Articles | Volume 19, issue 1
https://doi.org/10.5194/os-19-101-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-19-101-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Unifying biological field observations to detect and compare ocean acidification impacts across marine species and ecosystems: what to monitor and why
Steve Widdicombe
Plymouth Marine Laboratory (PML), Plymouth, PL1 3DH, UK
Kirsten Isensee
Intergovernmental Oceanographic Commission of the United Nations
Educational, Scientific and Cultural Organization, Paris, 75732, France
Yuri Artioli
Plymouth Marine Laboratory (PML), Plymouth, PL1 3DH, UK
Juan Diego Gaitán-Espitia
The Swire Institute of Marine Science, School of Biological Sciences,
The Hong Kong University, Hong Kong, China
Claudine Hauri
International Arctic Research Center, University of Alaska Fairbanks,
Fairbanks, AK 99775-0100, USA
Janet A. Newton
Applied Physics Laboratory and College of the Environment, University
of Washington, Seattle, WA 98105-6698, USA
Mark Wells
School of Marine Sciences, The University of Maine, Orono, ME
04469-5706, USA
State Key Laboratory of Satellite Ocean Environment Dynamics, Second
Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China
Sam Dupont
CORRESPONDING AUTHOR
Department of Biological and Environmental Sciences, University of
Gothenburg, Fiskebäckskil, 45178, Sweden
Radioecology Laboratory International Atomic Energy Agency (IAEA),
Marine Laboratories, 98000, Principality of Monaco
Related authors
Phillip Williamson, Hans-Otto Pörtner, Steve Widdicombe, and Jean-Pierre Gattuso
Biogeosciences, 18, 1787–1792, https://doi.org/10.5194/bg-18-1787-2021, https://doi.org/10.5194/bg-18-1787-2021, 2021
Short summary
Short summary
The reliability of ocean acidification research was challenged in early 2020 when a high-profile paper failed to corroborate previously observed impacts of high CO2 on the behaviour of coral reef fish. We now know the reason why: the
replicatedstudies differed in many ways. Open-minded and collaborative assessment of all research results, both negative and positive, remains the best way to develop process-based understanding of the impacts of ocean acidification on marine organisms.
Elizabeth J. Drenkard, Charles A. Stock, Andrew C. Ross, Yi-Cheng Teng, Theresa Morrison, Wei Cheng, Alistair Adcroft, Enrique Curchitser, Raphael Dussin, Robert Hallberg, Claudine Hauri, Katherine Hedstrom, Albert Hermann, Michael G. Jacox, Kelly A. Kearney, Remi Pages, Darren J. Pilcher, Mercedes Pozo Buil, Vivek Seelanki, and Niki Zadeh
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-195, https://doi.org/10.5194/gmd-2024-195, 2024
Preprint under review for GMD
Short summary
Short summary
We made a new regional ocean model to assist fisheries and ecosystem managers make decisions in the Northeast Pacific Ocean (NEP). We found that the model did well simulating past ocean conditions like temperature, and nutrient and oxygen levels, and can even reproduce metrics used by and important to ecosystem managers.
Robert J. Wilson, Yuri Artioli, Giovanni Galli, James Harle, Jason Holt, Ana M. Queiros, and Sarah Wakelin
EGUsphere, https://doi.org/10.5194/egusphere-2024-3810, https://doi.org/10.5194/egusphere-2024-3810, 2024
Short summary
Short summary
Marine heatwaves are of growing concern around the world. We use a state of the art ensemble of downscaled climate models to project how often heatwaves will occur in future across northwest Europe under a high-emissions scenario. The projections show that without emissions reductions, heatwaves will occur more than half of the time in future. We show that the seafloor is expected to experience much more frequent heatwaves than the sea surface in future.
Claudine Hauri, Brita Irving, Dan Hayes, Ehsan Abdi, Jöran Kemme, Nadja Kinski, and Andrew M. P. McDonnell
Ocean Sci., 20, 1403–1421, https://doi.org/10.5194/os-20-1403-2024, https://doi.org/10.5194/os-20-1403-2024, 2024
Short summary
Short summary
Here, we describe several sea trials with the newly developed CO2 Seaglider in the Gulf of Alaska. Data evaluation with discrete water and underway samples suggests nearly "weather-quality" CO2 data as defined by the Global Ocean Acidification Network.
Giovanni Galli, Sarah Wakelin, James Harle, Jason Holt, and Yuri Artioli
Biogeosciences, 21, 2143–2158, https://doi.org/10.5194/bg-21-2143-2024, https://doi.org/10.5194/bg-21-2143-2024, 2024
Short summary
Short summary
This work shows that, under a high-emission scenario, oxygen concentration in deep water of parts of the North Sea and Celtic Sea can become critically low (hypoxia) towards the end of this century. The extent and frequency of hypoxia depends on the intensity of climate change projected by different climate models. This is the result of a complex combination of factors like warming, increase in stratification, changes in the currents and changes in biological processes.
Hannah Chawner, Eric Saboya, Karina E. Adcock, Tim Arnold, Yuri Artioli, Caroline Dylag, Grant L. Forster, Anita Ganesan, Heather Graven, Gennadi Lessin, Peter Levy, Ingrid T. Luijkx, Alistair Manning, Penelope A. Pickers, Chris Rennick, Christian Rödenbeck, and Matthew Rigby
Atmos. Chem. Phys., 24, 4231–4252, https://doi.org/10.5194/acp-24-4231-2024, https://doi.org/10.5194/acp-24-4231-2024, 2024
Short summary
Short summary
The quantity of atmospheric potential oxygen (APO), derived from coincident measurements of carbon dioxide (CO2) and oxygen (O2), has been proposed as a tracer for fossil fuel CO2 emissions. In this model sensitivity study, we examine the use of APO for this purpose in the UK and compare our model to observations. We find that our model simulations are most sensitive to uncertainties relating to ocean fluxes and boundary conditions.
Simone R. Alin, Jan A. Newton, Richard A. Feely, Samantha Siedlecki, and Dana Greeley
Biogeosciences, 21, 1639–1673, https://doi.org/10.5194/bg-21-1639-2024, https://doi.org/10.5194/bg-21-1639-2024, 2024
Short summary
Short summary
We provide a new multi-stressor data product that allows us to characterize the seasonality of temperature, O2, and CO2 in the southern Salish Sea and delivers insights into the impacts of major marine heatwave and precipitation anomalies on regional ocean acidification and hypoxia. We also describe the present-day frequencies of temperature, O2, and ocean acidification conditions that cross thresholds of sensitive regional species that are economically or ecologically important.
Claudine Hauri, Brita Irving, Sam Dupont, Rémi Pagés, Donna D. W. Hauser, and Seth L. Danielson
Biogeosciences, 21, 1135–1159, https://doi.org/10.5194/bg-21-1135-2024, https://doi.org/10.5194/bg-21-1135-2024, 2024
Short summary
Short summary
Arctic marine ecosystems are highly susceptible to impacts of climate change and ocean acidification. We present pH and pCO2 time series (2016–2020) from the Chukchi Ecosystem Observatory and analyze the drivers of the current conditions to get a better understanding of how climate change and ocean acidification could affect the ecological niches of organisms.
Simone R. Alin, Jan A. Newton, Richard A. Feely, Dana Greeley, Beth Curry, Julian Herndon, and Mark Warner
Earth Syst. Sci. Data, 16, 837–865, https://doi.org/10.5194/essd-16-837-2024, https://doi.org/10.5194/essd-16-837-2024, 2024
Short summary
Short summary
The Salish cruise data product provides 2008–2018 oceanographic data from the southern Salish Sea and nearby coastal sampling stations. Temperature, salinity, oxygen, nutrient, and dissolved inorganic carbon measurements from 715 oceanographic profiles will facilitate further study of ocean acidification, hypoxia, and marine heatwave impacts in this region. Three subsets of the compiled datasets from 35 cruises are available with consistent formatting and multiple commonly used units.
Sam Dupont and Marc Metian
State Planet, 2-oae2023, 4, https://doi.org/10.5194/sp-2-oae2023-4-2023, https://doi.org/10.5194/sp-2-oae2023-4-2023, 2023
Short summary
Short summary
This chapter summarizes some key general considerations for experimental research methods and compares the strengths and weaknesses of the different approaches. It also considers best practices relevant to ocean alkalinization enhancement, such as the need to properly monitor and consider the addition of trace elements and byproducts and potential interactions with other naturally occurring drivers.
Christoph Heinze, Thorsten Blenckner, Peter Brown, Friederike Fröb, Anne Morée, Adrian L. New, Cara Nissen, Stefanie Rynders, Isabel Seguro, Yevgeny Aksenov, Yuri Artioli, Timothée Bourgeois, Friedrich Burger, Jonathan Buzan, B. B. Cael, Veli Çağlar Yumruktepe, Melissa Chierici, Christopher Danek, Ulf Dieckmann, Agneta Fransson, Thomas Frölicher, Giovanni Galli, Marion Gehlen, Aridane G. González, Melchor Gonzalez-Davila, Nicolas Gruber, Örjan Gustafsson, Judith Hauck, Mikko Heino, Stephanie Henson, Jenny Hieronymus, I. Emma Huertas, Fatma Jebri, Aurich Jeltsch-Thömmes, Fortunat Joos, Jaideep Joshi, Stephen Kelly, Nandini Menon, Precious Mongwe, Laurent Oziel, Sólveig Ólafsdottir, Julien Palmieri, Fiz F. Pérez, Rajamohanan Pillai Ranith, Juliano Ramanantsoa, Tilla Roy, Dagmara Rusiecka, J. Magdalena Santana Casiano, Yeray Santana-Falcón, Jörg Schwinger, Roland Séférian, Miriam Seifert, Anna Shchiptsova, Bablu Sinha, Christopher Somes, Reiner Steinfeldt, Dandan Tao, Jerry Tjiputra, Adam Ulfsbo, Christoph Völker, Tsuyoshi Wakamatsu, and Ying Ye
Biogeosciences Discuss., https://doi.org/10.5194/bg-2023-182, https://doi.org/10.5194/bg-2023-182, 2023
Preprint under review for BG
Short summary
Short summary
For assessing the consequences of human-induced climate change for the marine realm, it is necessary to not only look at gradual changes but also at abrupt changes of environmental conditions. We summarise abrupt changes in ocean warming, acidification, and oxygen concentration as the key environmental factors for ecosystems. Taking these abrupt changes into account requires greenhouse gas emissions to be reduced to a larger extent than previously thought to limit respective damage.
Aaron Chesler, Dominic Winski, Karl Kreutz, Bess Koffman, Erich Osterberg, David Ferris, Zayta Thundercloud, Joseph Mohan, Jihong Cole-Dai, Mark Wells, Michael Handley, Aaron Putnam, Katherine Anderson, and Natalie Harmon
Clim. Past, 19, 477–492, https://doi.org/10.5194/cp-19-477-2023, https://doi.org/10.5194/cp-19-477-2023, 2023
Short summary
Short summary
Ice core microparticle data typically use geometry assumptions to calculate particle mass and flux. We use dynamic particle imaging, a novel technique for ice core dust analyses, combined with traditional laser particle counting and Coulter counter techniques to assess particle shape in the South Pole Ice Core (SPC14) spanning 50–16 ka. Our results suggest that particles are dominantly ellipsoidal in shape and that spherical assumptions overestimate particle mass and flux.
Shuangling Chen, Mark L. Wells, Rui Xin Huang, Huijie Xue, Jingyuan Xi, and Fei Chai
Biogeosciences, 18, 5539–5554, https://doi.org/10.5194/bg-18-5539-2021, https://doi.org/10.5194/bg-18-5539-2021, 2021
Short summary
Short summary
Subduction transports surface waters to the oceanic interior, which can supply significant amounts of carbon and oxygen to the twilight zone. Using a novel BGC-Argo dataset covering the western North Pacific, we successfully identified the imprints of episodic shallow subduction patches. These subduction patches were observed mainly in spring and summer (70.6 %), and roughly half of them extended below ~ 450 m, injecting carbon- and oxygen-enriched waters into the ocean interior.
Samantha A. Siedlecki, Darren Pilcher, Evan M. Howard, Curtis Deutsch, Parker MacCready, Emily L. Norton, Hartmut Frenzel, Jan Newton, Richard A. Feely, Simone R. Alin, and Terrie Klinger
Biogeosciences, 18, 2871–2890, https://doi.org/10.5194/bg-18-2871-2021, https://doi.org/10.5194/bg-18-2871-2021, 2021
Short summary
Short summary
Future ocean conditions can be simulated using projected trends in fossil fuel use paired with Earth system models. Global models generally do not include local processes important to coastal ecosystems. These coastal processes can alter the degree of change projected. Higher-resolution models that include local processes predict modified changes in carbon stressors when compared to changes projected by global models in the California Current System.
Phillip Williamson, Hans-Otto Pörtner, Steve Widdicombe, and Jean-Pierre Gattuso
Biogeosciences, 18, 1787–1792, https://doi.org/10.5194/bg-18-1787-2021, https://doi.org/10.5194/bg-18-1787-2021, 2021
Short summary
Short summary
The reliability of ocean acidification research was challenged in early 2020 when a high-profile paper failed to corroborate previously observed impacts of high CO2 on the behaviour of coral reef fish. We now know the reason why: the
replicatedstudies differed in many ways. Open-minded and collaborative assessment of all research results, both negative and positive, remains the best way to develop process-based understanding of the impacts of ocean acidification on marine organisms.
Fei Chai, Yuntao Wang, Xiaogang Xing, Yunwei Yan, Huijie Xue, Mark Wells, and Emmanuel Boss
Biogeosciences, 18, 849–859, https://doi.org/10.5194/bg-18-849-2021, https://doi.org/10.5194/bg-18-849-2021, 2021
Short summary
Short summary
The unique observations by a Biogeochemical Argo float in the NW Pacific Ocean captured the impact of a super typhoon on upper-ocean physical and biological processes. Our result reveals typhoons can increase the surface chlorophyll through strong vertical mixing without bringing nutrients upward from the depth. The vertical redistribution of chlorophyll contributes little to enhance the primary production, which is contradictory to many former satellite-based studies related to this topic.
Claudine Hauri, Cristina Schultz, Katherine Hedstrom, Seth Danielson, Brita Irving, Scott C. Doney, Raphael Dussin, Enrique N. Curchitser, David F. Hill, and Charles A. Stock
Biogeosciences, 17, 3837–3857, https://doi.org/10.5194/bg-17-3837-2020, https://doi.org/10.5194/bg-17-3837-2020, 2020
Short summary
Short summary
The coastal ecosystem of the Gulf of Alaska (GOA) is especially vulnerable to the effects of ocean acidification and climate change. To improve our conceptual understanding of the system, we developed a new regional biogeochemical model setup for the GOA. Model output suggests that bottom water is seasonally high in CO2 between June and January. Such extensive periods of reoccurring high CO2 may be harmful to ocean acidification-sensitive organisms.
Adrienne J. Sutton, Richard A. Feely, Stacy Maenner-Jones, Sylvia Musielwicz, John Osborne, Colin Dietrich, Natalie Monacci, Jessica Cross, Randy Bott, Alex Kozyr, Andreas J. Andersson, Nicholas R. Bates, Wei-Jun Cai, Meghan F. Cronin, Eric H. De Carlo, Burke Hales, Stephan D. Howden, Charity M. Lee, Derek P. Manzello, Michael J. McPhaden, Melissa Meléndez, John B. Mickett, Jan A. Newton, Scott E. Noakes, Jae Hoon Noh, Solveig R. Olafsdottir, Joseph E. Salisbury, Uwe Send, Thomas W. Trull, Douglas C. Vandemark, and Robert A. Weller
Earth Syst. Sci. Data, 11, 421–439, https://doi.org/10.5194/essd-11-421-2019, https://doi.org/10.5194/essd-11-421-2019, 2019
Short summary
Short summary
Long-term observations are critical records for distinguishing natural cycles from climate change. We present a data set of 40 surface ocean CO2 and pH time series that suggests the time length necessary to detect a trend in seawater CO2 due to uptake of atmospheric CO2 varies from 8 years in the least variable ocean regions to 41 years in the most variable coastal regions. This data set provides a tool to evaluate natural cycles of ocean CO2, with long-term trends emerging as records lengthen.
Claudine Hauri, Seth Danielson, Andrew M. P. McDonnell, Russell R. Hopcroft, Peter Winsor, Peter Shipton, Catherine Lalande, Kathleen M. Stafford, John K. Horne, Lee W. Cooper, Jacqueline M. Grebmeier, Andrew Mahoney, Klara Maisch, Molly McCammon, Hank Statscewich, Andy Sybrandy, and Thomas Weingartner
Ocean Sci., 14, 1423–1433, https://doi.org/10.5194/os-14-1423-2018, https://doi.org/10.5194/os-14-1423-2018, 2018
Short summary
Short summary
The Arctic Ocean is changing rapidly. In order to track these changes, we developed and deployed a long-term marine ecosystem observatory in the Chukchi Sea. It helps us to better understand currents, waves, sea ice, salinity, temperature, nutrient and carbon concentrations, oxygen, phytoplankton blooms and export, zooplankton abundance and vertical migration, and the occurrence of fish and marine mammals throughout the year, even during the ice covered winter months.
Andrea J. Fassbender, Simone R. Alin, Richard A. Feely, Adrienne J. Sutton, Jan A. Newton, Christopher Krembs, Julia Bos, Mya Keyzers, Allan Devol, Wendi Ruef, and Greg Pelletier
Earth Syst. Sci. Data, 10, 1367–1401, https://doi.org/10.5194/essd-10-1367-2018, https://doi.org/10.5194/essd-10-1367-2018, 2018
Short summary
Short summary
Ocean acidification (OA) is difficult to identify in coastal marine waters due to the magnitude of natural variability and lack of historical baseline information. To provide regional context for ongoing research, adaptation, and management efforts, we have collated high-quality publicly available data to characterize seasonal cycles of OA-relevant parameters in the Pacific Northwest marine surface waters. Large nonstationary chemical gradients from the open ocean into the Salish Sea are found.
Aisling Fontanini, Alexandra Steckbauer, Sam Dupont, and Carlos M. Duarte
Biogeosciences, 15, 3717–3729, https://doi.org/10.5194/bg-15-3717-2018, https://doi.org/10.5194/bg-15-3717-2018, 2018
Short summary
Short summary
Invertebrate species of the Gullmar Fjord (Sweden) were exposed to four different treatments (high/low oxygen and low/high CO2) and respiration measured. Respiration responses of species of contrasting habitats and life-history strategies to single and multiple stressors was evaluated. Results show that the responses of the respiration were highly species specific as we observed both synergetic as well as antagonistic responses, and neither phylum nor habitat explained trends in respiration.
Peter von Dassow, Francisco Díaz-Rosas, El Mahdi Bendif, Juan-Diego Gaitán-Espitia, Daniella Mella-Flores, Sebastian Rokitta, Uwe John, and Rodrigo Torres
Biogeosciences, 15, 1515–1534, https://doi.org/10.5194/bg-15-1515-2018, https://doi.org/10.5194/bg-15-1515-2018, 2018
Short summary
Short summary
Coccolithophores are microalgae which produce much of the calcium carbonate in the ocean, important to making organic carbon sink to great depths, and they may be negatively affected by the decline in ocean pH as CO2 rises. Can these important microbes adapt? This study found that coccolithophores inhabiting waters naturally low in pH may have already reached the limit of their ability to adapt. This suggests that how the ocean's biota sequester carbon will be strongly affected in the future.
Momme Butenschön, James Clark, John N. Aldridge, Julian Icarus Allen, Yuri Artioli, Jeremy Blackford, Jorn Bruggeman, Pierre Cazenave, Stefano Ciavatta, Susan Kay, Gennadi Lessin, Sonja van Leeuwen, Johan van der Molen, Lee de Mora, Luca Polimene, Sevrine Sailley, Nicholas Stephens, and Ricardo Torres
Geosci. Model Dev., 9, 1293–1339, https://doi.org/10.5194/gmd-9-1293-2016, https://doi.org/10.5194/gmd-9-1293-2016, 2016
Short summary
Short summary
ERSEM 15.06 is a model for marine biogeochemistry and the lower trophic levels of the marine food web. It comprises a pelagic and benthic sub-model including the microbial food web and the major biogeochemical cycles of carbon, nitrogen, phosphorus, silicate, and iron using dynamic stochiometry. Further features include modules for the carbonate system and calcification. We present full mathematical descriptions of all elements along with examples at various scales up to 3-D applications.
Y. Artioli, J. C. Blackford, G. Nondal, R. G. J. Bellerby, S. L. Wakelin, J. T. Holt, M. Butenschön, and J. I. Allen
Biogeosciences, 11, 601–612, https://doi.org/10.5194/bg-11-601-2014, https://doi.org/10.5194/bg-11-601-2014, 2014
J. Holt, C. Schrum, H. Cannaby, U. Daewel, I. Allen, Y. Artioli, L. Bopp, M. Butenschon, B. A. Fach, J. Harle, D. Pushpadas, B. Salihoglu, and S. Wakelin
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-1909-2014, https://doi.org/10.5194/bgd-11-1909-2014, 2014
Revised manuscript not accepted
C. Hauri, N. Gruber, M. Vogt, S. C. Doney, R. A. Feely, Z. Lachkar, A. Leinweber, A. M. P. McDonnell, M. Munnich, and G.-K. Plattner
Biogeosciences, 10, 193–216, https://doi.org/10.5194/bg-10-193-2013, https://doi.org/10.5194/bg-10-193-2013, 2013
Cited articles
Andersson, P., Håkansson, B., Håkansson, J., Sahlsten, E., Havenhand, J.,
Thorndyke, M., and Dupont, S.: Marine acidification – On effects and
monitoring of marine acidification in the seas surrounding Sweden, SMHI
report, Oceanografi, 62 pp., 2008.
Bean, T. P., Greenwood, N., Beckett, R., Biermann, L., Bignell, J. P., Brant,
L., Copp, G. H., Devlin, M. J., Dye, S., Feist, S. W., Fernand, L., Foden, D.,
Hyder, K., Jenkins, C. M., van der Kooij, J., Kröger, S., Kupschus, S., Leech,
C., Leonard, K. S., Lynam, C. P., Lyons, B. P., Maes, T., Nicolaus, E. E. M.,
Malcolm, S. J., McIlwaine, P., Merchant, N. D., Paltriguera, L., Pearce, D. J.,
Pitois, S. G., Stebbing, P. D., Townhill, B., Ware, S., Williams, O., and Righton,
D.: A Review of the Tools Used for Marine Monitoring in the UK: Combining
Historic and Contemporary Methods with Modeling and Socioeconomics to
Fulfill Legislative Needs and Scientific Ambitions, Front. Mar.
Sci., 4, 263, https://doi.org/10.3389/fmars.2017.00263, 2017.
Beardall, J. and Raven, J. A.: The potential effects of global climate change
on microalgal photosynthesis, growth and ecology, Phycologia, 43, 26–40,
2004.
Beardall, J., Stojkovic, S., and Larsen, S.: Living in a high CO2 world:
impacts of global climate change on marine phytoplankton, Plant Ecol. Div., 2, 191–205, 2009.
Bednaršek, N., Feely, R. A., Reum, J. P. C., Peterson, B., Menkel, J., Alin,
S. R., and Hales, B.: Limacina helicina shell dissolution as an indicator of declining habitat
suitability owing to ocean acidification in the California Current
Ecosystem, P. Roy. Soc. B-Bio., 281, 20140123, https://doi.org/10.1098/rspb.2014.0123, 2014.
Bednaršek, N., Feely, R. A., Tolimieri, N., Hermann, A. J., Siedlecki, S. A.,
Waldbusser, G. G., McElhany, P., Alin, S. R., Klinger, T., Moore-Maley, B., and
Pörtner, H. O.: Exposure history determines pteropod vulnerability to
ocean acidification along the US West Coast, Sci. Rep., 7, 1–12,
2017.
Bednaršek, N., Feely, R. A., Howes, E. L., Hunt, B., Kessouri, F., and
León, P.: Systematic review and meta-analysis towards synthesis of
thresholds of ocean acidification impacts on calcifying pteropods and
interactions with warming, Front. Mar. Sci., 6, 227, https://doi.org/10.1371/journal.pone.0094388, 2019.
Bednaršek, N., Newton, J. A., Beck, M. W., Alin, S. R., Feely, R. A.,
Christman, N. R., and Klinger, T.: Severe biological effects under present-day
estuarine acidification in the seasonally variable Salish Sea, Sci. Total
Environ., 15, 142689, https://doi.org/10.3389/fmars.2019.00227, 2021a.
Bednaršek, N., Calosi, P., Feely, R. A., Ambrose, R., Byrne, M., Chan, K. Y.
K., Dupont, S., Padilla-Gamiño, J. L., Spicer, J. I., Kessouri, F., Roethler,
M., Sutula, M., and Weisberg, S. B.: Synthesis of Thresholds of Ocean
Acidification Impacts on Echinoderms, Front. Mar. Sci., 8,
602601, https://doi.org/10.1016/j.scitotenv.2020.142689, 2021b.
Bibby, R., Widdicombe, S., Parry, H., Spicer, J., and Pipe, R.: Effects of ocean
acidification on the immune response of the blue mussel Mytilus edulis, Aquat. Biol.,
2, 67–74, 2008.
Bitter, M. C., Kapsenberg, L., Gattuso, J.-P., and Pfister, C. A.: Standing
genetic variation fuels rapid adaptation to ocean acidification, Nat. Commun., 10, 1–10, 2019.
Bramanti, L., Iannelli, M., Fan, T. Y., and Edmunds, P. J.: Using demographic
models to project the effects of climate change on scleractinian corals:
Pocillopora damicornis as a case study, Coral Reefs, 34, 505–515, 2015.
Brey, T.: A multi-parameter artificial neural network model to estimate
macrobenthic invertebrate productivity and production, Limnol.
Ocean.-Meth., 10, 581–589, 2012.
Brown, C. J., Fulton, E. A., Hobday, A. J., Matear, R. J., Possingham, H. P., Bulman,
C., Christensen, V., Forrest, R. E., Gehrke, P. C., Gribble, N. A., Griffiths, S. P.,
Lozano-Montes, H., Martin, J. M., Metcalf, S., Okey, T. A., Watson, R., and
Richardson, A. J.: Effects of climate-driven primary production change on
marine food webs: implications for fisheries and conservation, Global Change Biol., 16, 1194–1212, 2010.
Busch, D. S. and McElhany, P.: Estimates of the Direct Effect of Seawater pH on
the Survival Rate of Species Groups in the California Current Ecosystem,
PLoS ONE, 11, e0160669, https://doi.org/10.3389/fmars.2021.602601, 2016.
Calbet, A., Sazhin, A. F., Nejstgaard, J. C., Berger, S. A., Tait, Z. S., Olmos,
L., Sousoni, D., Isari, S., Martínez, R. A., Bouquet, J.-M., Thompson, E. M.,
Båmstedt, U., and Jakobsen, H. H.: Future Climate Scenarios for a Coastal
Productive Planktonic Food Web Resulting in Microplankton Phenology Changes
and Decreased Trophic Transfer Efficiency, PLoS ONE, 9, e94388, https://doi.org/10.1371/journal.pone.0160669, 2014.
Calosi, P., Melatunan, S., Turner, L. M., Artioli, Y., Davidson, R. L., Byrne, J.
J., Viant, M. R., Widdicombe, S., and Rundle, S. D.: Regional adaptation
defines sensitivity to future ocean acidification, Nat. Commun.,
8, 1–10, 2017.
Charmantier, A. and Gienapp, P.: Climate change and timing of avian breeding
and migration: evolutionary versus plastic changes, Evol. Appl., 7, 15–28, 2014.
Clark, M. S., Peck, L. S., Arivalagan, J., Backeljau, T., Berland, S., Cardoso, J.
C. R., Caurcel, C., Chapelle, G., De Noia, M., Dupont, S., Gharbi, K., Hoffman, J.
I., Last, K. S., Marie, A., Melzner, F., Michalek, K., Morris, J., Power, D. M.,
Ramesh, K., Sanders, T., Sillanpää, K., Sleight, V. A., Stewart-Sinclair,
P. J., Sundell, K., Telesca, L., Vendrami, D. L. J., Ventura, A., Wilding, T. A.,
Yarra, T., and Harper, E. M.: Deciphering mollusc shell production: the roles
of genetic mechanisms through to ecology, aquaculture and biomimetics,
Biol. Rev., 95, 1812–1837, https://doi.org/10.1111/brv.12640, 2020.
Cohen, S., Krueger, T., and Fine, M.: Measuring coral calcification under ocean
acidification: methodological considerations for the 45 Ca-uptake and total
alkalinity anomaly technique, Peer J., 5, e3749, https://doi.org/10.7717/peerj.3749,
Free PMC article 2017.
Collins, S., Boyd, P. W., and Doblin, M. A.: Evolution, Microbes, and Changing
Ocean Conditions, Annu. Rev. Mar. Sci., 1, 181–208, 2020.
Dellisanti, W., Tsang, R. H. L., Ang, P., Wu, J., Wells, M. L., and Chan, L.
L.: A Diver-Portable Respirometry System for in-situ Short-Term Measurements
of Coral Metabolic Health and Rates of Calcification, Front. Mar.
Sci., 7, 932, https://doi.org/10.3389/fmars.2020.571451, 2020.
De Wit, P., Dupont, S., and Thor, P.: Selection on oxidative phosphorylation
and ribosomal structure as a multigenerational response to ocean
acidification in the common copepod Pseudocalanus acuspes, Evol. Appl., 9,
1112–1123, 2016.
Doney, S. C., Busch, D. S., Cooley, S. R., and Kroeker, K. J.: The Impacts of
Ocean Acidification on Marine Ecosystems and Reliant Human Communities,
Annu. Rev. Environ. Res., 45, 83–112, 2020.
Donohue, P. J., Calosi, P., Bates, A. H., Laverock, B., Rastrick, S., Mark, F. C.,
Strobel, A., and Widdicombe, S.: Impact of exposure to elevated pCO2 on
the physiology and behaviour of an important ecosystem engineer, the
burrowing shrimp Upogebia deltaura, Aquat. Biol., 15, 73–86, 2012.
Dorey, N., Lancon, P., Thorndyke, M., and Dupont, S.: Assessing physiological
tipping point for sea urchin larvae exposed to a broad range of pH, Global Change Biol., 19, 3355–3367, 2013.
Dupont, S., Gattuso, J.-P., Pörtner, H.-O., and Widdicombe, S.: Ocean
acidification science stands strong, Science, 372, 1160–1161, 2021.
Dupont, S., Moya, A., and Bailly, X.: Extreme resistance to CO2-induced
acidification in the photosymbiotic worm Symsagittifera roscoffensis, PloS One, 7, e29568, https://doi.org/10.1371/journal.pone.0029568, 2012.
Eddy, T. D., Bernhardt, J. R., Blanchard, J. L., Cheung, W. W. L., Colleter, M., du
Pontavice, H., Fulton, E. A., Gascuel, D., Kearney, K. A., Petrik, C. M., Roy, T.,
Rykaczewski, R. R., Selden, R., Stock, C. A., Wabnitz, C. C. C., and Watson, R. A.:
Energy Flow Through Marine Ecosystems: Confronting Transfer Efficiency,
Trends Ecol. Evol., 36, 76–86, 2021.
Enochs, I. C., Manzello, D. P., Donham, E. M., Kolodziej, G., Okano, R., Johnston,
L., Young, C., Iguel, J., Edwards, C. B., Fox, M. D., and Valentino, L.: Shift from
coral to macroalgae dominance on a volcanically acidified reef, Nat.
Clim. Change, 5, 1083–1088, 2015.
Falkenberg, L., Bellerby, R. G. J., Connell, S. D., Fleming, L. E., Maycock, B.,
Russell, B. D., Sullivan, F. J., and Dupont, S.: Ocean Acidification and Human
Health, Int. J. Environ. Res. Publ. Health,
17, 4563, https://doi.org/10.3390/ijerph17124563, 2020.
Feely, R. A., Alin, S. R., Carter, B., Bednaršek, N., Hales, B., Chan, F.,
Hill, T. M., Gaylord, B., Sanford, E., Byrne, R. H., and Sabine, C. L.: Chemical
and biological impacts of ocean acidification along the west coast of North
America, Estuar. Coast. Shelf Sci., 183, 260–270, 2016.
Figuerola, B., Hancock, A. M., Bax, N., Cummings, V. J., Downey, R., Griffiths, H.
J., Smith, J., and Stark, J. S.: A review and meta-analysis of potential
impacts of ocean acidification on marine calcifiers from the Southern Ocean,
Front. Mar. Sci., 8, 24, https://doi.org/10.3389/fmars.2021.584445, 2021.
Fitzer, S. C., Chan, V. B. S., Meng, Y., Rajan, K. C., Michio, S., Not, C.,
Toyofuku, T., Falkenberg, L., Byrne, M., Harvey, B. P., de Wit, P., Cusack, M.,
Gao, K. S., Taylor, P., Dupont, S., Hall-Spencer, J., and Thiyagarajan, V.:
Established and emerging techniques for characterizing the formation,
structure and performance of calcified structures under ocean acidification,
Oceanogr. Mar. Biol., 57, 89–125, https://doi.org/10.1201/9780429026379, 2021.
Gaitán-Espitia, J. D., Marshall, D., Dupont, S., Bacigalupe, L., Bodrossy,
L., and Hobday, A. J.: Geographic gradients in selection can reveal genetic
constraints for evolutionary responses to ocean acidification, Biol.
Lett., 13, 20160784, https://doi.org/10.1098/rsbl.2016.0784, 2017.
Gaston, K. J. and Spicer, J. I.: Biodiversity: An Introduction, Wiley-Blackwell, Hoboken, 208 pp., ISBN 978-1-405-11857-6, 2014.
Giordano, M., Beardall, J., and Raven, J. A.: CO2 concentrating mechanisms
in algae: mechanisms, environmental modulation, and evolution, Annu. Rev. Plant Biol., 56, 99–131, 2005.
Gledhill, M., Achterberg, E. P., Li, K., Mohamed, K. N., and Rijkenberg, M. J.
A.: Influence of ocean acidification on the complexation of iron and copper
by organic ligands in estuarine waters, Mar. Chem., 177, 421–433,
2015.
Goreau, T. F.: The Ecology of Jamaican Coral Reefs I, Species Composition and
Zonation, Ecology, 40, 67–90, 1959.
Gruber, N., Boyd, P. W., Frölicher, T. L., and Vogt, M.: Biogeochemical
extremes and compound events in the ocean, Nature, 600, 395–407, 2021.
Hallegraeff, G. M., Blackburn, S. I., Doblin, M. A., and Bolch, C. J.: Global
toxicology, ecophysiology and population relationships of the chainforming
PST dinoflagellate Gymnodinium catenatum, Harmful Algae, 14, 130–143, 2012.
Hall-Spencer, J. M., Rodolfo-Metalpa, R., Martin, S., Ransome, E., Fine, M.,
Turner, S. M., Rowley, S. J., Tedesco, D., and Buia, M. C.: Volcanic carbon dioxide
vents show ecosystem effects of ocean acidification, Nature, 454, 96–99,
2008.
Hancock, A. M., King, C. K., Stark, J. S., McMinn, A., and Davidson, A. T.: Effects
of ocean acidification on Antarctic marine organisms: A meta-analysis,
Ecol. Evol., 10, 4495–4514, 2020.
Hobday, A. J., Alexander, L. V., Perkins, S. E., Smale, D. A., Straub, S. C.,
Oliver, E. C. J., Benthuysen, J., Burrows, M. T., Donat, M. G., Feng, M., Holbrook,
N. J., Moore, P. J., Scannell, H. A., Gupta, A. S., and Wernberg, T.: A
hierarchical approach to defining marine heatwaves, Prog. Oceanogr., 141, 227–238, 2016.
Hofmann, G. E., O'Donnell, M. J., and Todgham, A. E.: Using functional genomics
to explore the effects of ocean acidification on calcifying marine
organisms, Mar. Ecol. Prog. Ser., 373, 219–225, 2008.
Hutchins, D. A. and Boyd, P. W.: Marine phytoplankton and the changing ocean
iron cycle, Nat. Clim. Change, 6, 1072–1079, 2016.
IOC-UNESCO: Indicator methodology for SDG 14.3.1: Indicator description,
Metadata template, Data template, Metadata instructions, Paris, France,
Intergovernmental Oceanographic Commission of UNESCO,
https://doi.org/10.25607/OBP-655, 2019.
IOC-UNESCO: Revised Draft Implementation Plan for the United Nations Decade
of Ocean Science for Sustainable Development, Paris, https://www.oceandecade.org/resource/108/Version-20-of-the-Ocean-Decade-Implementation-Plan (last access: 27 December 2022),
2020.
Jager, T., Ravagnan, E., and Dupont, S.: Near-future ocean acidification
impacts maintenance costs in sea-urchin larvae: identification of stress
factors and tipping points using a DEB modelling approach, J. Exp. Mar. Biol. Ecol., 474, 11–17, 2016.
Juranek, L. W. and Quay, P. D.: In vitro and in situ gross primary and net
community production in the North Pacific Subtropical Gyre using labeled and
natural abundance isotopes of dissolved O2, Global Biogeochem. Cy., 19, GB3009, https://doi.org/10.1029/2004GB002384, 2005.
Katsanevakis, S., Weber, A., Pipitone, C., Leopold, M., Cronin, M., Scheidat, M.,
Doyle, T. K., Buhl-Mortensen, L., Buhl-Mortensen, P., D'Anna, G., de Boois, I.,
Dalpadado, P., Damalas, D., Fiorentino, F., Garofalo, G., Giacalone, V. M.,
Hawley, K. L., Issaris, Y., Jansen, J., Knight, C. M., Knittweis, L., Kröncke,
I., Mirto, S., Muxika, I., Reiss, H., Skjoldal, H. R., and Vöge, S.:
Monitoring marine populations and communities: methods dealing with
imperfect detectability, Aquat. Biol., 16, 31–52, 2012.
Krasovec, M., Rickaby, R. E., and Filatov, D. A.: Evolution of mutation rate in
astronomically large phytoplankton populations, Genome Biol.
Evol., 12, 1051–1059, 2020.
Krause, S., Le Roux, X., Niklaus, P. A., Van Bodegom, P. M., Lennon, J. T.,
Bertilsson, S., Grossart, H. P., Philippot, L., and Bodelier, P. L.: Trait-based
approaches for understanding microbial biodiversity and ecosystem
functioning, Front. Microbiol., 5, 251, https://doi.org/10.3389/fmicb.2014.00251, 2014.
Kroeker, K. J., Kordas, R. L., Crim, R., Hendriks, I. E., Ramajo, L., Singh, G.
S., Duarte, C. M., and Gattuso, J.-P.: Impacts of ocean acidification on
marine organisms: quantifying sensitivities and interaction with warming,
Global Change Biol., 19, 1884–1896, 2013a.
Kroeker, K. J., Gambi, M. C., and Micheli, F.: Community dynamics and ecosystem
simplification in a high-CO2 ocean, P. Natl. Acad. Sci. USA, 110, 12721–12726, 2013b.
Little, A. G. and Seebacher, F.: Physiological Performance Curves: When Are They
Useful?, Front. Physiol., 12, 805102, https://doi.org/10.3389/fphys.2021.805102, 2021.
Lloyd, M. M., Makukhov, A. D., and Pespeni, M. H.: Loss of genetic diversity as
a consequence of selection in response to high pCO2, Evol. Appl., 9, 1124–1132, 2016.
Lowry, D. B., Hoban, S., Kelley, J. L., Lotterhos, K. E., Reed, L. K., Antolin, M.
F., and Storfer, A.: Responsible RAD: Striving for best practices in
population genomic studies of adaptation, Mol. Ecol. Resour.,
17, 366–369, 2017.
Luypaert, T., Hagan, J. G., McCarthy, M. L., and Poti, M.: Status of Marine
Biodiversity in the Anthropocene, in: YOUMARES 9 – The Oceans: Our Research, edited by: Jungblut, S., Liebich, V., and Bode-Dalby, M., Our Future, Springer, 57–82, ISBN 978-3-030-20391-7, 2020.
Manson, M. D., Tedesco, P., Berg, H. C., Harold, F. M., and Van der Drift, C.: A
protonmotive force drives bacterial flagella, P. Natl. Acad. Sci. USA, 74, 3060–3064, 1977.
Miloslavich, P., Bax, N. J., Simmons, S. E., Klein, E., Appeltans, W.,
Aburto-Oropeza, O., Andersen Garcia, M., Batten, S. D., Benedetti-Cecchi, L.,
Checkley Jr, D. M., and Chiba, S.: Essential ocean variables for global
sustained observations of biodiversity and ecosystem changes, Global Change Biol., 24, 2416–2433, 2018.
Mock, T., Otillar, R. P., Strauss, J., McMullan, M., Paajanen, P., Schmutz, J.,
Salamov, A., Sanges, R., Toseland, A., Ward, B. J., and Allen, A. E.: Evolutionary
genomics of the cold-adapted diatom Fragilariopsis cylindrus, Nature, 541, 536–540, 2017.
Monteiro, F. M., Bach, L. T., Brownlee, C., Bown, P., Rickaby, R. E., Poulto,n A.
J., Tyrrell, T., Beaufort, L., Dutkiewicz, S., Gibbs, S., Gutowska, M. A., Lee,
R., Riebesell, U., Young, J., and Ridgwell, A.: Why marine phytoplankton
calcify, Sci. Adv., 2, e1501822, https://doi.org/10.1126/sciadv.1501822, 2016.
Muller-Karger, F. E., Hestir, E., Ade, C., Turpie, K., Roberts, D. A., Siegel, D.,
Miller, R. J., Humm, D., Izenberg, N., Keller, M., Morgan, F., Frouin, R., Dekker,
A. G., Gardner, R., Goodman, J., Schaeffer, B., Franz, B. A., Pahlevan, N. A.,
Mannino, A. G., Concha, J. A., Ackleson, S. G., Cavanaugh, K. C., Romanou, A.,
Tzortziou, M., Boss, E. S., Pavlick, R., Freeman, A., Rousseaux, C. S., Dunne, J.,
Long, M. C., Klein, E., McKinley, G. A., Goes, J., Letelier, R., Kavanaugh, M.,
Roffer, M., Bracher, A., Arrigo, K. R., Dierssen, H., Zhang, X., Davis, F. W., Best,
B., Guralnick, R., Moisan, J., Sosik, H. M., Kudela, R., Mouw, C. B., Barnard, A.
H., Palacios, S., Roesler, C., Drakou, E. G., Appeltans, W., and Jetz, W.:
Satellite sensor requirements for monitoring essential biodiversity
variables of coastal ecosystems, Ecol. Appl., 28, 749–760,
2018a.
Muller-Karger, F. E., Miloslavich, P., Bax, N. J., Simmons, S., Costello, M. J.,
Sousa Pinto, I., Canonico, G., Turner, W., Gill, M., Montes, E., Best, B. D.,
Pearlman, J., Halpin, P., Dunn, D., Benson, A., Martin, C. S., Weatherdon, L. V.,
Appeltans, W., Provoost, P., Klein, E., Kelble, C. R., Miller, R. J., Chavez, F. P.,
Iken, K., Chiba, S., Obura, D., Navarro, L. M., Pereira, H. M., Allain, V., Batten,
S., Benedetti-Checchi, L., Duffy, J. E., Kudela, R. M., Rebelo, L.-M., Shin, Y.,
and Geller, G.: Advancing Marine Biological Observations and Data Requirements
of the Complementary Essential Ocean Variables (EOVs) and Essential
Biodiversity Variables (EBVs) Frameworks, Front. Mar. Sci.,
5, 211, https://doi.org/10.3389/fmars.2018.00211, 2018b.
Newton, J. A., Feely, R. A., Jewett, E. B., Williamson, P., and Mathis, J.: Global
Ocean Acidification Observing Network: Requirements and Governance Plan.
Second Edition, GOA-ON, http://www.goa-on.org/docs/GOA-ON_plan_print.pdf (last access: 27 December 2022), 2015.
Osborne, E. B., Thunell, R. C., Gruber, N., Feely, R. A., and Benitez-Nelson, C.
R.: Decadal variability in twentieth-century ocean acidification in the
California Current Ecosystem, Nat. Geosci., 13, 43–49, 2020.
Pan, T. C., Applebaum, S. L., and Manahan, D. T.: Experimental ocean
acidification alters the allocation of metabolic energy, P. Natl. Acad. Sci. USA, 112, 4696–4701, 2015.
Parker, L. M., O'Connor, W. A., Raftos, D. A., Pörtner, H. O., and Ross, P. M.:
Persistence of Positive Carryover Effects in the Oyster, Saccostrea glomerata, following
Transgenerational Exposure to Ocean Acidification, PLoS One, 10, e0132276, https://doi.org/10.1371/journal.pone.0132276,
2015.
Pauly, D. and Christensen, V.: Primary production required to sustain global
fisheries, Nature, 374, 255–257, 1995.
Pespeni, M. H., Sanford, E., Gaylord, B., Hill, T. M., Hosfelt, J. D., Jaris, H.
K., LaVigne, M., Lenz, E. A., Russell, A. D., Young, M. K., and Palumbi, S. R.:
Evolutionary change during experimental ocean acidification, P. Natl. Acad. Sci. USA, 110, 6937–6942, 2013.
Pfister, C. A., Altabet, M. A., and Weigel, B. L.: Kelp beds and their local
effects on seawater chemistry, productivity, and microbial communities,
Ecology, 100, e02798, https://doi.org/10.1002/ecy.2798, 2019.
Raven, J. A., Beardall, J., and Giordano, M.: Energy costs of carbon dioxide
concentrating mechanisms in aquatic organisms, Photosyn. Res., 121,
111–124, 2014.
Riebesell, U. and Gattuso, J. P.: Lessons learned from ocean acidification
research, Nat. Clim. Change, 5, 12–14, 2015.
Runcie, D. E., Dorey, N., Garfield, D. A., Stumpp, M., Dupont, S., and Wray, G. A.:
Genomic characterization of the evolutionary potential of the sea urchin
Strongylocentrotus droebachiensis facing ocean acidification, Genome Biol. Evol., 8, 3672–3684,
2017.
Savolainen, O., Lascoux, M., and Merilä, J.: Ecological genomics of local
adaptation, Nat. Rev. Genet., 14, 807–820, 2013.
Schaum, C., Buckling, A., Smirnoff, N., Studholme, D. J., and Yvon-Durocher, G.:
Environmental fluctuations accelerate molecular evolution of thermal
tolerance in a marine diatom, Nat. Commun., 9, 1–4, 2018.
Schoepf, V., Jury, C. P., Toonen, R. J., and McCulloch, M. T.: Coral
calcification mechanisms facilitate adaptive responses to ocean
acidification, P. Roy. Soc. B-Bio., 284, 20172117, https://doi.org/10.1098/rspb.2017.2117, 2017.
Schwartz, M. K., Luikart, G., and Waples, R. S.: Genetic monitoring as a
promising tool for conservation and management, Trends Ecol. Evol., 22, 25–33, 2007.
Stumpp, M., Hu, M., Melzner, F., Gutowska, M. A., Dorey, N., Himmerkus, N.,
Holtmann, W., Dupont, S., Thorndyke, M. C., and Bleich, M.: Acidified seawater
impacts sea urchin larvae pH regulatory systems relevant for calcification,
P. Natl. Acad. Sci. USA, 109, 18192–18197, 2012.
Stumpp, M., Wren, J., Melzner, F., Thorndyke, M. C., and Dupont, S.: CO2
induced seawater acidification impacts sea urchin larval development I:
elevated metabolic rates decrease scope for growth and induce developmental
delay, Comp. Biochem. Physiol., 160, 320–330, 2011.
Sunday, J. M., Calosi, P., Dupont, S., Munday, P. L., Stillman, J. H., and Reusch,
T. B. H.: Evolution in an acidifying ocean, Trends Ecol. Evol., 29, 117–125, 2014.
Sunday, J. S., Fabricius, K. E., Kroeker, K. J., Anderson, K. M., Brown, N. E.,
Barry, J. P., Connell, S. D., Dupont, S., Gaylord, B., Hall-Spencer, J. M.,
Klinger, T., Milazzo, M., Munday, P. L., Russell, B. D., Sanford, E.,
Thiyagarajan, V., Vaughan, M. L. H., Widdicombe, S., and Harley, C. D. G.: Ocean
acidification can mediate biodiversity shifts by changing biogenic habitat,
Nat. Clim. Change, 7, 81–85, 2013.
Thomsen, J., Gutowska, M. A., Saphörster, J., Heinemann, A., Trübenbach, K., Fietzke, J., Hiebenthal, C., Eisenhauer, A., Körtzinger, A., Wahl, M., and Melzner, F.: Calcifying invertebrates succeed in a naturally CO2-rich coastal habitat but are threatened by high levels of future acidification, Biogeosciences, 7, 3879–3891, https://doi.org/10.5194/bg-7-3879-2010, 2010.
Thor, P. and Dupont, S.: Transgenerational effects alleviate severe fecundity
loss during ocean acidification in a ubiquitous planktonic copepod, Global Change Biol., 21, 2261–2271, 2015.
Tilbrook, B., Jewett, E. B., DeGrandpre, M. D., Hernandez-Ayon, J. M., Feely, R.
A., Kuehl Gledhill, D., Hansson, L., Isensee, K., Kurz, M. L., Newton, J. A.,
Siedlecki, S. A., Chai, F., Dupont, S., Graco, M. I., Calvo, E., Greeley, D.,
Kapsenberg, L., Lebrec, M., Pelejero, C., Schoo, K., and Telszewski, M.: An Enhanced
Ocean Acidification Observing Network: From People to Technology to Data
Synthesis and Information Exchange, Front. Mar. Sci., 6, 337, https://doi.org/10.3389/fmars.2019.00337,
2019.
Turley, C. and Gattuso, J. P.: Future biological and ecosystem impacts of ocean
acidification and their socioeconomic-policy implications, Curr. Opin.
Env. Sus., 4, 278–286, 2012.
Twitchett, R. J.: The Lilliput effect in the aftermath of the end-Permian
extinction event, Palaeogeogr. Palaeocl., 252,
132–144, 2007.
Unsworth, R. K., Collier, C. J., Henderson, G. M., and McKenzie, L. J.: Tropical
seagrass meadows modify seawater carbon chemistry: implications for coral
reefs impacted by ocean acidification, Environ. Res. Lett., 7,
024026, https://doi.org/10.1088/1748-9326/7/2/024026, 2012.
Vargas, C., Lagos, N., Lardies, M., Duarte, C., Manríquez, P., Aguilera, V.,
Broiman, B., Widdicombe, S., and Dupont, S.: Species-specific responses to ocean
acidification should account for local adaptation and adaptive plasticity,
Nat. Ecol. Evol., 1, 84, https://doi.org/10.1038/s41559-017-0084, 2017.
Vargas, C. A., Cuevas, L. A., Broitman, B. R., San Martin, V. A., Lagos, N. A.,
Gaitán-Espitia, J. D., and Dupont, S.: Upper environmental pCO2 drives
sensitivity to ocean acidification in marine invertebrates, Nat. Clim.
Change, 3, 1–8, 2022.
Ventura, A., Schulz, A., and Dupont, S.: Maintained larval growth in mussel larvae
exposed to acidified undersaturated seawater, Sci. Rep., 6, 23728, https://doi.org/10.1038/srep23728,
2016.
Vézina, A. and Hoegh-Guldberg, O.: Effects of ocean acidification on marine
ecosystems: Introduction, Mar. Ecol. Prog. Ser., 373, 199–201,
2008.
Vizzini, S., Martínez-Crego, B., Andolina, C., Massa-Gallucci, A., Connell,
S. D., and Gambi, M. C.: Ocean acidification as a driver of community
simplification via the collapse of higher-order and rise of lower-order
consumers, Sci. Rep., 22, 4018, https://doi.org/10.1038/s41598-017-03802-w7,
2017.
Waldvogel, A. M. and Pfenninger, M.: Temperature dependence of spontaneous
mutation rates, Genome Res., 31, 1582–1589, 2021.
Whitehead, A. and Crawford, D. L.: Neutral and adaptive variation in gene
expression, P. Natl. Acad. Sci. USA,
103, 5425–5430, 2006.
Widdicombe, S. and Spicer, J. I.: Predicting the impact of ocean acidification on
benthic biodiversity: what can animal physiology tell us?, J. Exp. Mar. Biol. Ecol., 366, 187–197, 2008.
Wittmann, A. C. and Pörtner, H.-O.: Sensitivities of extant animal taxa to
ocean acidification, Nat. Clim. Change, 3, 995–1001, 2013.
Wunderling, N., Krönke, J., Wohlfarth, V., Kohler, J., Heitzig, J., Staal, A.,
Willner, S., Winkelmann, R., and Donges, J. F.: Modelling nonlinear dynamics of
interacting tipping elements on complex networks: the PyCascades package,
Eur. Phys. J.: Spec. Top, 230, 3163–3176, 2021.
Yamaguchi, R., Rodgers, K. B., Timmermann, A., Stein, K., Schlunegger, S., Bianchi,
D., Dunne, J. P., and Slater, R. D.: Trophic level decoupling drives future
changes in phytoplankton bloom phenology, Nat. Clim. Change, 12, 469, https://doi.org/10.1038/s41558-022-01353-1,
2022.
Short summary
Ocean acidification is a global perturbation of the ocean carbonate chemistry as a consequence of increased carbon dioxide concentration in the atmosphere. While great progress has been made over the last decade for chemical monitoring, ocean acidification biological monitoring remains anecdotal. This is a consequence of a lack of standards, general methodological framework, and overall methodology. This paper presents methodology focusing on sensitive traits and rates of change.
Ocean acidification is a global perturbation of the ocean carbonate chemistry as a consequence...