, S., Riser, S. C., Rupan, A. R., Taillandier, V., Thierry, V., and Xing, X.: A BGC-Argo guide: Planning, deployment, data handling and usage, Frontiers in Marine Science, 6, 502, https://doi.org/10.3389/fmars.2019.00502, 2019. a
Black, W. J. and Dickey, T. D.: Observations and analyses of upper ocean responses to tropical storms and hurricanes in the vicinity of Bermuda, J. Geophys. Res.-Oceans, 113, C08009, https://doi.org/10.1029/2007JC004358, 2008. a
Bleck, R.: An oceanic general circulation model framed in hybrid isopycnic-Cartesian coordinates, Ocean Model., 4, 55–88, 2002. a
Bond, N. A., Cronin, M. F., Sabine, C., Kawai, Y., Ichikawa, H., Freitag, P., and Ronnholm, K.: Upper ocean response to Typhoon Choi-Wan as measured by the Kuroshio Extension Observatory mooring, J. Geophys. Res.-Oceans, 116, C02031, https://doi.org/10.1029/2010JC006548, 2011. a, b
Bulusu, S., Murty, V. S. N., Sharp, R. J., and O'Brien, J. J.: Air-sea coupling during the tropical cyclones in the Indian Ocean: A case study using satellite observations, Pure Appl. Geophys., 162, 1643–1672, 2005. a
Cardona, Y. and Bracco, A.: Enhanced vertical mixing within mesoscale eddies due to high frequency winds in the South China Sea, Ocean Model., 42, 1–15, 2012. a
Chan, J. C.: The physics of tropical cyclone motion, Annu. Rev. Fluid Mech., 37, 99–128, 2005. a
Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R., Hogan, P. J., Wallcraft, A. J., Baraille, R., and Bleck, R.: The HYCOM (hybrid coordinate ocean model) data assimilative system, J. Marine Syst., 65, 60–83, 2007. a
Cheng, L., Zhu, J., and Sriver, R. L.: Global representation of tropical cyclone-induced short-term ocean thermal changes using Argo data, Ocean Sci., 11, 719–741, https://doi.org/10.5194/os-11-719-2015, 2015. a, b, c
Cione, J. J. and Uhlhorn, E. W.: Sea surface temperature variability in hurricanes: Implications with respect to intensity change, Mon. Weather Rev., 131, 1783–1796, 2003. a
Cione, J. J., Kalina, E. A., Zhang, J. A., and Uhlhorn, E. W.: Observations of air–sea interaction and intensity change in hurricanes, Mon. Weather Rev., 141, 2368–2382, 2013. a
Cronin, M. F. and McPhaden, M. J.: Barrier layer formation during westerly wind bursts, J. Geophys. Res.-Oceans, 107, SRF 21-1–SRF 21-12, https://doi.org/10.1029/2001JC001171, 2002. a
Cui, H., Tang, D., Mei, W., Liu, H., Sui, Y., and Gu, X.: Predicting Tropical Cyclone-Induced Sea Surface Temperature Responses Using Machine Learning, Geophys. Res. Lett., 50, e2023GL104171, https://doi.org/10.1029/2023GL104171, 2023. a
Duchon, J.: Splines minimizing rotation-invariant semi-norms in Sobolev spaces, in: Constructive Theory of Functions of Several Variables: Proceedings of a Conference, Oberwolfach, 25 April–1 May 1976, Springer, 85–100, https://doi.org/10.1007/BFb0086566, 1977. a
Elsberry, R. L., Fraim, T. S., and Trapnell Jr., R. N.: A mixed layer model of the oceanic thermal response to hurricanes, J. Geophys. Res., 81, 1153–1162, 1976. a
Emanuel, K. A.: Thermodynamic control of hurricane intensity, Nature, 401, 665–669, 1999. a
Emanuel, K. A.: Tropical cyclones, Annu. Rev. Earth Pl. Sc., 31, 75–104, 2003. a
Emanuel, K. A. and Nolan, D. S.: Tropical cyclone activity and the global climate system, Vol. 10, in: Preprints, 240–241, 26th Conf. on Hurricanes and Tropical Meteorology, Miami, FL, Am. Meteor. Soc. A, https://ams.confex.com/ams/pdfpapers/75463.pdf (last access: 18 October 2024), 2004. a
Fisher, E. L.: Hurricanes and the sea-surface temperature field, J. Atmos. Sci., 15, 328–333, 1958. a
Gierach, M. M., Subrahmanyam, B., and Thoppil, P. G.: Physical and biological responses to Hurricane Katrina (2005) in a nested Gulf of Mexico HYCOM, J. Marine Syst., 78, 168–179, 2009. a
Giglio, D. and Mills, B. K.-A.: Argovis Demo Notebooks, GitHub [data set], https://github.com/argovis/demo_notebooks, last access: 18 October 2024. a
Godfrey, J. S. and Lindstrom, E. J.: The heat budget of the equatorial western Pacific surface mixed layer, J. Geophys. Res.-Oceans, 94, 8007–8017, https://doi.org/10.1029/JC094iC06p08007, 1989. a
Green, P. J. and Silverman, B. W.: Nonparametric regression and generalized linear models: a roughness penalty approach, CRC Press, https://doi.org/10.1201/b15710, 1993. a
Greening, H., Doering, P., and Corbett, C.: Hurricane Impacts on Coastal Ecosystems, Estuar. Coast., 29, 877–879, 2006. a
Grodsky, S. A., Reul, N., Lagerloef, G., Reverdin, G., Carton, J. A., Chapron, B., Quilfen, Y., Kudryavtsev, V. N., and Kao, H.-Y.: Haline hurricane wake in the Amazon/Orinoco plume: AQUARIUS/SACD and SMOS observations, Geophys. Res. Lett., 39, 20, https://doi.org/10.1029/2012GL053335, 2012. a, b
Han, C.: Tropical Cyclone Induced Upper Ocean Response in the South Pacific observed by Argo floats, PhD thesis, ResearchSpace@ Auckland, https://hdl.handle.net/2292/64867 (last access: 18 October 2024), 2023. a
Han, C., Bowen, M., and Sutton, P.: The response of the upper ocean to tropical cyclones in the South Pacific, J. Geophys. Res.-Oceans, 129, e2023JC020627, https://doi.org/10.1029/2023JC020627, 2024. a, b
Hoffman, L., Mazloff, M. R., Gille, S. T., Giglio, D., and Varadarajan, A.: Ocean Surface Salinity Response to Atmospheric River Precipitation in the California Current System, J. Phys. Oceanogr., 52, 1867–1885, https://doi.org/10.1175/JPO-D-21-0272.1, 2022. a
Holyer, J. Y., Jones, T., Priestley, M., and Williams, N.: The effect of vertical temperature and salinity gradients on double-diffusive interleaving, Deep-Sea Res., 34, 517–530, 1987. a
HYCOM: GOFS 3.1: 41-layer HYCOM + NCODA Global 1/12° Reanalysis, HYCOM [data set], https://www.hycom.org/data/glbv0pt08/expt-53ptx, last access: 17 March 2024. a
HYCOM Consortium: Global Ocean Forecasting System (GOFS) 3.1 output on the GLBv0.08 grid, https://www.hycom.org/dataserver/gofs-3pt1/reanalysis (last access: 17 March 2024), 2019. a
IPCC: Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Pörtner, H.-O., Roberts, D. C., Tignor, M., Poloczanska, E. S., Mintenbeck, K. Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., Okem, A., and Rama, B., Cambridge University Press, Cambridge University Press, Cambridge, UK and New York, NY, USA, 3056 pp., https://doi.org/10.1017/9781009325844, 2022. a
Iyer, S. and Drushka, K.: The influence of preexisting stratification and tropical rain modes on the mixed layer salinity response to rainfall, J. Geophys. Res.-Oceans, 126, e2021JC017574, https://doi.org/10.1029/2021JC017574, 2021. a
Jourdain, N. C., Lengaigne, M., Vialard, J., Madec, G., Menkès, C. E., Vincent, E. M., Jullien, S., and Barnier, B.: Observation-based estimates of surface cooling inhibition by heavy rainfall under tropical cyclones, J. Phys. Oceanogr., 43, 205–221, 2013. a
Karnauskas, K. B., Zhang, L., and Emanuel, K. A.: The feedback of cold wakes on tropical cyclones, Geophys. Res. Lett., 48, e2020GL091676, https://doi.org/10.1029/2020GL091676, 2021. a, b
Kishtawal, C., Jaiswal, N., Singh, R., and Niyogi, D.: Tropical cyclone intensification trends during satellite era (1986–2010), Geophys. Res. Lett., 39, 10, https://doi.org/10.1029/2012GL051700, 2012. a
Klotzbach, P. J., Bowen, S. G., Pielke, R., and Bell, M.: Continental US hurricane landfall frequency and associated damage: Observations and future risks, B. Am. Meteorol. Soc., 99, 1359–1376, 2018. a
Klotzbach, P. J., Wood, K. M., Schreck III, C. J., Bowen, S. G., Patricola, C. M., and Bell, M. M.: Trends in global tropical cyclone activity: 1990–2021, Geophys. Res. Lett., 49, e2021GL095774, https://doi.org/10.1029/2021GL095774, 2022. a
Korty, R. L., Emanuel, K. A., and Scott, J. R.: Tropical cyclone–induced upper-ocean mixing and climate: Application to equable climates, J. Climate, 21, 638–654, 2008. a
Kuang, C., Lee, J. H., Harrison, P. J., and Yin, K.: Effect of wind speed and direction on summer tidal circulation and vertical mixing in Hong Kong waters, J. Coastal Res., 27, 74–86, 2011. a
Kuusela, M. and Stein, M. L.: Locally stationary spatio-temporal interpolation of Argo profiling float data, P. Roy. Soc. A-Math. Phy., 474, 20180400, https://doi.org/10.1098/rspa.2018.0400, 2018. a
Large, W. G., McWilliams, J. C., and Doney, S. C.: Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization, Rev. Geophys., 32, 363–403, 1994. a
Leipper, D. F.: Observed ocean conditions and Hurricane Hilda, 1964, J. Atmos. Sci., 24, 182–186, 1967. a
Lin, I.-I., Wu, C.-C., Emanuel, K. A., Lee, I.-H., Wu, C.-R., and Pun, I.-F.: The interaction of Supertyphoon Maemi (2003) with a warm ocean eddy, Mon. Weather Rev., 133, 2635–2649, 2005. a
Liu, F., Zhang, H., Ming, J., Zheng, J., Tian, D., and Chen, D.: Importance of precipitation on the upper ocean salinity response to typhoon kalmaegi (2014), Water, 12, 614, https://doi.org/10.3390/w12020614, 2020. a, b
Lloyd, I. D. and Vecchi, G. A.: Observational evidence for oceanic controls on hurricane intensity, J. Climate, 24, 1138–1153, 2011. a
McPhaden, M. J., Foltz, G. R., Lee, T., Murty, V., Ravichandran, M., Vecchi, G. A., Vialard, J., Wiggert, J. D., and Yu, L.: Ocean-atmosphere interactions during cyclone nargis, EOS T. Am. Geophys. Un., 90, 53–54, 2009. a
Mendelsohn, R., Emanuel, K. A., Chonabayashi, S., and Bakkensen, L.: The impact of climate change on global tropical cyclone damage, Nat. Clim. Change, 2, 205–209, 2012. a
Meng, Q., Li, P., Zhai, F., and Gu, Y.: The vertical mixing induced by winds and tides over the Yellow Sea in summer: a numerical study in 2012, Ocean Dynam., 70, 847–861, 2020. a
Neetu, S., Lengaigne, M., Vincent, E. M., Vialard, J., Madec, G., Samson, G., Ramesh Kumar, M., and Durand, F.: Influence of upper-ocean stratification on tropical cyclone-induced surface cooling in the Bay of Bengal, J. Geophys. Res.-Oceans, 117, C12020, https://doi.org/10.1029/2012JC008433, 2012. a
Nychka, D. W.: Spatial-process estimates as smoothers, in: Smoothing and regression: approaches, computation, and application, edited by: Schimek, M. G., Wiley, https://doi.org/10.1002/9781118150658.ch13, 2000. a
Orr, D. W. and Ogden, J. C.: The impact of Hurricane Andrew on the ecosystems of South Florida, Conserv. Biol., 6, 488–490, 1992. a
Prasad, T. and Hogan, P. J.: Upper-ocean response to Hurricane Ivan in a 1/25 nested Gulf of Mexico HYCOM, J. Geophys. Res.-Oceans, 112, C04013, https://doi.org/10.1029/2006JC003695, 2007. a, b, c
Reul, N., Fournier, S., Boutin, J., Hernandez, O., Maes, C., Chapron, B., Alory, G., Quilfen, Y., Tenerelli, J., Morisset, S., Kerr, Y., Mecklenburg, S., and Delwart, S.: Sea surface salinity observations from space with the SMOS satellite: A new means to monitor the marine branch of the water cycle, Surv. Geophys., 35, 681–722, 2014a. a
Roemmich, D. H. and Gilson, J.: The 2004–2008 mean and annual cycle of temperature, salinity, and steric height in the global ocean from the Argo Program, Prog. Oceanogr., 82, 81–100, 2009. a
Roemmich, D. H., Davis, R. E., Riser, S. C., Owens, W. B., Molinari, R. L., Garzoli, S. L., and Johnson, G. C.: The Argo project. Global ocean observations for understanding and prediction of climate variability, Tech. rep., Scripps Institution Of Oceanography La Jolla Ca, https://apps.dtic.mil/sti/pdfs/ADA496094.pdf (last access: 18 October 2024), 2003. a, b
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y.-T., Chuang, H.-y., Iredell, M., Ek, M., Meng, J., Yang, R., Peña Mendez, M., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: The NCEP climate forecast system version 2, J. Climate, 27, 2185–2208, 2014. a
Samson, G., Masson, S., Lengaigne, M., Keerthi, M. G., Vialard, J., Pous, S., Madec, G., Jourdain, N. C., Jullien, S., Menkes, C., and Marchesiello, P.: The NOW regional coupled model: Application to the tropical Indian Ocean climate and tropical cyclone activity, J. Adv. Model. Earth Sy., 6, 700–722, 2014. a
Schade, L. R. and Emanuel, K. A.: The ocean's effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere–ocean model, J. Atmos. Sci., 56, 642–651, 1999. a
Shay, L. K., Goni, G. J., and Black, P. G.: Effects of a warm oceanic feature on Hurricane Opal, Mon. Weather Rev., 128, 1366–1383, 2000. a
Shen, W. and Ginis, I.: Effects of surface heat flux-induced sea surface temperature changes on tropical cyclone intensity, Geophys. Res. Lett., 30, 1933, https://doi.org/10.1029/2003GL017878, 2003. a
Sun, J., Vecchi, G., and Soden, B.: Sea surface salinity response to tropical cyclones based on satellite observations, Remote Sens.-Basel, 13, 420, https://doi.org/10.3390/rs13030420, 2021. a, b
Tucker, T., Giglio, D., Scanderbeg, M., and Shen, S. S. P.: Argovis: A Web Application for Fast Delivery, Visualization, and Analysis of Argo Data, J. Atmos. Ocean. Tech., 37, 401–416, https://doi.org/10.1175/JTECH-D-19-0041.1, 2020 (data available at: https://argovis.colorado.edu, last access: 23 August 2024). a
Venkatesan, R., Mathew, S., Vimala, J., Latha, G., Muthiah, M. A., Ramasundaram, S., Sundar, R., Lavanya, R., and Atmanand, M. A.: Signatures of very severe cyclonic storm Phailin in met–ocean parameters observed by moored buoy network in the Bay of Bengal, Curr. Sci. India, 107, 589–595, 2014. a, b
Vinayachandran, P. N. and Mathew, S.: Phytoplankton bloom in the Bay of Bengal during the northeast monsoon and its intensification by cyclones, Geophys. Res. Lett., 30, 1572, https://doi.org/10.1029/2002GL016717, 2003. a, b
Vincent, E. M., Emanuel, K. A., Lengaigne, M., Vialard, J., and Madec, G.: Influence of upper ocean stratification interannual variability on tropical cyclones, J. Adv. Model. Earth Sy., 6, 680–699, 2014. a
Wahba, G.: Spline bases, regularization, and generalized cross validation for solving approximation problems with large quantities of noisy data, University of Wisconsin, https://pages.stat.wisc.edu/~wahba/TRarchive/TRsEARLY2/tr597_1.pdf (last access: 18 October 2024), 1980. a
Wahba, G.: Spline models for observational data, SIAM, https://epubs.siam.org/doi/10.1137/1.9781611970128 (last access: 18 October 2024), 1990. a
Wang, G., Wu, L., Johnson, N. C., and Ling, Z.: Observed three-dimensional structure of ocean cooling induced by Pacific tropical cyclones, Geophys. Res. Lett., 43, 7632–7638, 2016. a
Wang, X., Han, G., Qi, Y., and Li, W.: Impact of barrier layer on typhoon-induced sea surface cooling, Dynam. Atmos. Oceans, 52, 367–385, https://doi.org/10.1016/j.dynatmoce.2011.05.002, 2011. a, b
Webb, D. and Suginohara, N.: Vertical mixing in the ocean, Nature, 409, 37–37, 2001. a
Wood, S. N.: Generalized additive models: an introduction with R, CRC Press, https://doi.org/10.1201/9781315370279, 2017. a
Zamudio, L. and Hogan, P. J.: Nesting the Gulf of Mexico in Atlantic HYCOM: oceanographic processes generated by Hurricane Ivan, Ocean Model., 21, 106–125, 2008. a
Zhang, Z., Ma, Z., Fei, J., Zheng, Y., and Huang, J.: The effects of tropical cyclones on characteristics of barrier layer thickness, Front. Earth Sci., 10, 1287, https://doi.org/10.3389/feart.2022.962232, 2022. a
Zhu, T. and Zhang, D.-L.: The impact of the storm-induced SST cooling on hurricane intensity, Adv. Atmos. Sci., 23, 14–22, 2006. a
Short summary
As Earth’s climate warms, cyclone intensity and rain may increase. Cyclones, like hurricanes, gain strength from warm ocean waters. Understanding how oceans react to strong winds is vital. We highlight ocean responses to pre-storm salinity. Changes in salinity affect oceans during storms: salinity rises, temperature falls, and density increases. We suggest that mixing of near-surface with deeper water may impact heat exchange between the ocean and atmosphere during and after a weather event.
As Earth’s climate warms, cyclone intensity and rain may increase. Cyclones, like hurricanes,...