Articles | Volume 19, issue 2
https://doi.org/10.5194/os-19-403-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-403-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The sensitivity of primary productivity in Disko Bay, a coastal Arctic ecosystem, to changes in freshwater discharge and sea ice cover
Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
Asbjørn Christensen
DTU Aqua, Technical University of Denmark, 2800 Kgs. Lyngby,
Denmark
Janus Larsen
Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
Kenneth D. Mankoff
Department of Glaciology and Climate, Geological Survey of Denmark and
Greenland, 1350 Copenhagen, Denmark
Autonomic Integra LLC, New York, NY, 10025 USA
NASA Goddard Institute for Space Studies, New York, NY 10025, USA
Mads Hvid Ribergaard
Danish Meteorological Institute, 2100 Copenhagen, Denmark
Mikael Sejr
Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
Philip Wallhead
Section for Oceanography, Norwegian Institute for Water Research (NIVA
Vest), Bergen, Norway
Marie Maar
Department of Ecoscience, Aarhus University, 4000 Roskilde, Denmark
Related authors
No articles found.
Esdoorn Willcox, Marcos Lemes, Thomas Juul-Pedersen, Mikael Kristian Sejr, Johnna Marchiano Holding, and Søren Rysgaard
Biogeosciences, 21, 4037–4050, https://doi.org/10.5194/bg-21-4037-2024, https://doi.org/10.5194/bg-21-4037-2024, 2024
Short summary
Short summary
In this work, we measured the chemistry of seawater from samples obtained from different depths and locations off the east coast of the Northeast Greenland National Park to determine what is influencing concentrations of dissolved CO2. Historically, the region has always been thought to take up CO2 from the atmosphere, but we show that it is possible for the region to become a source in late summer. We discuss the variables that may be related to such changes.
Till Andreas Soya Rasmussen, Jacob Poulsen, Mads Hvid Ribergaard, Ruchira Sasanka, Anthony P. Craig, Elizabeth C. Hunke, and Stefan Rethmeier
Geosci. Model Dev., 17, 6529–6544, https://doi.org/10.5194/gmd-17-6529-2024, https://doi.org/10.5194/gmd-17-6529-2024, 2024
Short summary
Short summary
Earth system models (ESMs) today strive for better quality based on improved resolutions and improved physics. A limiting factor is the supercomputers at hand and how best to utilize them. This study focuses on the refactorization of one part of a sea ice model (CICE), namely the dynamics. It shows that the performance can be significantly improved, which means that one can either run the same simulations much cheaper or advance the system according to what is needed.
Anja Løkkegaard, Kenneth D. Mankoff, Christian Zdanowicz, Gary D. Clow, Martin P. Lüthi, Samuel H. Doyle, Henrik H. Thomsen, David Fisher, Joel Harper, Andy Aschwanden, Bo M. Vinther, Dorthe Dahl-Jensen, Harry Zekollari, Toby Meierbachtol, Ian McDowell, Neil Humphrey, Anne Solgaard, Nanna B. Karlsson, Shfaqat A. Khan, Benjamin Hills, Robert Law, Bryn Hubbard, Poul Christoffersen, Mylène Jacquemart, Julien Seguinot, Robert S. Fausto, and William T. Colgan
The Cryosphere, 17, 3829–3845, https://doi.org/10.5194/tc-17-3829-2023, https://doi.org/10.5194/tc-17-3829-2023, 2023
Short summary
Short summary
This study presents a database compiling 95 ice temperature profiles from the Greenland ice sheet and peripheral ice caps. Ice viscosity and hence ice flow are highly sensitive to ice temperature. To highlight the value of the database in evaluating ice flow simulations, profiles from the Greenland ice sheet are compared to a modeled temperature field. Reoccurring discrepancies between modeled and observed temperatures provide insight on the difficulties faced when simulating ice temperatures.
William Colgan, Christopher Shields, Pavel Talalay, Xiaopeng Fan, Austin P. Lines, Joshua Elliott, Harihar Rajaram, Kenneth Mankoff, Morten Jensen, Mira Backes, Yunchen Liu, Xianzhe Wei, Nanna B. Karlsson, Henrik Spanggård, and Allan Ø. Pedersen
Geosci. Instrum. Method. Data Syst., 12, 121–140, https://doi.org/10.5194/gi-12-121-2023, https://doi.org/10.5194/gi-12-121-2023, 2023
Short summary
Short summary
We describe a new drill for glaciers and ice sheets. Instead of drilling down into the ice, via mechanical action, our drill melts into the ice. Our goal is simply to pull a cable of temperature sensors on a one-way trip down to the ice–bed interface. Here, we describe the design and testing of our drill. Under laboratory conditions, our melt-tip drill has an efficiency of ∼ 35 % with a theoretical maximum penetration rate of ∼ 12 m h−1. Under field conditions, our efficiency is just ∼ 15 %.
Mai Winstrup, Heidi Ranndal, Signe Hillerup Larsen, Sebastian Bjerregaard Simonsen, Kenneth David Mankoff, Robert Schjøtt Fausto, and Louise Sandberg Sørensen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2023-224, https://doi.org/10.5194/essd-2023-224, 2023
Revised manuscript accepted for ESSD
Short summary
Short summary
Surface topography across the marginal zone of the Greenland Ice Sheet is constantly evolving. We here present four 500-meter resolution annual (2019–2022) summer DEMs (PRODEMs) of the Greenland ice sheet marginal zone, capturing all outlet glaciers of the ice sheet. The PRODEMs are based on fusion of CryoSat-2 radar altimetry and ICESat-2 laser altimetry. With their high spatial and temporal resolution, the PRODEMs will enable detailed studies of the changes in marginal ice sheet elevations.
Mimmi Oksman, Anna Bang Kvorning, Signe Hillerup Larsen, Kristian Kjellerup Kjeldsen, Kenneth David Mankoff, William Colgan, Thorbjørn Joest Andersen, Niels Nørgaard-Pedersen, Marit-Solveig Seidenkrantz, Naja Mikkelsen, and Sofia Ribeiro
The Cryosphere, 16, 2471–2491, https://doi.org/10.5194/tc-16-2471-2022, https://doi.org/10.5194/tc-16-2471-2022, 2022
Short summary
Short summary
One of the questions facing the cryosphere community today is how increasing runoff from the Greenland Ice Sheet impacts marine ecosystems. To address this, long-term data are essential. Here, we present multi-site records of fjord productivity for SW Greenland back to the 19th century. We show a link between historical freshwater runoff and productivity, which is strongest in the inner fjord – influenced by marine-terminating glaciers – where productivity has increased since the late 1990s.
William Colgan, Agnes Wansing, Kenneth Mankoff, Mareen Lösing, John Hopper, Keith Louden, Jörg Ebbing, Flemming G. Christiansen, Thomas Ingeman-Nielsen, Lillemor Claesson Liljedahl, Joseph A. MacGregor, Árni Hjartarson, Stefan Bernstein, Nanna B. Karlsson, Sven Fuchs, Juha Hartikainen, Johan Liakka, Robert S. Fausto, Dorthe Dahl-Jensen, Anders Bjørk, Jens-Ove Naslund, Finn Mørk, Yasmina Martos, Niels Balling, Thomas Funck, Kristian K. Kjeldsen, Dorthe Petersen, Ulrik Gregersen, Gregers Dam, Tove Nielsen, Shfaqat A. Khan, and Anja Løkkegaard
Earth Syst. Sci. Data, 14, 2209–2238, https://doi.org/10.5194/essd-14-2209-2022, https://doi.org/10.5194/essd-14-2209-2022, 2022
Short summary
Short summary
We assemble all available geothermal heat flow measurements collected in and around Greenland into a new database. We use this database of point measurements, in combination with other geophysical datasets, to model geothermal heat flow in and around Greenland. Our geothermal heat flow model is generally cooler than previous models of Greenland, especially in southern Greenland. It does not suggest any high geothermal heat flows resulting from Icelandic plume activity over 50 million years ago.
Kenneth D. Mankoff, Xavier Fettweis, Peter L. Langen, Martin Stendel, Kristian K. Kjeldsen, Nanna B. Karlsson, Brice Noël, Michiel R. van den Broeke, Anne Solgaard, William Colgan, Jason E. Box, Sebastian B. Simonsen, Michalea D. King, Andreas P. Ahlstrøm, Signe Bech Andersen, and Robert S. Fausto
Earth Syst. Sci. Data, 13, 5001–5025, https://doi.org/10.5194/essd-13-5001-2021, https://doi.org/10.5194/essd-13-5001-2021, 2021
Short summary
Short summary
We estimate the daily mass balance and its components (surface, marine, and basal mass balance) for the Greenland ice sheet. Our time series begins in 1840 and has annual resolution through 1985 and then daily from 1986 through next week. Results are operational (updated daily) and provided for the entire ice sheet or by commonly used regions or sectors. This is the first input–output mass balance estimate to include the basal mass balance.
Robert S. Fausto, Dirk van As, Kenneth D. Mankoff, Baptiste Vandecrux, Michele Citterio, Andreas P. Ahlstrøm, Signe B. Andersen, William Colgan, Nanna B. Karlsson, Kristian K. Kjeldsen, Niels J. Korsgaard, Signe H. Larsen, Søren Nielsen, Allan Ø. Pedersen, Christopher L. Shields, Anne M. Solgaard, and Jason E. Box
Earth Syst. Sci. Data, 13, 3819–3845, https://doi.org/10.5194/essd-13-3819-2021, https://doi.org/10.5194/essd-13-3819-2021, 2021
Short summary
Short summary
The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) has been measuring climate and ice sheet properties since 2007. Here, we present our data product from weather and ice sheet measurements from a network of automatic weather stations mainly located in the melt area of the ice sheet. Currently the PROMICE automatic weather station network includes 25 instrumented sites in Greenland.
Anne Solgaard, Anders Kusk, John Peter Merryman Boncori, Jørgen Dall, Kenneth D. Mankoff, Andreas P. Ahlstrøm, Signe B. Andersen, Michele Citterio, Nanna B. Karlsson, Kristian K. Kjeldsen, Niels J. Korsgaard, Signe H. Larsen, and Robert S. Fausto
Earth Syst. Sci. Data, 13, 3491–3512, https://doi.org/10.5194/essd-13-3491-2021, https://doi.org/10.5194/essd-13-3491-2021, 2021
Short summary
Short summary
The PROMICE Ice Velocity product is a time series of Greenland Ice Sheet ice velocity mosaics spanning September 2016 to present. It is derived from Sentinel-1 SAR data and has a spatial resolution of 500 m. Each mosaic spans 24 d (two Sentinel-1 cycles), and a new one is posted every 12 d (every Sentinel-1A cycle). The spatial comprehensiveness and temporal consistency make the product ideal for monitoring and studying ice-sheet-wide ice discharge and dynamics of glaciers.
Kenneth D. Mankoff, Brice Noël, Xavier Fettweis, Andreas P. Ahlstrøm, William Colgan, Ken Kondo, Kirsty Langley, Shin Sugiyama, Dirk van As, and Robert S. Fausto
Earth Syst. Sci. Data, 12, 2811–2841, https://doi.org/10.5194/essd-12-2811-2020, https://doi.org/10.5194/essd-12-2811-2020, 2020
Short summary
Short summary
This work partitions regional climate model (RCM) runoff from the MAR and RACMO RCMs to hydrologic outlets at the ice margin and coast. Temporal resolution is daily from 1959 through 2019. Spatial grid is ~ 100 m, resolving individual streams. In addition to discharge at outlets, we also provide the streams, outlets, and basin geospatial data, as well as a script to query and access the geospatial or time series discharge data from the data files.
Xiaoshuang Li, Richard Garth James Bellerby, Jianzhong Ge, Philip Wallhead, Jing Liu, and Anqiang Yang
Geosci. Model Dev., 13, 5103–5117, https://doi.org/10.5194/gmd-13-5103-2020, https://doi.org/10.5194/gmd-13-5103-2020, 2020
Short summary
Short summary
We have developed an ANN model to predict pH using 11 cruise datasets from 2013 to 2017,
demonstrated its reliability using three cruise datasets during 2018 and applied it to
retrieve monthly pH for the period 2000 to 2016 on the East China Sea shelf using the
ANN model in combination with input variables from the Changjiang biology Finite-Volume
Coastal Ocean Model. This approach may be a valuable tool for understanding the seasonal
variation of pH in poorly observed regions.
Kenneth D. Mankoff, Anne Solgaard, William Colgan, Andreas P. Ahlstrøm, Shfaqat Abbas Khan, and Robert S. Fausto
Earth Syst. Sci. Data, 12, 1367–1383, https://doi.org/10.5194/essd-12-1367-2020, https://doi.org/10.5194/essd-12-1367-2020, 2020
Short summary
Short summary
We have produced an open and reproducible estimate of Greenland Ice Sheet solid ice discharge from 1986 to 2020. Our results show three modes at the the total ice sheet scale: steady discharge from 1986 through 2000, increasing discharge from 2000 through 2005, and steady discharge from 2005 through 2019. The behavior of individual sectors and glaciers is more complicated. This work was done to provide a 100 % reproducible estimate to help constrain mass balance and sea-level-rise estimates.
Kenneth D. Mankoff, William Colgan, Anne Solgaard, Nanna B. Karlsson, Andreas P. Ahlstrøm, Dirk van As, Jason E. Box, Shfaqat Abbas Khan, Kristian K. Kjeldsen, Jeremie Mouginot, and Robert S. Fausto
Earth Syst. Sci. Data, 11, 769–786, https://doi.org/10.5194/essd-11-769-2019, https://doi.org/10.5194/essd-11-769-2019, 2019
Short summary
Short summary
We have produced an open and reproducible estimate of Greenland Ice Sheet solid ice discharge from 1986 through 2017. Our results show three modes at the total ice-sheet scale: steady discharge from 1986 through 2000, increasing discharge from 2000 through 2005, and steady discharge from 2005 through 2017. The behavior of individual sectors and glaciers is more complicated. This work was done to provide a 100 % reproducible estimate to help constrain mass balance and sea-level rise estimates.
Shamil Yakubov, Philip Wallhead, Elizaveta Protsenko, and Evgeniy Yakushev
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2017-299, https://doi.org/10.5194/gmd-2017-299, 2017
Preprint withdrawn
Short summary
Short summary
Aquatic biogeochemical processes can strongly interact, especially in polar regions, with processes occurring in adjacent ice and sediment layers, yet there are few modelling tools to simulate these systems in a fully coupled manner. We have developed a 1D transport model that allows simultaneous simulation of the biogeochemistry of 3 different media: ice, water, and sediments. Description of transportation processes in ice, water, and sediments for both solutes and solids was provided.
Markus Schartau, Philip Wallhead, John Hemmings, Ulrike Löptien, Iris Kriest, Shubham Krishna, Ben A. Ward, Thomas Slawig, and Andreas Oschlies
Biogeosciences, 14, 1647–1701, https://doi.org/10.5194/bg-14-1647-2017, https://doi.org/10.5194/bg-14-1647-2017, 2017
Short summary
Short summary
Plankton models have become an integral part in marine ecosystem and biogeochemical research. These models differ in complexity and in their number of parameters. How values are assigned to parameters is essential. An overview of major methodologies of parameter estimation is provided. Aspects of parameter identification in the literature are diverse. Individual findings could be better synthesized if notation and expertise of the different scientific communities would be reasonably merged.
Evgeniy V. Yakushev, Elizaveta A. Protsenko, Jorn Bruggeman, Philip Wallhead, Svetlana V. Pakhomova, Shamil Kh. Yakubov, Richard G. J. Bellerby, and Raoul-Marie Couture
Geosci. Model Dev., 10, 453–482, https://doi.org/10.5194/gmd-10-453-2017, https://doi.org/10.5194/gmd-10-453-2017, 2017
Short summary
Short summary
This paper presents a new benthic–pelagic biogeochemical model (BROM) that combines a relatively simple pelagic ecosystem model with a detailed biogeochemical model of the coupled cycles of N, P, Si, C, O, S, Mn, Fe in the water column, benthic boundary layer, and sediments, with a focus on oxygen and redox state. BROM should be of interest for the study of a range of environmental applications in addition to hypoxia, such as benthic nutrient recycling, redox biogeochemistry, and eutrophication.
Kenneth D. Mankoff and Slawek M. Tulaczyk
The Cryosphere, 11, 303–317, https://doi.org/10.5194/tc-11-303-2017, https://doi.org/10.5194/tc-11-303-2017, 2017
Short summary
Short summary
There may be a ~ 7-fold increases in heat at the bed of Greenland by the end of the century due to increased runoff. The impact this will have on the ice is uncertain, but recent results indicate more heat may reduced glacier velocity near the margin, and accelerate it in the interior. We used existing model output of Greenland surface melt, ice sheet surface, and basal topography. All code needed to recreate the results, using free software, is included.
A. A. Harpold, J. A. Marshall, S. W. Lyon, T. B. Barnhart, B. A. Fisher, M. Donovan, K. M. Brubaker, C. J. Crosby, N. F. Glenn, C. L. Glennie, P. B. Kirchner, N. Lam, K. D. Mankoff, J. L. McCreight, N. P. Molotch, K. N. Musselman, J. Pelletier, T. Russo, H. Sangireddy, Y. Sjöberg, T. Swetnam, and N. West
Hydrol. Earth Syst. Sci., 19, 2881–2897, https://doi.org/10.5194/hess-19-2881-2015, https://doi.org/10.5194/hess-19-2881-2015, 2015
Short summary
Short summary
This review's objective is to demonstrate the transformative potential of lidar by critically assessing both challenges and opportunities for transdisciplinary lidar applications in geomorphology, hydrology, and ecology. We find that using lidar to its full potential will require numerous advances, including more powerful open-source processing tools, new lidar acquisition technologies, and improved integration with physically based models and complementary observations.
Cited articles
Andersen, O. G. N.: The annual cycle of phytoplankton primary production and
hydrography in the Disko Bugt area, West Greenland, Meddelelser om
Gronland, Biosci., 6, 68 pp., 1981.
Ardyna, M., Babin, M., Gosselin, M., Devred, E., Rainville, L., and Tremblay,
J.-É.: Recent Arctic Ocean sea ice loss triggers novel fall
phytoplankton blooms, Geophys. Res. Lett., 41, 6207–6212,
https://doi.org/10.1002/2014GL061047, 2014.
Ardyna, M., Mundy, C. J., Mayot, N., Matthes, L. C., Oziel, L., Horvat, C.,
Leu, E., Assmy, P., Hill, V., Matrai, P. A., Gale, M., Melnikov, I. A., and
Arrigo, K. R.: Under-Ice Phytoplankton Blooms: Shedding Light on the
“Invisible” Part of Arctic Primary Production, Front. Mar. Sci.,
7, 1–25, https://doi.org/10.3389/fmars.2020.608032, 2020.
Arrigo, K. R. and van Dijken, G. L.: Continued increases in Arctic Ocean
primary production, Prog. Oceanogr., 136, 60–70,
https://doi.org/10.1016/j.pocean.2015.05.002, 2015.
Bendtsen, J., Rysgaard, S., Carlson, D. F., Meire, L., and Sejr, M. K.:
Vertical Mixing in Stratified Fjords Near Tidewater Outlet Glaciers Along
Northwest Greenland, J. Geophys. Res.-Ocean., 126, 1–15,
https://doi.org/10.1029/2020JC016898, 2021.
Butenschön, M., Clark, J., Aldridge, J. N., Allen, J. I., Artioli, Y., Blackford, J., Bruggeman, J., Cazenave, P., Ciavatta, S., Kay, S., Lessin, G., van Leeuwen, S., van der Molen, J., de Mora, L., Polimene, L., Sailley, S., Stephens, N., and Torres, R.: ERSEM 15.06: a generic model for marine biogeochemistry and the ecosystem dynamics of the lower trophic levels, Geosci. Model Dev., 9, 1293–1339, https://doi.org/10.5194/gmd-9-1293-2016, 2016.
Chassignet, E. P., Hurlburt, H. E., Smedstad, O. M., Halliwell, G. R.,
Hogan, P. J., Wallcraft, A. J., Baraille, R., and Bleck, R.: The HYCOM
(HYbrid Coordinate Ocean Model) data assimilative system, J. Mar. Syst.,
65, 60–83, https://doi.org/10.1016/j.jmarsys.2005.09.016, 2007.
Christensen, T., Falk, K., Boye, T., Ugarte, F., Boertmann, D., and Mosbech, A.: Identifi kation af sårbare marine områder i den grønlandske/danske del af Arktis. Aarhus Universitet, DCE – Nationalt Center for Miljø og Energi, 72 pp., 2012.
Cohen, J., Zhang, X., Francis, J., Jung, T., Kwok, R., Overland, J.,
Ballinger, T. J., Bhatt, U. S., Chen, H. W., Coumou, D., Feldstein, S., Gu,
H., Handorf, D., Henderson, G., Ionita, M., Kretschmer, M., Laliberte, F.,
Lee, S., Linderholm, H. W., Maslowski, W., Peings, Y., Pfeiffer, K., Rigor,
I., Semmler, T., Stroeve, J., Taylor, P. C., Vavrus, S., Vihma, T., Wang,
S., Wendisch, M., Wu, Y., and Yoon, J.: Divergent consensuses on Arctic
amplification influence on midlatitude severe winter weather, Nat. Clim.
Change, 10, 20–29, https://doi.org/10.1038/s41558-019-0662-y, 2020.
Collins, N., Theurich, G., DeLuca, C., Suarez, M., Trayanov, A., Balaji, V.,
Li, P., Yang, W., Hill, C., and da Silva, A.: Design and implementation of
components in the Earth System Modeling Framework, Int. J. High Perform.
Comput. Appl., 19, 341–350, https://doi.org/10.1177/1094342005056120, 2005.
Dunse, T., Dong, K., Aas, K. S., and Stige, L. C.: Regional-scale
phytoplankton dynamics and their association with glacier meltwater runoff
in Svalbard, Biogeosciences, 19, 271–294, https://doi.org/10.5194/bg-19-271-2022,
2022.
Gladish, C. V., Holland, D. M., and Lee, C. M.: Oceanic Boundary Conditions
for Jakobshavn Glacier, Part II: Provenance and Sources of Variability of
Disko Bay and Ilulissat Icefjord Waters, 1990–2011, J. Phys. Oceanogr.,
45, 33–63, https://doi.org/10.1175/JPO-D-14-0045.1, 2015.
Hansen, B. U., Elberling, B., Humlum, O., and Nielsen, N.: Meteorological
trends (1991–2004) at Arctic Station, Central West Greenland (69∘ 15′ N) in a 130 years perspective, Geogr. Tidsskr. J. Geogr., 106, 45–55,
https://doi.org/10.1080/00167223.2006.10649544, 2006.
Hernes, P. J., Tank, S. E., Sejr, M. K., and Glud, R. N.: Element cycling and
aquatic function in a changing Arctic, Limnol. Oceanogr., 66, S1–S16,
https://doi.org/10.1002/lno.11717, 2021.
Holding, J. M., Markager, S., Juul-Pedersen, T., Paulsen, M. L., Møller, E. F., Meire, L., and Sejr, M. K.: Seasonal and spatial patterns of primary production in a high-latitude fjord affected by Greenland Ice Sheet run-off, Biogeosciences, 16, 3777–3792, https://doi.org/10.5194/bg-16-3777-2019, 2019.
Hopwood, M. J., Carroll, D., Browning, T. J., Meire, L., Mortensen, J.,
Krisch, S., and Achterberg, E. P.: Non-linear response of summertime marine
productivity to increased meltwater discharge around Greenland, Nat.
Commun., 9, 3256, https://doi.org/10.1038/s41467-018-05488-8, 2018.
Hopwood, M. J., Carroll, D., Dunse, T., Hodson, A., Holding, J. M., Iriarte, J. L., Ribeiro, S., Achterberg, E. P., Cantoni, C., Carlson, D. F., Chierici, M., Clarke, J. S., Cozzi, S., Fransson, A., Juul-Pedersen, T., Winding, M. H. S., and Meire, L.: Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic?, The Cryosphere, 14, 1347–1383, https://doi.org/10.5194/tc-14-1347-2020, 2020.
Hunke, E. C.: Viscous-Plastic Sea Ice Dynamics with the EVP Model:
Linearization Issues, J. Comput. Phys., 170, 18–38,
https://doi.org/10.1006/jcph.2001.6710, 2001.
Hunke, E. C. and Dukowicz, J. K.: An elastic-viscous-plastic model for sea
ice dynamics, J. Phys. Oceanogr., 27, 1849–1867,
https://doi.org/10.1175/1520-0485(1997)027<1849:AEVPMF>2.0.CO;2,
1997.
Ji, R., Jin, M. and Varpe, Ø.: Sea ice phenology and timing of primary
production pulses in the Arctic Ocean, Glob. Change Biol., 19, 734–41,
https://doi.org/10.1111/gcb.12074, 2013.
Juul-Pedersen, T., Arendt, K. E., Mortensen, J., Blicher, M. E., Søgaard,
D. H., and Rysgaard, S.: Seasonal and interannual phytoplankton production in
a sub-Arctic tidewater outlet glacier fjord, SW Greenland, Mar. Ecol. Prog.
Ser., 524, 27–38, https://doi.org/10.3354/meps11174, 2015.
Kjeldsen, K. K., Korsgaard, N. J., Bjørk, A. A., Khan, S. A., Box, J. E.,
Funder, S., Larsen, N. K., Bamber, J. L., Colgan, W., Van Den Broeke, M.,
Siggaard-Andersen, M. L., Nuth, C., Schomacker, A., Andresen, C. S.,
Willerslev, E., and Kjær, K. H.: Spatial and temporal distribution of
mass loss from the Greenland Ice Sheet since AD 1900, Nature, 528,
396–400, https://doi.org/10.1038/nature16183, 2015.
Larsen, J.: FlexSem source code, Zenodo [code],
https://doi.org/10.5281/zenodo.7124459, 2022.
Lavergne, T., Sørensen, A. M., Kern, S., Tonboe, R., Notz, D., Aaboe, S., Bell, L., Dybkjær, G., Eastwood, S., Gabarro, C., Heygster, G., Killie, M. A., Brandt Kreiner, M., Lavelle, J., Saldo, R., Sandven, S., and Pedersen, L. T.: Version 2 of the EUMETSAT OSI SAF and ESA CCI sea-ice concentration climate data records, The Cryosphere, 13, 49–78, https://doi.org/10.5194/tc-13-49-2019, 2019.
Leu, E., Mundy, C. J. J., Assmy, P., Campbell, K., Gabrielsen, T. M. M.,
Gosselin, M., Juul-Pedersen, T., and Gradinger, R.: Arctic spring awakening –
Steering principles behind the phenology of vernal ice algal blooms, Prog.
Oceanogr., 139, 151–170, https://doi.org/10.1016/j.pocean.2015.07.012, 2015.
Levinsen, H. and Nielsen, T. G.: The trophic role of marine pelagic ciliates
and heterotrophic dinoflagellates in arctic and temperate coastal
ecosystems: A cross-latitude comparison, Limnol. Oceanogr., 47, 427–439,
https://doi.org/10.4319/lo.2002.47.2.0427, 2002.
Levinsen, H., Nielsen, T. G., and Hansen, B. W.: Annual succession of marine
pelagic protozoans in Disko Bay, West Greenland, with emphasis on winter
dynamics, Mar. Ecol. Prog. Ser., 206, 119–134, https://doi.org/10.3354/meps206119,
2000.
Lovejoy, C., Vincent, W. F., Bonilla, S., Roy, S., Martineau, M. J.,
Terrado, R., Potvin, M., Massana, R., and Pedrós-Alió, C.:
Distribution, phylogeny, and growth of cold-adapted picoprasinophytes in
arctic seas, J. Phycol., 43, 78–89,
https://doi.org/10.1111/j.1529-8817.2006.00310.x, 2007.
Lydersen, C., Assmy, P., Falk-Petersen, S., Kohler, J., Kovacs, K. M.,
Reigstad, M., Steen, H., Strøm, H., Sundfjord, A., Varpe, Ø.,
Walczowski, W., Weslawski, J. M., and Zajaczkowski, M.: The importance of
tidewater glaciers for marine mammals and seabirds in Svalbard, Norway, J.
Mar. Syst., 129, 452–471, https://doi.org/10.1016/j.jmarsys.2013.09.006, 2014.
Maar, M., Møller, E. F., Larsen, J., Madsen, K. S., Wan, Z., She, J.,
Jonasson, L., and Neumann, T.: Ecosystem modelling across a salinity gradient
from the North Sea to the Baltic Sea, Ecol. Modell., 222, 1696–1711,
https://doi.org/10.1016/j.ecolmodel.2011.03.006, 2011.
Maar, M., Markager, S., Madsen, K. S., Windolf, J., Lyngsgaard, M. M.,
Andersen, H. E., and Møller, E. F.: The importance of local versus
external nutrient loads for Chl a and primary production in the Western
Baltic Sea, Ecol. Modell., 320, 258–272, https://doi.org/10.1016/j.ecolmodel.2015.09.023, 2016.
Maar, M., Møller, E. F., and Larsen J.: FlexSem Biogeochemical model for
Disko Bay, Greenland, Zenodo [code],
https://doi.org/10.5281/zenodo.7401870, 2022.
Madsen, K. S., Rasmussen, T. A. S., Ribergaard, M. H., and Ringgaard, I. M.:
High resolution sea-ice modelling and validation of the Arctic with focus on
South Greenland Waters, 2004–2013, Polarforschung, 85, 101–105,
https://doi.org/10.2312/polfor.2016.006, 2016.
Mankoff, K. D., Straneo, F., Cenedese, C., Das, S. B., Richards, C. G., and
Singh, H.: Structure and dynamics of a subglacial discharge plume in a Greenlandic fjord, J.
Geophys. Res.-Ocean., 121, 8670–8688, https://doi.org/10.1002/2016JC011764, 2016.
Mankoff, K. D., Solgaard, A., Colgan, W., Ahlstrøm, A. P., Abbas Khan, S.,
and Fausto, R. S.: Greenland Ice Sheet solid ice discharge from 1986 through
March 2020, Earth Syst. Sci. Data, 12, 1367–1383,
https://doi.org/10.5194/essd-12-1367-2020, 2020a.
Mankoff, K. D., Noël, B., Fettweis, X., Ahlstrøm, A. P., Colgan, W., Kondo, K., Langley, K., Sugiyama, S., van As, D., and Fausto, R. S.: Greenland liquid water discharge from 1958 through 2019, Earth Syst. Sci. Data, 12, 2811–2841, https://doi.org/10.5194/essd-12-2811-2020, 2020b.
Mankoff, K. D., Fettweis, X., Langen, P. L., Stendel, M., Kjeldsen, K. K.,
Karlsson, N. B., Noël, B., van den Broeke, M. R., Solgaard, A., Colgan,
W., Box, J. E., Simonsen, S. B., King, M. D., Ahlstrøm, A. P., Andersen,
S. B., and Fausto, R. S.: Greenland ice sheet mass balance from 1840 through
next week, Earth Syst. Sci. Data, 13, 5001–5025,
https://doi.org/10.5194/essd-13-5001-2021, 2021.
Massicotte, P., Peeken, I., Katlein, C., Flores, H., Huot, Y., Castellani,
G., Arndt, S., Lange, B. A., Tremblay, J.-É., and Babin, M.: Sensitivity
of phytoplankton primary production estimates to available irradiance under
heterogeneous sea-ice conditions, J. Geophys. Res.-Ocean., 124, 5436–5450,
https://doi.org/10.1029/2019JC015007, 2019.
Meier, W. N., Hovelsrud, G. K., van Oort, B. E. H., Key, J. R., Kovacs, K.
M., Michel, C., Haas, C., Granskog, M. A., Gerland, S., Perovich, D. K.,
Makshtas, A., and Reist, J. D.: Arctic sea ice in transformation: A review of
recent observed changes and impacts on biology and human activity, Rev.
Geophys., 52, 185–217, https://doi.org/10.1002/2013RG000431, 2014.
Meire, L., Mortensen, J., Meire, P., Juul-Pedersen, T., Sejr, M. K.,
Rysgaard, S., Nygaard, R., Huybrechts, P., and Meysman, F. J. R.:
Marine-terminating glaciers sustain high productivity in Greenland fjords,
Glob. Change Biol., 23, 5344–5357, https://doi.org/10.1111/gcb.13801, 2017.
Menden-Deuer, S., Lawrence, C., and Franzè, G.: Herbivorous protist
growth and grazing rates at in situ and artificially elevated temperatures
during an Arctic phytoplankton spring bloom, PeerJ, 2018, e5264,
https://doi.org/10.7717/peerj.5264, 2018.
Møller, E. F. and Nielsen, T. G.: Borealization of Arctic
zooplankton – smaller and less fat zooplankton species in Disko Bay, Western
Greenland, Limnol. Oceanogr., 65, 1175–1188, https://doi.org/10.1002/lno.11380,
2020.
Møller, E. F. E. F., Maar, M., Jónasdóttir, S. H. S. H., Gissel
Nielsen, T., and Tönnesson, K.: The effect of changes in temperature and
food on the development of Calanus finmarchicus and Calanus helgolandicus
populations, Limnol. Oceanogr., 57, 211–220,
https://doi.org/10.4319/lo.2012.57.1.0211, 2012.
Møller, E. F., Bohr, M., Kjellerup, S., Maar, M., Møhl, M.,
Swalethorp, R., and Nielsen, T. G.: Calanus finmarchicus egg production
at its northern border, J. Plankton Res., 38, 1206–1214,
https://doi.org/10.1093/plankt/fbw048, 2016.
Møller, E. F. and Nielsen, T. G.: Borealization of Arctic
zooplankton – smaller and less fat zooplankton species in Disko Bay, Western
Greenland, Zenodo [data set], https://doi.org/10.5281/zenodo.7454576, 2022a.
Møller, E. F., Christensen, A., Larsen, J, Mankoff, K. D., Ribergaard, M.
H., Sejr, M. K., Wallhead, P., and Maar, M.: The sensitivity of primary
productivity in Disko Bay, a coastal Arctic ecosystem to changes in
freshwater discharge and sea ice cover, Zenodo [data set],
https://doi.org/10.5281/zenodo.7454727, 2022b.
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber, J.
L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty,
I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M.,
Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y.,
O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J.,
Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and
Zinglersen, K. B.: BedMachine v3: Complete Bed Topography and Ocean
Bathymetry Mapping of Greenland From Multibeam Echo Sounding Combined With
Mass Conservation, Geophys. Res. Lett., 44, 11051–11061,
https://doi.org/10.1002/2017GL074954, 2017.
Mortensen, J., Rysgaard, S., Bendtsen, J., Lennert, K., Kanzow, T., Lund, H.,
and Meire, L.: Subglacial Discharge and Its Down-Fjord Transformation in
West Greenland Fjords With an Ice Mélange, J. Geophys. Res.-Ocean.,
125, 1–13, https://doi.org/10.1029/2020JC016301, 2020.
Mouginot, J., Rignot, E., Bjørk, A. A., van den Broeke, M., Millan, R.,
Morlighem, M., Noël, B., Scheuchl, B., and Wood, M.: Forty-six years of
Greenland Ice Sheet mass balance from 1972 to 2018, P. Natl. Acad. Sci.
USA, 116, 9239–9244, https://doi.org/10.1073/pnas.1904242116, 2019.
Murray, C., Markager, S., Stedmon, C. A., Juul-Pedersen, T., Sejr, M. K., and
Bruhn, A.: The influence of glacial melt water on bio-optical properties in
two contrasting Greenlandic fjords, Estuar. Coast. Shelf Sci., 163,
72–83, https://doi.org/10.1016/j.ecss.2015.05.041, 2015.
Neumann, T.: Towards a 3D-ecosystem model of the Baltic Sea, J. Mar. Syst.,
25, 405–419, https://doi.org/10.1016/S0924-7963(00)00030-0, 2000.
OSI SAF: EUMETSAT ocean and Sea ice satellite application facility: Global Sea ice concentration climate data record 1979–2015 (v2.0) – multimission, in: EUMETSAT SAF on ocean and Sea ice, https://doi.org/10.15770/EUM_SAF_OSI_NRT_2004, 2017.
Pabi, S., van Dijken, G. L., and Arrigo, K. R.: Primary production in the
Arctic Ocean, 1998–2006, J. Geophys. Res.-Ocean., 113, 1998–2006,
https://doi.org/10.1029/2007JC004578, 2008.
Palmer, S., Barillé, L., Gernez, P., Ciavatta, S., Evers-King, H., Kay, S., Kurekin, A., Loveday, B., Miller, P.I., Simis, S., Wilson, R., Tsiaras, K., Wallhead, P., Kristiansen, T., Staalstrøm, A., Dale, T., and Bellerby, R.: Earth Observation and model-derived aquaculture indicators report, TAPAS project Deliverable 6.6 report, 65 pp., 2019.
Randelhoff, A., Holding, J., Janout, M., Sejr, M. K., Babin, M., Tremblay,
J.-éric, Alkire, M. B., and Oliver, H.: Pan-Arctic Ocean Primary
Production Constrained by Turbulent Nitrate Fluxes, Front. Mar. Sci., 7, 1–15,
https://doi.org/10.3389/fmars.2020.00150, 2020.
Røed, L. P., Lien, V. S., Melsom, A., Kristensen, N. M., Gusdal Y., and Ådlandsvik, B.: Evaluation of the BaSIC20 long term hindcast results, BaSIC Technical Report 3, Norwegian Meterological Institute, 2014.
Ross, O. N. and Geider, R. J.: New cell-based model of photosynthesis and
photo-acclimation: accumulation and mobilisation of energy reserves in
phytoplankton, Mar. Ecol. Prog. Ser., 383, 53–71, https://doi.org/10.3354/meps07961,
2009.
Rysgaard, S., Boone, W., Carlson, D., Sejr, M. K., Bendtsen, J.,
Juul-Pedersen, T., Lund, H., Meire, L., and Mortensen, J.: An Updated View on
Water Masses on the pan-West Greenland Continental Shelf and Their Link to
Proglacial Fjords, J. Geophys. Res.-Ocean., 125, e2019JC01556,
https://doi.org/10.1029/2019JC015564, 2020.
Sejr, M. K., Nielsen, T. G., Rysgaard, S., Risgaard-petersen, N., Sturluson,
M., and Blicher, M. E.: Fate of pelagic organic carbon and importance of
pelagic – benthic coupling in a shallow cove, Mar. Ecol. Prog. Ser., 341,
75–88, 2007.
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling
system (ROMS): A split-explicit, free-surface,
topography-following-coordinate oceanic model, Ocean Model., 9, 347–404,
https://doi.org/10.1016/j.ocemod.2004.08.002, 2005.
Stroeve, J. C., Markus, T., Boisvert, L., Miller, J., and Barrett, A.:
Changes in Arctic melt season and implications for sea ice loss, Geophys.
Res. Lett., 41, 1216–1225, https://doi.org/10.1002/2013GL058951, 2014.
Swalethorp, R., Kjellerup, S., Dünweber, M., Nielsen, T., Møller, E.,
Rysgaard, S., and Hansen, B.: Grazing, egg production, and biochemical
evidence of differences in the life strategies of Calanus finmarchicus, C.
glacialis and C. hyperboreus in Disko Bay, western Greenland, Mar. Ecol.
Prog. Ser., 429, 125–144, https://doi.org/10.3354/meps09065, 2011.
Thomas, D. N., Baumann, M. E. M., and Gleitz, M.: Efficiency of carbon
assimilation and photoacclimation in a small unicellular Chaetoceros species
from the Weddell Sea (Antarctica): influence of temperature and irradiance,
J. Exp. Mar. Bio. Ecol., 157, 195–209, https://doi.org/10.1016/0022-0981(92)90162-4,
1992.
Thyrring, J., Wegeberg, S., Blicher, M. E., Krause-Jensen, D., Høgslund,
S., Olesen, B., Jozef, W., Mouritsen, K. N., Peck, L. S., and Sejr, M. K.:
Latitudinal patterns in intertidal ecosystem structure in West Greenland
suggest resilience to climate change, Ecography, 44, 1156–1168,
https://doi.org/10.1111/ecog.05381, 2021.
Tremblay, J.-É. and Gagnon, J.: The effects of irradiance and nutrient
supply on the productivity of Arctic waters: a perspective on climate
change, in Influence of Climate Change on the Changing Arctic and Sub-Arctic
Conditions, Springer Netherlands, Dordrecht, 73–93, ISBN: 978-1-4020-9458-3, https://doi.org/10.1007/978-1-4020-9460-6_7, 2009.
Tremblay, J. É., Anderson, L. G., Matrai, P., Coupel, P., Bélanger,
S., Michel, C., and Reigstad, M.: Global and regional drivers of nutrient
supply, primary production and CO2 drawdown in the changing Arctic Ocean,
Prog. Oceanogr., 139, 171–196, https://doi.org/10.1016/j.pocean.2015.08.009, 2015.
Vernet, M., Ellingsen, I., Marchese, C., Bélanger, S., Cape, M.,
Slagstad, D., and Matrai, P. A.: Spatial variability in rates of Net Primary
Production (NPP) and onset of the spring bloom in Greenland shelf waters,
Prog. Oceanogr., 198, 102655,
https://doi.org/10.1016/j.pocean.2021.102655, 2021.
von Appen, W. J., Waite, A. M., Bergmann, M., Bienhold, C., Boebel, O.,
Bracher, A., Cisewski, B., Hagemann, J., Hoppema, M., Iversen, M. H.,
Konrad, C., Krumpen, T., Lochthofen, N., Metfies, K., Niehoff, B.,
Nöthig, E. M., Purser, A., Salter, I., Schaber, M., Scholz, D.,
Soltwedel, T., Torres-Valdes, S., Wekerle, C., Wenzhöfer, F., Wietz, M.,
and Boetius, A.: Sea-ice derived meltwater stratification slows the
biological carbon pump: results from continuous observations, Nat. Commun.,
12, 1–16, https://doi.org/10.1038/s41467-021-26943-z, 2021.
Yang, X., Petersen, C., Amstrup B., Andersen, B. S., Hansen, Feddersen, H.,
Kmit, M., Korsholm, U., Lindberg, K., Mogensen, K., Sass, B. H., Sattler, K.,
and Nielsen, N. W.: The DMI-HIRLAM upgrade in June 2004, DMI-Tech, Rep. 05-09,
Danish Meteorological Institute, Copenhagen, Denmark, online ISBN:
978-87-7478-605-4, 2005.
Yang, X., Palmason, B., Andersen, B. S., Hansen Sass, B., Amstrup, B.,
Dahlbom, M., Petersen, C., Pagh Nielsen, K., Mottram, R., Woetmann, N.,
Mahura, A. Thorsteinsson, S., Nawri, N., and Petersen, G. N.: IGA, the
Joint Operational HARMONIE by DMI and IMO, ALADIN-HIRLAM Newsletter, 8,
87–94, 2017.
Yang, X., Palmason, B., Sattler, K., Thorsteinsson, S., Amstrup, B.,
Dahlbom, M, Hansen Sass, B., Pagh Nielsen, K., and Petersen, G. N.: IGB,
the Upgrade to the Joint Operational HARMONIE by DMI and IMO in 2018,
ALADIN-HIRLAM Newsletter, 11, 93–96, 2018.
Zhang, J., Spitz, Y. H., Steele, M., Ashjian, C., Campbell, R., Berline, L.,
and Matrai, P.: Modeling the impact of declining sea ice on the Arctic
marine planktonic ecosystem, J. Geophys. Res.-Ocean., 115, C10015,
https://doi.org/10.1029/2009JC005387, 2010.
Short summary
Melt from the Greenland ice sheet and sea ice both influence light and nutrient availability in the Arctic coastal ocean. We use a 3D coupled hydrodynamic–biogeochemical model to evaluate the relative importance of these processes for timing, distribution, and magnitude of phytoplankton production in Disko Bay, west Greenland. Our study indicates that decreasing sea ice and more freshwater discharge can work synergistically and increase primary productivity of the coastal ocean around Greenland.
Melt from the Greenland ice sheet and sea ice both influence light and nutrient availability in...