Articles | Volume 19, issue 5
https://doi.org/10.5194/os-19-1339-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-1339-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Coastal and regional marine heatwaves and cold spells in the northeastern Atlantic
Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
Coline Poppeschi
Univ. Brest, CNRS, Ifremer, IRD, Laboratory for Ocean Physics and Satellite remote sensing (LOPS), IUEM, 29280 Plouzané, France
Sandra Plecha
Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
Guillaume Charria
Univ. Brest, CNRS, Ifremer, IRD, Laboratory for Ocean Physics and Satellite remote sensing (LOPS), IUEM, 29280 Plouzané, France
Ana Russo
Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisbon, Portugal
Related authors
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024, https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary
Short summary
Identifying causes of specific processes is crucial in order to better understand our climate system. Traditionally, correlation analyses have been used to identify cause–effect relationships in climate studies. However, correlation does not imply causation, which justifies the need to use causal methods. We compare two independent causal methods and show that these are superior to classical correlation analyses. We also find some interesting differences between the two methods.
Amélie Simon, Guillaume Gastineau, Claude Frankignoul, Vladimir Lapin, and Pablo Ortega
Weather Clim. Dynam., 3, 845–861, https://doi.org/10.5194/wcd-3-845-2022, https://doi.org/10.5194/wcd-3-845-2022, 2022
Short summary
Short summary
The influence of the Arctic sea-ice loss on atmospheric circulation in midlatitudes depends on persistent sea surface temperatures in the North Pacific. In winter, Arctic sea-ice loss and a warm North Pacific Ocean both induce depressions over the North Pacific and North Atlantic, an anticyclone over Greenland, and a stratospheric anticyclone over the Arctic. However, the effects are not additive as the interaction between both signals is slightly destructive.
Florian Knutzen, Paul Averbeck, Caterina Barrasso, Laurens M. Bouwer, Barry Gardiner, José M. Grünzweig, Sabine Hänel, Karsten Haustein, Marius Rohde Johannessen, Stefan Kollet, Mortimer M. Müller, Joni-Pekka Pietikäinen, Karolina Pietras-Couffignal, Joaquim G. Pinto, Diana Rechid, Efi Rousi, Ana Russo, Laura Suarez-Gutierrez, Sarah Veit, Julian Wendler, Elena Xoplaki, and Daniel Gliksman
Nat. Hazards Earth Syst. Sci., 25, 77–117, https://doi.org/10.5194/nhess-25-77-2025, https://doi.org/10.5194/nhess-25-77-2025, 2025
Short summary
Short summary
Our research, involving 22 European scientists, investigated drought and heat impacts on forests in 2018–2022. Findings reveal that climate extremes are intensifying, with central Europe being most severely impacted. The southern region showed resilience due to historical drought exposure, while northern and Alpine areas experienced emerging or minimal impacts. The study highlights the need for region-specific strategies, improved data collection, and sustainable practices to safeguard forests.
João António Martins Careto, Rita Margarida Cardoso, Ana Russo, Daniela Catarina André Lima, and Pedro Miguel Matos Soares
Geosci. Model Dev., 17, 8115–8139, https://doi.org/10.5194/gmd-17-8115-2024, https://doi.org/10.5194/gmd-17-8115-2024, 2024
Short summary
Short summary
This study proposes a new daily drought index, the generalised drought index (GDI). The GDI not only identifies the same events as established indices but is also capable of improving their results. The index is empirically based and easy to compute, not requiring fitting the data to a probability distribution. The GDI can detect flash droughts and longer-term events, making it a versatile tool for drought monitoring.
David Docquier, Giorgia Di Capua, Reik V. Donner, Carlos A. L. Pires, Amélie Simon, and Stéphane Vannitsem
Nonlin. Processes Geophys., 31, 115–136, https://doi.org/10.5194/npg-31-115-2024, https://doi.org/10.5194/npg-31-115-2024, 2024
Short summary
Short summary
Identifying causes of specific processes is crucial in order to better understand our climate system. Traditionally, correlation analyses have been used to identify cause–effect relationships in climate studies. However, correlation does not imply causation, which justifies the need to use causal methods. We compare two independent causal methods and show that these are superior to classical correlation analyses. We also find some interesting differences between the two methods.
Raed Halawi Ghosn, Émilie Poisson-Caillault, Guillaume Charria, Armel Bonnat, Michel Repecaud, Jean-Valery Facq, Loïc Quéméner, Vincent Duquesne, Camille Blondel, and Alain Lefebvre
Earth Syst. Sci. Data, 15, 4205–4218, https://doi.org/10.5194/essd-15-4205-2023, https://doi.org/10.5194/essd-15-4205-2023, 2023
Short summary
Short summary
This article describes a long-term (2004–2022) dataset from an in situ instrumented station located in the eastern English Channel and belonging to the COAST-HF network (ILICO). It provides high temporal resolution (sub-hourly) oceanographic and meteorological measurements. The MAREL Carnot dataset can be used to conduct research in marine ecology, oceanography, and data science. It was utilized to characterize recurrent, rare, and extreme events in the coastal area.
Coline Poppeschi, Guillaume Charria, Anne Daniel, Romaric Verney, Peggy Rimmelin-Maury, Michaël Retho, Eric Goberville, Emilie Grossteffan, and Martin Plus
Biogeosciences, 19, 5667–5687, https://doi.org/10.5194/bg-19-5667-2022, https://doi.org/10.5194/bg-19-5667-2022, 2022
Short summary
Short summary
This paper aims to understand interannual changes in the initiation of the phytoplankton growing period (IPGP) in the current context of global climate changes over the last 20 years. An important variability in the timing of the IPGP is observed with a trend towards a later IPGP during this last decade. The role and the impact of extreme events (cold spells, floods, and wind burst) on the IPGP is also detailed.
Amélie Simon, Guillaume Gastineau, Claude Frankignoul, Vladimir Lapin, and Pablo Ortega
Weather Clim. Dynam., 3, 845–861, https://doi.org/10.5194/wcd-3-845-2022, https://doi.org/10.5194/wcd-3-845-2022, 2022
Short summary
Short summary
The influence of the Arctic sea-ice loss on atmospheric circulation in midlatitudes depends on persistent sea surface temperatures in the North Pacific. In winter, Arctic sea-ice loss and a warm North Pacific Ocean both induce depressions over the North Pacific and North Atlantic, an anticyclone over Greenland, and a stratospheric anticyclone over the Arctic. However, the effects are not additive as the interaction between both signals is slightly destructive.
Margarida L. R. Liberato, Irene Montero, Célia Gouveia, Ana Russo, Alexandre M. Ramos, and Ricardo M. Trigo
Earth Syst. Dynam., 12, 197–210, https://doi.org/10.5194/esd-12-197-2021, https://doi.org/10.5194/esd-12-197-2021, 2021
Short summary
Short summary
Extensive, long-standing dry and wet episodes are frequent climatic extreme events (EEs) in the Iberian Peninsula (IP). A method for ranking regional extremes of persistent, widespread drought and wet events is presented, using different SPEI timescales. Results show that there is no region more prone to EE occurrences in the IP, the most extreme extensive agricultural droughts evolve into hydrological and more persistent extreme droughts, and widespread wet and dry EEs are anti-correlated.
Andreia Filipa Silva Ribeiro, Ana Russo, Célia Marina Gouveia, Patrícia Páscoa, and Jakob Zscheischler
Biogeosciences, 17, 4815–4830, https://doi.org/10.5194/bg-17-4815-2020, https://doi.org/10.5194/bg-17-4815-2020, 2020
Short summary
Short summary
This study investigates the impacts of compound dry and hot extremes on crop yields, namely wheat and barley, over two regions in Spain dominated by rainfed agriculture. We provide estimates of the conditional probability of crop loss under compound dry and hot conditions, which could be an important tool for responsible authorities to mitigate the impacts magnified by the interactions between the different hazards.
Andreia F. S. Ribeiro, Ana Russo, Célia M. Gouveia, Patrícia Páscoa, and Carlos A. L. Pires
Nat. Hazards Earth Syst. Sci., 19, 2795–2809, https://doi.org/10.5194/nhess-19-2795-2019, https://doi.org/10.5194/nhess-19-2795-2019, 2019
Short summary
Short summary
This work investigates the dependence between drought hazard and yield anomalies of rainfed cropping systems in the Iberian Peninsula using the copula theory. The applied methodology allows us to estimate the likelihood of wheat and barley loss under drought conditions, and a dependence among extreme values is suggested. From the decision-making point of view this study aims to contribute to the mitigation of drought-related crop failure.
Catarina Alonso, Celia M. Gouveia, Ana Russo, and Patrícia Páscoa
Nat. Hazards Earth Syst. Sci., 19, 2727–2743, https://doi.org/10.5194/nhess-19-2727-2019, https://doi.org/10.5194/nhess-19-2727-2019, 2019
Short summary
Short summary
A vulnerability assessment method is proposed to identify the most vulnerable regions over Portugal. Two methods were compared, namely a subjective categorical method and an automatic method, based on drought indicators, vegetation indices and soil variables. Both methods present similar results, and both identify Minho (Alentejo) as having low (extreme) vulnerability. The automatic method has advantages, as it is fully statistical and presents results without prior knowledge of the region.
Patrícia Páscoa, Célia M. Gouveia, Ana C. Russo, Roxana Bojariu, Sergio M. Vicente-Serrano, and Ricardo M. Trigo
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2018-264, https://doi.org/10.5194/hess-2018-264, 2018
Revised manuscript not accepted
Guillaume Charria, Sébastien Theetten, Frédéric Vandermeirsch, Özge Yelekçi, and Nicole Audiffren
Ocean Sci., 13, 777–797, https://doi.org/10.5194/os-13-777-2017, https://doi.org/10.5194/os-13-777-2017, 2017
Short summary
Short summary
In the north-east Atlantic Ocean, the Bay of Biscay is an intersection between a coastal constrained dynamics (wide continental shelf and shelf break regions) and an eastern boundary circulation system. Based on a 10-year simulation using the coastal ocean model at high resolution (1 km), the interannual variability of small-scale dynamics has been described, implying a potential significant impact on vertical and horizontal mixing in this region.
Related subject area
Approach: In situ Observations | Properties and processes: Coastal and near-shore processes
Contrasting two major Arctic coastal polynyas: the role of sea ice in driving diel vertical migrations of zooplankton in the Laptev and Beaufort seas
Intensified upwelling: normalized sea surface temperature trends expose climate change in coastal areas
Importance of tides and winds in influencing the nonstationary behaviour of coastal currents in offshore Singapore
Igor A. Dmitrenko, Vladislav Petrusevich, Andreas Preußer, Ksenia Kosobokova, Caroline Bouchard, Maxime Geoffroy, Alexander S. Komarov, David G. Babb, Sergei A. Kirillov, and David G. Barber
Ocean Sci., 20, 1677–1705, https://doi.org/10.5194/os-20-1677-2024, https://doi.org/10.5194/os-20-1677-2024, 2024
Short summary
Short summary
The diel vertical migration (DVM) of zooplankton is one of the largest species migrations to occur globally and is a key driver of regional ecosystems. Here, time series of acoustic data collected at the circumpolar Arctic polynya system were used to examine the annual cycle of DVM. We revealed that the formation of polynya open water disrupts DVM. This disruption is attributed to a predator avoidance behavior of zooplankton in response to higher polar cod abundance attracted by the polynya.
Miguel Ángel Gutiérrez-Guerra, María Dolores Pérez-Hernández, and Pedro Vélez-Belchí
Ocean Sci., 20, 1291–1308, https://doi.org/10.5194/os-20-1291-2024, https://doi.org/10.5194/os-20-1291-2024, 2024
Short summary
Short summary
Eastern boundary upwelling systems (EBUSs) are crucial for resources, but climate change poses uncertainties for their future. To assess global warming's impact, we examine Andrew Bakun's 1990 hypothesis of intensified upwelling using deseasonalized sea surface temperature data. A new index, αUI, normalizes upwelling trends against non-upwelling processes, confirming intensification in all EBUSs and supporting Bakun's hypothesis.
Jun Yu Puah, Ivan D. Haigh, David Lallemant, Kyle Morgan, Dongju Peng, Masashi Watanabe, and Adam D. Switzer
Ocean Sci., 20, 1229–1246, https://doi.org/10.5194/os-20-1229-2024, https://doi.org/10.5194/os-20-1229-2024, 2024
Short summary
Short summary
Coastal currents have wide implications for port activities, transport of sediments, and coral reef ecosystems; thus a deeper understanding of their characteristics is needed. We collected data on current velocities for a year using current meters at shallow waters in Singapore. The strength of the currents is primarily affected by tides and winds and generally increases during the monsoon seasons across various frequencies.
Cited articles
Alexander, M. A., Scott, J. D., Friedland, K. D., Mills, K. E., Nye, J. A., Pershing, A. J., and Thomas, A. C.:
Projected sea surface temperatures over the 21st century: Changes in the mean, variability and extremes for large marine ecosystem regions of Northern Oceans, Elementa: Science of the Anthropocene, 6, https://doi.org/10.1525/elementa.191, 2018.
Alheit, J., Gröger, J., Licandro, P., McQuinn, I. H., Pohlmann, T., and Tsikliras, A. C.:
What happened in the mid-1990s? The coupled ocean-atmosphere processes behind climate-induced ecosystem changes in the Northeast Atlantic and the Mediterranean, Deep-Sea Res. Pt. II, 159, 130–142, https://doi.org/10.1016/j.dsr2.2018.11.011, 2019.
Barnston, A. G. and Livezey, R. E.:
Classification, seasonality and persistence of low-frequency atmospheric circulation patterns, Mon. Weather Rev., 115, 1083–1126, https://doi.org/10.1175/1520-0493(1987)115<1083:CSAPOL>2.0.CO;2, 1987.
Brown Ross, A., Lilley, M. K. S., Shutler, J., Widdicombe, C., Rooks, P., McEvoy, A., Torres, R., Artioli, Y., Rawle, G., Homyard, J., Tyler, C. R., and Lowe, C.:
Harmful Algal Blooms and their impacts on shellfish mariculture follow regionally distinct patterns of water circulation in the western English Channel during the 2018 heatwave, Harmful Algae, 111, 102166, https://doi.org/10.1016/j.hal.2021.102166, 2022.
Charria, G., Lazure, P., Le Cann, B., Serpette, A., Reverdin, G., Louazel, S., Batifoulier, F., Dumas, F., Pichon, A., and Morel, Y.:
Surface layer circulation derived from Lagrangian drifters in the Bay of Biscay, J. Marine Syst., 109, 60–76, https://doi.org/10.1016/j.jmarsys.2011.09.015, 2013.
Chust, G., Borja, Á., Caballero, A., Irigoien, X., Sáenz, J., Moncho, R., Marcos, M., Liria, P., Hidalgo, J., Valle, M., and Valencia, V.:
Climate change impacts on coastal and pelagic environments in the southeastern Bay of Biscay, Clim. Res., 48, 307–332, https://doi.org/10.3354/cr00914, 2011.
Crisp, D. J.:
The Effects of the Severe Winter of 1962–63 on Marine Life in Britain, J. Anim. Ecol., 33, 165–210, https://www.jstor.org/stable/2355 (last access: 20 January 2022), 1964.
Darmaraki, S., Somot, S., Sevault, F., and Nabat, P.:
Past Variability of Mediterranean Sea Marine Heatwaves, Geophys. Res. Lett., 46, 9813–9823, https://doi.org/10.1029/2019GL082933, 2019.
DeCastro, M., Gómez-Gesteira, M., Alvarez, I., and Gesteira, J. L. G.:
Present warming within the context of cooling–warming cycles observed since 1854 in the Bay of Biscay, Cont. Shelf Res., 29, 1053–1059, https://doi.org/10.1016/j.csr.2008.11.016, 2009.
Deser, C., Alexander, M. A., Xie, S. P., and Phillips, A. S.:
Sea surface temperature variability: Patterns and mechanisms, Annu. Rev. Mar. Sci., 2, 115–143, 2010.
Drouard, M., Kornhuber, K., and Woollings, T.:
Disentangling dynamic contributions to summer 2018 anomalous weather over Europe, Geophys. Res. Lett., 46, 12537–12546, https://doi.org/10.1029/2019GL084601, 2019.
Duchez, A., Frajka-Williams, E., Josey, S. A., Evans, D. G., Grist, J. P., Marsh, R.,
McCarthy, G. D.,
Sinha, B.,
Inglis Berry, D., and
Hirschi, J. J.: Drivers of exceptionally cold North Atlantic Ocean temperatures and their link to the 2015 European heat wave, Environ. Res. Lett., 11, 074004, https://doi.org/10.1088/1748-9326/11/7/074004, 2016.
ECMWF:
Update on European heatwave of July 2022, ecmwf, https://www.ecmwf.int/en/about/media-centre/focus/2022/update-european-heatwave-july-2022 (last access: 25 August 2023), 2022.
Faranda, D., Alvarez-Castro, M. C., Messori, G., Rodrigues, D., and Yiou, P.:
The hammam effect or how a warm ocean enhances large scale atmospheric predictability, Nat. Commun., 10, 1–7, https://doi.org/10.1038/s41467-019-09305-8, 2019.
Folland, C. K., Knight, J., Linderholm, H. W., Fereday, D., Ineson, S., and Hurrell, J. W.:
The summer North Atlantic Oscillation: past, present, and future, J. Climate, 22, 1082–1103, 2009.
Fox-Kemper, B., Hewitt, H. T., Xiao, C. , Aðalgeirsdóttir, G., Drijfhout, S. S., Edwards, T. L., Golledge, N. R., Hemer, M., Kopp, R. E., Krinner, G., Mix, A., Notz, D., Nowicki, S., Nurhati, I. S., Ruiz, L., Sallée, J.-B., Slangen, A. B. A., and Yu, Y.:
Ocean, Cryosphere and Sea Level Change, in: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R. , Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., and Zhou, B., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1211–1362, https://doi.org/10.1017/9781009157896.011, 2021.
Frölicher, T. and Laufkötter, C.:
Emerging risks from marine heat waves, Nat. Commun., 9, 2015–2018, https://doi.org/10.1038/s41467-018-03163-6 , 2018.
Frölicher, T. L., Fischer, E. M., and Gruber, N.:
Marine heatwaves under global warming, Nature, 560, 360–364, https://doi.org/10.1038/s41586-018-0383-9, 2018.
Gómez, F. and Souissi, S.:
The impact of the 2003 summer heat wave and the 2005 late cold wave on the phytoplankton in the north-eastern English Channel, C. R. Biol., 331, 678–685, https://doi.org/10.1016/j.crvi.2008.06.005, 2008.
Guinaldo, T., Saux Picart, S., and Roquet, H.:
Response of the sea surface temperature to heatwaves during the France 2022 meteorological summer, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2022-1119, 2022.
Guo, X., Gao, Y., Zhang, S., Wu, L., Chang, P., Cai, W., Zscheischler, J., Ruby Leung, L., Small, J., Danabasoglu, G., Thompson, L., and Gao, H.:
Threat by marine heatwaves to adaptive large marine ecosystems in an eddy-resolving model, Nat. Clim. Change, 12, 179–186, 2022.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J. N.:
The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, https://doi.org/10.1002/qj.3803, 1999–2049, 2020.
Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C., Oliver, E. C. J., Benthuysen, J. A., Burrows, M. T., Donat, M. G., Feng, M., Holbrook, N. J., Moore, P. J., Scannell, H. A., Sen Gupta, A., and Wernberg, T.:. A hierarchical approach to defining marine heatwaves, Prog. Oceanogr., 141, 227–238, https://doi.org/10.1016/j.pocean.2015.12.014, 2016.
Holbrook, N. J., Scannell, H. A., Sen Gupta, A., Benthuysen, J. A., Feng, M., Oliver, E. C., Alexander, L., Burrows, M., Donat, M., Hobday, A., Moore, P., Perkins-Kirkpatrick, S., Smale, D., Straub, S., and Wernberg, T.:
A global assessment of marine heatwaves and their drivers, Nat. Commun., 10, 1–13, https://doi.org/10.1038/s41467-019-10206-z, 2019.
Huang, B., Liu, C., Banzon, V., Freeman, E., Graham, G., Hankins, B., Smith, T., and Zhang, H.-M.:
Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1, J. Climate, 34, 2923–2939, https://doi.org/10.1175/JCLI-D-20-0166.1, 2020.
Hurrell, J. W., Kushnir, Y., Ottersen, G., and Visbeck, M.:
An overview of the North Atlantic oscillation, in: Geophysical Monograph Series, edited by: Geophysical Monograph Series, American Geophysical Union, 134, 1–36, https://doi.org/10.1029/134GM01, 2003.
Izquierdo, P., Rico, J. M., Taboada, F. G., González-Gil, R., and Arrontes, J.:
Characterization of marine heatwaves in the Cantabrian Sea, SW Bay of Biscay, Estuar. Coast. Shelf S., 274, https://doi.org/10.1016/j.ecss.2022.107923, 2022a.
Izquierdo, P., Taboada, F. G., González-Gil, R., Arrontes, J., and Rico, J. M.:
Alongshore upwelling modulates the intensity of marine heatwaves in a temperate coastal sea, Sci. Total Environ., 835, 155478, https://doi.org/10.1016/j.scitotenv.2022.155478, 2022b.
Joint, I. and Smale, D. A.:
Marine heatwaves and optimal temperatures for microbial assemblage activity, FEMS Microbiol. Ecol., 93, 1–9, https://doi.org/10.1093/femsec/fiw243, 2017.
Josey, S. A., Hirschi, J.-M., Sinha, B., Duchez, A., Grist, J. P., Marsh, R.:
The recent Atlantic cold anomaly: Causes, consequences, and related phenomena, Annu. Rev. Mar. Sci., 10 , 475–501, 2018.
Kornhuber, K., Osprey, S., Coumou, D., Petri, S., Petoukhov, V., Rahmstorf, S., and Gray, L.:
Extreme weather events in early summer 2018 connected by a recurrent hemispheric wave-7 pattern, Environ. Res. Lett., 14, 054002, https://doi.org/10.1088/1748-9326/ab13bf, 2019.
Le Boyer, A., Cambon, G., Daniault, N., Herbette, S., Le Cann, B., Marie, L., and Morin, P.:
Observations of the Ushant tidal front in September 2007, Cont. Shelf Res., 29, 1026–1037, 2009.
Lima, F. P. and Wethey, D. S.:
Three decades of high-resolution coastal sea surface temperatures reveal more than warming, Nat. Commun., 3, 704, 2012.
Lorenzo, M. N., Taboada, J. J., and Gimeno, L.:
Links between circulation weather types and teleconnection patterns and their influence on precipitation patterns in Galicia (NW Spain), Int. J. Climatol., 28, 1493–1505, https://doi.org/10.1002/joc.1646, 2008.
Marin, M., Feng, M., Phillips, H. E., and Bindoff, N. L.:
A global, multiproduct analysis of coastal marine heatwaves: Distribution, characteristics, and long-term trends, J. Geophys. Res.-Oceans, 126, e2020JC016708, https://doi.org/10.1029/2020JC016708, 2021.
McCarthy, M., Christidis, N., Dunstone, N., Fereday, D., Kay, G., Klein-Tank, A., Lowe, J., Petch, J., Scaife, A., and Stott, P.:
Drivers of the UK summer heatwave of 2018, Weather, 74, 390–396, https://doi.org/10.1002/wea.3628, 2019.
Met Office:
Summer 2018, Met Office, https://www.metoffice.gov.uk/binaries/content/assets/metofficegovuk/pdf/weather/learn-about/uk-past-events/interesting/2018/summer-2018---met-office.pdf (last access: 7 July 2023), 2018.
Météo-France:
Bilan climatique de l'été 2018, Météo-France, https://meteofrance.fr/sites/meteofrance.fr/files/files/editorial/Bilan-climatique-annee2018.pdf (last access: 7 July 2023), 2018.
Mieszkowska, N., Burrows, M., and Sugden, H.:
Impacts of climate change on intertidal habitats, relevant to the coastal and marine environment around the UK, MCCIP Science Review, 2020, 256–271, https://doi.org/10.14465/2020.arc12.ith, 2020.
Müller, H., Blanke, B., Dumas, F., and Mariette, V.:
Identification of typical scenarios for the surface Lagrangian residual circulation in the Iroise Sea. J. Geophys. Res.-Oceans, 115, C7, https://doi.org/10.1029/2009JC005834, 2010.
Norris, J., Vaughan, G., and Schultz, D. M.:
Snowbands over the English Channel and Irish Sea during cold-air outbreaks, Q. J. Roy. Meteor. Soc., 139, 1747–1761, https://doi.org/10.1002/qj.2079, 2013.
Oh, H., Kim, G. U., Chu, J. E., Lee, K., and Jeong, J. Y.:
The record-breaking 2022 long-lasting marine heatwaves in the East China Sea, Environ. Res. Lett., 18, 064015, https://doi.org/10.1088/1748-9326/acd267, 2023.
Oliver, E. C., Donat, M. G., Burrows, M. T., Moore, P. J., Smale, D. A., Alexander, L. V., Benthuysen, J. A., Feng, M., Sen Gupta, A., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., Strauband, S. C., and Wernberg, T.:
Longer and more frequent marine heatwaves over the past century, Nat. Commun., 9, 1–12, https://doi.org/10.1038/s41467-018-03732-9, 2018.
Oliver, E. C. J., Burrows, M. T., Donat, M. G., Sen Gupta, A., Alexander, L. V., Perkins-Kirkpatrick, S. E., Benthuysen, J. A., Hobday, A. J., Holbrook, N. J., Moore, P. J., Thomsen, M. S., Wernberg, T., and Smale, D. A.:
Projected Marine Heatwaves in the 21st Century and the Potential for Ecological Impact, Frontiers in Marine Science, 6, 1–12, https://doi.org/10.3389/fmars.2019.00734, 2019.
Oliver, E. C., Benthuysen, J. A., Darmaraki, S., Donat, M. G., Hobday, A. J., Holbrook, N. J., Schlegel, R. W., and Sen Gupta, A.: Marine heatwaves, Ann. Rev. Mar. Sci., 13, 313–342, 2021.
Plecha, S. and Soares, P. M. M.:
Global marine heatwave events using the new CMIP6 multi-model ensemble: from shortcomings in present climate to future projections, Environ. Res. Lett., 15, 124058, https://doi.org/10.1088/1748-9326/abc847, 2020.
Plecha, S. M., Soares, P. M. M., Silva-Fernandes, S. M., and Cabos, W.:
On the uncertainty of future projections of Marine Heatwave events in the North Atlantic Ocean, Clim. Dynam., 56, 2027–2056, https://doi.org/10.1007/s00382-020-05529-3, 2021.
Poppeschi, C., Charria, G., Goberville, E., Rimmelin-Maury, P., Barrier, N., Petton, S., Unterberger, M., Grossteffan, E., Repecaud, M., Quemener, L., Theetten, S., Le Roux, J.-F., and Tréguer, P.:
Unraveling salinity extreme events in coastal environments: A winter focus on the bay of brest, Frontiers in Marine Science, 8, 705403, https://doi.org/10.3389/fmars.2021.705403, 2021.
Poppeschi, C., Charria, G., Daniel, A., Verney, R., Rimmelin-Maury, P., Retho, M., Goberville, E., Grossteffan, E., and Plus, M.:
Interannual variability of the initiation of the phytoplankton growing period in two French coastal ecosystems, Biogeosciences, 19, 5667–5687, https://doi.org/10.5194/bg-19-5667-2022, 2022.
Reynolds, R. W., Smith, T. M., Liu, C., Chelton, D. B., Casey, K. S., and Schlax, M. G.:
Daily high-resolution-blended analyses for sea surface temperature, J. Climate, 20, 5473–5496, 2007.
Ruthrof, K. X., Breshears, D. D., Fontaine, J. B., Froend, R. H., Matusick, G., Kala, J., Miller, B. P., Mitchell, P. J., Wilson, S. K., van Keulen, M., Enright, N. J., Law, D. J., Wernberg, T., and Hardy, G. E. S. J.:
Subcontinental heat wave triggers terrestrial and marine, multi-taxa responses, Sci. Rep.-UK, 8, 1–9, https://doi.org/10.1038/s41598-018-31236-5, 2018.
Savu, A.:
Temperature Highs, Climate Change Salience, and Eco-Anxiety: Early Evidence from the 2022 United Kingdom Heatwave, SSRN, https://doi.org/10.2139/ssrn.4294843, 2022.
Seuront, L., Nicastro, K. R., Zardi, G. I., and Goberville, E.:
Decreased thermal tolerance under recurrent heat stress conditions explains summer mass mortality of the blue mussel Mytilus edulis, Sci. Rep.-UK, 9, 1–14, https://doi.org/10.1038/s41598-019-53580-w, 2019.
Schlegel, R. W., Darmaraki, S., Benthuysen, J. A., Filbee-Dexter, K., and Oliver, E. C. J.:
Marine cold-spells, Prog. Oceanogr., 198, 102684, https://doi.org/10.1016/j.pocean.2021.102684, 2021.
Simon, A., Plecha, S. M., Russo, A., Teles-Machado, A., Donat, M. G., Auger, P. A., and Trigo, R. M.:
Hot and cold marine extreme events in the Mediterranean over the period 1982–2021, Frontiers in Marine Science, 9, 1–12, https://doi.org/10.3389/fmars.2022.892201, 2022.
Sims, D. W., Wearmouth, V. J., Genner, M. J., Southward, A. J., and Hawkins, S. J.:
Low-temperature-driven early spawning migration of a temperate marine fish, J. Anim. Ecol., 73, 333–341, 2004.
Smale, D. A., Wernberg, T., Oliver, E. C. J., Thomsen, M., Harvey, B. P., Straub, S. C., Burrows, M. T., Alexander, L. V., Benthuysen, J. A., Donat, M. G., Feng, M., Hobday, A. J., Holbrook, N. J., Perkins-Kirkpatrick, S. E., Scannell, H. A., Sen Gupta, A., Payne, B. L., and Moore, P. J.:
Marine heatwaves threaten global biodiversity and the provision of ecosystem services, Nat. Clim. Change, 9, 306–312, https://doi.org/10.1038/s41558-019-0412-1, 2019.
Wang, Y., Kajtar, J. B., Alexander, L. V., Pilo, G. S., and Holbrook, N. J.:
Understanding the changing nature of marine cold-spells, Geophys. Res. Lett., 49, e2021GL097002, https://doi.org/10.1029/2021GL097002, 2022.
Wethey, D. S. and Woodin, S. A.:
Climate change and Arenicola marina: Heat waves and the southern limit of an ecosystem engineer, Estuar. Coast. Shelf S., 276, 108015, https://doi.org/10.1016/j.ecss.2022.108015, 2022.
Wernberg, T., Bennett, S., Babcock, R. C., De Bettignies, T., Cure, K., Depczynski, M., Dufois, F., Fromont, J., Fulton, C. J., Hovey, R. K., Harvey, E. S., Holmes, T. H., Kendrick, G. A., Radford, B., Santana-Garcon, J., Saunders, B. J., Smale, D. A., Thomsen, M. S., Tuckett, C. A., Tuya, F., Vanderklift, M. A., and Wilson, S.:
Climate-driven regime shift of a temperate marine ecosystem, Science, 353, 169–172, https://doi.org/10.1126/science.aad8745, 2016.
Vogel, M. M., Zscheischler, J., Wartenburger, R., Dee, D., and Seneviratne, S. I.:
Concurrent 2018 hot extremes across Northern Hemisphere due to human-induced climate change, Earths Future, 7, 692–703, https://doi.org/10.1029/2019EF001189, 2019.
Yao, Y., Wang, C., and Fu, Y.:
Global Marine Heatwaves and Cold-Spells in Present Climate to Future Projections, Earths Future, 10, e2022EF002787, https://doi.org/10.1029/2022EF002787, 2022.
Yiou, P., Cattiaux, J., Faranda, D., Kadygrov, N., Jézéquel, A., Naveau, P., Ribes, A., Robin, Y., Thao, S., Oldenborgh, G. J., and Vrac, M.:
Analyses of the Northern European summer heatwave of 2018, B. Am. Meteorol. Soc., 101, S35-S40, https://doi.org/10.1175/BAMS-D-19-0170.1, 2020.
Short summary
In the coastal northeastern Atlantic and for three subregions (the English Channel, Bay of Brest and Bay of Biscay) over the period 1982–2022, marine heatwaves are more frequent and longer and extend over larger areas, while the opposite is seen for marine cold spells. This result is obtained with both in situ and satellite datasets, although the satellite dataset underestimates the amplitude of these extremes.
In the coastal northeastern Atlantic and for three subregions (the English Channel, Bay of Brest...