Articles | Volume 18, issue 2
https://doi.org/10.5194/os-18-455-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-455-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Inherent optical properties of dissolved and particulate matter in an Arctic fjord (Storfjorden, Svalbard) in early summer
Norwegian Polar Institute, Fram Centre, Tromsø, Norway
Institute of Physics and Technology, University of Bergen, Bergen,
Norway
Børge Hamre
Institute of Physics and Technology, University of Bergen, Bergen,
Norway
Håkon Sandven
Institute of Physics and Technology, University of Bergen, Bergen,
Norway
Rüdiger Röttgers
Institute of Coastal Ocean Dynamics, Helmholtz-Zentrum Hereon, Geesthacht, Germany
Piotr Kowalczuk
Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Monika Zablocka
Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Mats A. Granskog
Norwegian Polar Institute, Fram Centre, Tromsø, Norway
Related authors
No articles found.
Vlad A. Macovei, Louise C. V. Rewrie, Rüdiger Röttgers, and Yoana G. Voynova
EGUsphere, https://doi.org/10.5194/egusphere-2024-2643, https://doi.org/10.5194/egusphere-2024-2643, 2024
Short summary
Short summary
A commercial vessel equipped with scientific instruments regularly travelled between two large macro-tidal estuaries. We found that biogeochemical variability in the outer estuaries is driven by the 14-day spring-neap tidal cycle, with strong effects on dissolved inorganic and organic carbon concentrations and distribution. Since this land-sea interface effect increases the strength of the carbon source to the atmosphere by 74 % during spring tide, it should be accounted for in regional models.
Madison M. Smith, Niels Fuchs, Evgenii Salganik, Donald K. Perovich, Ian Raphael, Mats A. Granskog, Kirstin Schulz, Matthew D. Shupe, and Melinda Webster
EGUsphere, https://doi.org/10.5194/egusphere-2024-1977, https://doi.org/10.5194/egusphere-2024-1977, 2024
Short summary
Short summary
The fate of freshwater from Arctic sea ice and snow melt impacts interactions of the atmosphere, sea ice, and ocean. We complete a comprehensive analysis of datasets from a Central Arctic field campaign in 2020 to understand the drivers of the sea ice freshwater budget and the fate of this water. Over half of the freshwater comes from surface melt, and a majority fraction is incorporated into the ocean. Results suggest that the representation of melt ponds is a key area for future development.
Evgenii Salganik, Benjamin A. Lange, Christian Katlein, Ilkka Matero, Philipp Anhaus, Morven Muilwijk, Knut V. Høyland, and Mats A. Granskog
The Cryosphere, 17, 4873–4887, https://doi.org/10.5194/tc-17-4873-2023, https://doi.org/10.5194/tc-17-4873-2023, 2023
Short summary
Short summary
The Arctic Ocean is covered by a layer of sea ice that can break up, forming ice ridges. Here we measure ice thickness using an underwater sonar and compare ice thickness reduction for different ice types. We also study how the shape of ridged ice influences how it melts, showing that deeper, steeper, and narrower ridged ice melts the fastest. We show that deformed ice melts 3.8 times faster than undeformed ice at the bottom ice--ocean boundary, while at the surface they melt at a similar rate.
Aleksandra Cherkasheva, Rustam Manurov, Piotr Kowalczuk, Alexandra N. Loginova, Monika Zabłocka, and Astrid Bracher
EGUsphere, https://doi.org/10.5194/egusphere-2023-2495, https://doi.org/10.5194/egusphere-2023-2495, 2023
Preprint archived
Short summary
Short summary
We aimed to improve the quality of regional Greenland Sea primary production estimates. Seventy two versions of primary production model setups were tested against field data. Best performing models had local biomass and light absorption profiles. Thus by using local parametrizations for these parameters we can improve Arctic primary production model performance. Annual Greenland Sea basin estimates are larger than previously reported.
Bronwyn E. Cahill, Piotr Kowalczuk, Lena Kritten, Ulf Gräwe, John Wilkin, and Jürgen Fischer
Biogeosciences, 20, 2743–2768, https://doi.org/10.5194/bg-20-2743-2023, https://doi.org/10.5194/bg-20-2743-2023, 2023
Short summary
Short summary
We quantify the impact of optically significant water constituents on surface heating rates and thermal energy fluxes in the western Baltic Sea. During productive months in 2018 (April to September) we found that the combined effect of coloured
dissolved organic matter and particulate absorption contributes to sea surface heating of between 0.4 and 0.9 K m−1 d−1 and a mean loss of heat (ca. 5 W m−2) from the sea to the atmosphere. This may be important for regional heat balance budgets.
André Valente, Shubha Sathyendranath, Vanda Brotas, Steve Groom, Michael Grant, Thomas Jackson, Andrei Chuprin, Malcolm Taberner, Ruth Airs, David Antoine, Robert Arnone, William M. Balch, Kathryn Barker, Ray Barlow, Simon Bélanger, Jean-François Berthon, Şükrü Beşiktepe, Yngve Borsheim, Astrid Bracher, Vittorio Brando, Robert J. W. Brewin, Elisabetta Canuti, Francisco P. Chavez, Andrés Cianca, Hervé Claustre, Lesley Clementson, Richard Crout, Afonso Ferreira, Scott Freeman, Robert Frouin, Carlos García-Soto, Stuart W. Gibb, Ralf Goericke, Richard Gould, Nathalie Guillocheau, Stanford B. Hooker, Chuamin Hu, Mati Kahru, Milton Kampel, Holger Klein, Susanne Kratzer, Raphael Kudela, Jesus Ledesma, Steven Lohrenz, Hubert Loisel, Antonio Mannino, Victor Martinez-Vicente, Patricia Matrai, David McKee, Brian G. Mitchell, Tiffany Moisan, Enrique Montes, Frank Muller-Karger, Aimee Neeley, Michael Novak, Leonie O'Dowd, Michael Ondrusek, Trevor Platt, Alex J. Poulton, Michel Repecaud, Rüdiger Röttgers, Thomas Schroeder, Timothy Smyth, Denise Smythe-Wright, Heidi M. Sosik, Crystal Thomas, Rob Thomas, Gavin Tilstone, Andreia Tracana, Michael Twardowski, Vincenzo Vellucci, Kenneth Voss, Jeremy Werdell, Marcel Wernand, Bozena Wojtasiewicz, Simon Wright, and Giuseppe Zibordi
Earth Syst. Sci. Data, 14, 5737–5770, https://doi.org/10.5194/essd-14-5737-2022, https://doi.org/10.5194/essd-14-5737-2022, 2022
Short summary
Short summary
A compiled set of in situ data is vital to evaluate the quality of ocean-colour satellite data records. Here we describe the global compilation of bio-optical in situ data (spanning from 1997 to 2021) used for the validation of the ocean-colour products from the ESA Ocean Colour Climate Change Initiative (OC-CCI). The compilation merges and harmonizes several in situ data sources into a simple format that could be used directly for the evaluation of satellite-derived ocean-colour data.
Muhammed Fatih Sert, Helge Niemann, Eoghan P. Reeves, Mats A. Granskog, Kevin P. Hand, Timo Kekäläinen, Janne Jänis, Pamela E. Rossel, Bénédicte Ferré, Anna Silyakova, and Friederike Gründger
Biogeosciences, 19, 2101–2120, https://doi.org/10.5194/bg-19-2101-2022, https://doi.org/10.5194/bg-19-2101-2022, 2022
Short summary
Short summary
We investigate organic matter composition in the Arctic Ocean water column. We collected seawater samples from sea ice to deep waters at six vertical profiles near an active hydrothermal vent and its plume. In comparison to seawater, we found that the organic matter in waters directly affected by the hydrothermal plume had different chemical composition. We suggest that hydrothermal processes may influence the organic matter distribution in the deep ocean.
Caixin Wang, Robert M. Graham, Keguang Wang, Sebastian Gerland, and Mats A. Granskog
The Cryosphere, 13, 1661–1679, https://doi.org/10.5194/tc-13-1661-2019, https://doi.org/10.5194/tc-13-1661-2019, 2019
Short summary
Short summary
A warm bias and higher total precipitation and snowfall were found in ERA5 compared with ERA-Interim (ERA-I) over Arctic sea ice. The warm bias in ERA5 was larger in the cold season when 2 m air temperature was < −25 °C and smaller in the warm season than in ERA-I. Substantial anomalous Arctic rainfall in ERA-I was reduced in ERA5, particularly in summer and autumn. When using ERA5 and ERA-I to force a 1-D sea ice model, the effects on ice growth are very small (cm) during the freezing period.
Anna Makarewicz, Piotr Kowalczuk, Sławomir Sagan, Mats A. Granskog, Alexey K. Pavlov, Agnieszka Zdun, Karolina Borzycka, and Monika Zabłocka
Ocean Sci., 14, 543–562, https://doi.org/10.5194/os-14-543-2018, https://doi.org/10.5194/os-14-543-2018, 2018
Daiki Nomura, Mats A. Granskog, Agneta Fransson, Melissa Chierici, Anna Silyakova, Kay I. Ohshima, Lana Cohen, Bruno Delille, Stephen R. Hudson, and Gerhard S. Dieckmann
Biogeosciences, 15, 3331–3343, https://doi.org/10.5194/bg-15-3331-2018, https://doi.org/10.5194/bg-15-3331-2018, 2018
Torbjørn Taskjelle, Stephen R. Hudson, Mats A. Granskog, and Børge Hamre
The Cryosphere, 11, 2137–2148, https://doi.org/10.5194/tc-11-2137-2017, https://doi.org/10.5194/tc-11-2137-2017, 2017
Violetta Drozdowska, Iwona Wrobel, Piotr Markuszewski, Przemysław Makuch, Anna Raczkowska, and Piotr Kowalczuk
Ocean Sci., 13, 633–647, https://doi.org/10.5194/os-13-633-2017, https://doi.org/10.5194/os-13-633-2017, 2017
Short summary
Short summary
The studies on the absorption and fluorescence properties of the organic molecules included in surface microlayer (SML) and subsurface (SS) waters confirm that (i) the process of the structural changes in molecules of HMW to LMW, due to effects of photo- and biodegradation, occurs faster in the SML than in the SS; (ii) the organic molecules contained in the SML have a smaller molecular mass than in the SS. Hence, SML can specifically modify the physical processes associated with the sea surface.
Justyna Meler, Piotr Kowalczuk, Mirosława Ostrowska, Dariusz Ficek, Monika Zabłocka, and Agnieszka Zdun
Ocean Sci., 12, 1013–1032, https://doi.org/10.5194/os-12-1013-2016, https://doi.org/10.5194/os-12-1013-2016, 2016
Short summary
Short summary
Three alternative models for estimation of absorption of chromophoric dissolved organic matter (CDOM) have been formulated. The models were based on empirical database containing measurements from different regions of the Baltic Sea and three Pomeranian lakes in Poland. An assumption regarding continuum of inherent optical properties in marine and estuarine waters and freshwater has been proved and enabled the accurate estimation of CDOM absorption in various environments.
Cited articles
Aas, E. and Berge, G.: Irradiance observations in the Norwegian and
Barents Seas. Institute report series (Universitetet i Oslo, Institutt for
geofysikk), https://www.duo.uio.no/bitstream/handle/10852/61611/1/Aas-Berge-1976-Rep-23.pdf (last access: 30 January 2022), 1976.
Aas, E. and Høkedal, J.: Penetration of ultraviolet B, blue and quanta
irradiance into Svalbard waters, Polar Res., 15, 127–138,
https://doi.org/10.3402/polar.v15i2.6642, 1996.
Ardyna, M., Babin, M., Gosselin, M., Devred, E., Bélanger, S., Matsuoka, A., and Tremblay, J.-É.: Parameterization of vertical chlorophyll a in the Arctic Ocean: impact of the subsurface chlorophyll maximum on regional, seasonal, and annual primary production estimates, Biogeosciences, 10, 4383–4404, https://doi.org/10.5194/bg-10-4383-2013, 2013.
Bélanger, S., Cizmeli, S. A., Ehn, J., Matsuoka, A., Doxaran, D., Hooker, S., and Babin, M.: Light absorption and partitioning in Arctic Ocean surface waters: impact of multiyear ice melting, Biogeosciences, 10, 6433–6452, https://doi.org/10.5194/bg-10-6433-2013, 2013.
Bensi, M., Kovačević, V., Langone, L., Aliani, S., Ursella, L.,
Goszczko, I., Soltwedel, T., Skogseth, R., Nilsen, F., and Deponte, D.:
Deep flow variability offshore south-west Svalbard (Fram Strait), Water, 11,
683, https://doi.org/10.3390/w11040683, 2019.
Bowers, D. G. and Brett, H. L.: The relationship between CDOM and salinity
in estuaries: An analytical and graphical solution, J. Mar.
Syst., 73, 1–7, https://doi.org/10.1016/j.jmarsys.2007.07.001, 2008.
Davies, E. J., Basedow, S. L., and McKee, D.: The hidden influence of large
particles on ocean colour, Sci. Rep., 11, 1–9,
https://doi.org/10.1038/s41598-021-83610-5, 2021.
Dogliotti, A. I., Ruddick, K. G., Nechad, B., Doxaran, D., and Knaeps, E.: A
single algorithm to retrieve turbidity from remotely-sensed data in all
coastal and estuarine waters, Remote Sens. Environ., 156, 157–168,
https://doi.org/10.1016/j.rse.2014.09.020, 2015.
Falk-Petersen, S., Hop, H., Budgell, W.P., Hegseth, E.N., Korsnes, R.,
Løyning, T. B., Ørbæk, J. B., Kawamura, T., and Shirasawa, K.:
Physical and ecological processes in the marginal ice zone of the northern
Barents Sea during the summer melt period, J. Mar. Syst., 27,
131–159, https://doi.org/10.1016/S0924-7963(00)00064-6, 2000.
Fossile, E., Nardelli, M. P., Jouini, A., Lansard, B., Pusceddu, A., Moccia, D., Michel, E., Péron, O., Howa, H., and Mojtahid, M.: Benthic foraminifera as tracers of brine production in the Storfjorden “sea ice factory”, Biogeosciences, 17, 1933–1953, https://doi.org/10.5194/bg-17-1933-2020, 2020.
Gonçalves-Araujo, R., Rabe, B., Peeken, I., and Bracher, A.: High
colored dissolved organic matter (CDOM) absorption in surface waters of the
central-eastern Arctic Ocean: Implications for biogeochemistry and ocean
color algorithms, PLoS One, 13, e0190838,
https://doi.org/10.1371/journal.pone.0190838, 2018.
Granskog, M. A.: Changes in spectral slopes of colored dissolved
organic matter absorption with mixing and removal in a terrestrially
dominated marine system (Hudson Bay, Canada), Mar. Chem., 134,
10–17, https://doi.org/10.1016/j.marchem.2012.02.008, 2012.
Granskog, M. A., Stedmon, C. A., Dodd, P. A., Amon, R. M., Pavlov, A. K., de
Steur, L., and Hansen, E.: Characteristics of colored dissolved organic
matter (CDOM) in the Arctic outflow in the Fram Strait: Assessing the
changes and fate of terrigenous CDOM in the Arctic Ocean, J. Geophys. Res.-Oceans, 117, https://doi.org/10.1029/2012JC008075, 2012.
Granskog, M. A., Pavlov, A. K., Sagan, S., Kowalczuk, P., Raczkowska, A.,
and Stedmon, C. A.: Effect of sea-ice melt on inherent optical properties
and vertical distribution of solar radiant heating in Arctic surface waters,
J. Geophys. Res.-Oceans, 120, 7028–7039,
https://doi.org/10.1002/2015JC011087, 2015.
Halbach, L., Vihtakari, M., Duarte, P., Everett, A., Granskog, M. A., Hop,
H., Kauko, H. M., Kristiansen, S., Myhre, P. I., and Pavlov, A. K.: Tidewater
glaciers and bedrock characteristics control the phytoplankton growth
environment in a fjord in the arctic, Front. Mar. Sci., 6, 254,
https://doi.org/10.3389/fmars.2019.00254, 2019.
Hancke, K., Hovland, E. K., Volent, Z., Pettersen, R., Johnsen, G., Moline,
M., and Sakshaug, E., Optical properties of CDOM across the Polar Front in
the Barents Sea: Origin, distribution and significance, J. Mar.
Syst., 130, 219–227, https://doi.org/10.1016/j.jmarsys.2012.06.006, 2014.
Hayase, K. and Tsubota, H.: Sedimentary humic acid and fulvic acid as
fluorescent organic materials, Geochim. Cosmochim. Ac., 49, 159–163,
https://doi.org/10.1016/0016-7037(85)90200-5, 1985.
Helms, J. R., Stubbins, A., Ritchie, J. D., Minor, E. C., Kieber, D. J., and Mopper,
K.: Absorption spectral slopes and slope ratios as indicators of
molecular weight, source, and photobleaching of chromophoric dissolved
organic matter, Limnol. Oceanogr., 53, 955–969,
https://doi.org/10.4319/lo.2008.53.3.0955, 2008.
Hovland, E. K., Hancke, K., Alver, M. O., Drinkwater, K., Høkedal, J.,
Johnsen, G., Moline, M., and Sakshaug, E.: Optical impact of an Emiliania
huxleyi bloom in the frontal region of the Barents Sea, J. Mar.
Syst., 130, 228–240, https://doi.org/10.1016/j.jmarsys.2012.07.002, 2014.
International Ocean Colour Coordinating Group (IOCCG):
Ocean Colour Remote Sensing in Polar Seas,
https://doi.org/10.25607/OBP-107, 2015.
Kostakis, I., Röttgers, R., Orkney, A., Bouman, H.A., Porter, M.,
Cottier, F., Berge, J., and McKee, D.: Development of a bio-optical model
for the Barents Sea to quantitatively link glider and satellite
observations, Philos. T. Roy. Soc. A, 378,
20190367, https://doi.org/10.1098/rsta.2019.0367, 2020.
Kowalczuk, P., Meler, J., Kauko, H.M., Pavlov, A.K., Zabłocka, M., Peeken,
I., Dybwad, C., Castellani, G., and Granskog, M. A.: Bio-optical properties
of Arctic drift ice and surface waters north of Svalbard from winter to
spring, J. Geophys. Res.-Oceans, 122, 4634–4660,
https://doi.org/10.1002/2016JC012589, 2017.
Kowalczuk, P., Sagan, S., Makarewicz, A., Meler, J., Borzycka, K., Zabłocka, M., Zdun, A., Konik, M., Darecki, M., and Granskog, M. A.:
Bio-optical properties of surface waters in the Atlantic Water inflow region
off Spitsbergen (Arctic Ocean), J. Geophys. Res.-Oceans, 124,
1964–1987, https://doi.org/10.1029/2018JC014529, 2019.
Lee, Z., Shang, S., Wang, Y., Wei, J., and Ishizaka, J.: Nature of optical
products inverted semianalytically from remote sensing reflectance of
stratified waters, Limnol. Oceanogr. 65, 387–400.
https://doi.org/10.1002/lno.11307, 2020.
Leu, E., Søreide, J. E., Hessen, D. O., Falk-Petersen, S., and Berge, J.:
Consequences of changing sea-ice cover for primary and secondary producers
in the European Arctic shelf seas: timing, quantity, and quality, Prog. Oceanogr., 90, 18–32, https://doi.org/10.1016/j.pocean.2011.02.004, 2011.
Loeng, H.: Features of the physical oceanographic conditions of the
Barents Sea, Polar Res., 10, 5–18,
https://doi.org/10.3402/polar.v10i1.6723, 1991.
Makarewicz, A., Kowalczuk, P., Sagan, S., Granskog, M. A., Pavlov, A. K., Zdun, A., Borzycka, K., and Zabłocka, M.: Characteristics of chromophoric and fluorescent dissolved organic matter in the Nordic Seas, Ocean Sci., 14, 543–562, https://doi.org/10.5194/os-14-543-2018, 2018.
Mannino, A., Novak, M. G., Nelson, N. B., Belz, M., Berthon, J.-F., Blough,
N. V., Boss, E., Bricaud, A., Chaves, J., Del Castillo, C., Del Vecchio, R.,
D'Sa, E. J., Freeman, S., Matsuoka, A., Miller, R. L., Neeley, A. R.,
Röttgers, R., Tzortziou, M., and Werdell, P. J.: Measurement protocol
of absorption by chromophoric dissolved organic matter (CDOM) and other
dissolved materials, In Inherent Optical Property Measurements and
Protocols: Absorption Coefficient, IOCCG Ocean Optics and Biogeochemistry
Protocols for Satellite Ocean Colour Sensor Validation, IOCCG, https://ioccg.org/wp-content/uploads/2019/10/cdom_abs_protocol_public_draft-19oct-2019-sm.pdf (last access: 30 January 2022), 2019.
Mascarenhas, V. J. and Zielinski, O.: Hydrography-Driven Optical Domains
in the Vaigat-Disko Bay and Godthabsfjord: Effects of Glacial Meltwater
Discharge, Front. Mar. Sci., 6, 335,
https://doi.org/10.3389/fmars.2019.00335, 2019.
McGovern, M., Pavlov, A. K., Deininger, A., Granskog, M., Leu, E. S.,
Søreide, J., and Poste, A.: Terrestrial Inputs Drive Seasonality in
Organic Matter and Nutrient Biogeochemistry in a High Arctic Fjord System
(Isfjorden, Svalbard), Front. Mar. Sci., 7, 2296–7745, https://doi.org/10.3389/fmars.2020.542563, 2020.
Müller, S., Vähätalo, A. V., Stedmon, C.A., Granskog, M. A.,
Norman, L., Aslam, S. N., Underwood, G. J. C., Dieckmann, G. S., and Thomas, D. N.:
Selective incorporation of dissolved organic matter (DOM) during sea
ice formation, Mar. Chem., 155, 148–157,
https://doi.org/10.1016/j.marchem.2013.06.008, 2013.
Nechad, B., Ruddick, K. G., and Park, Y.: Calibration and validation of a
generic multisensor algorithm for mapping of total suspended matter in
turbid waters, Remote Sens. Environ., 114, 854–866,
https://doi.org/10.1016/j.rse.2009.11.022, 2010.
Neukermans, G., Oziel, L., and Babin, M.: Increased intrusion of warming
Atlantic water leads to rapid expansion of temperate phytoplankton in the
Arctic, Global Change Biol., 24, 2545–2553,
https://doi.org/10.1111/gcb.14075, 2018.
Onarheim, I. H., Eldevik, T., Smedsrud, L. H., and Stroeve, J. C.: Seasonal
and regional manifestation of Arctic sea ice loss, J. Climate, 31,
4917–4932, https://doi.org/10.1175/JCLI-D-17-0427.1, 2018.
Orkney, A., Platt, T., Narayanaswamy, B. E., Kostakis, I., and Bouman, H. A.: Bio-optical evidence for increasing Phaeocystis dominance in the
Barents Sea, Philos. T. Roy. Soc. A, 378,
20190357, https://doi.org/10.1098/rsta.2019.0357, 2020.
Oziel, L., Neukermans, G., Ardyna, M., Lancelot, C., Tison, J.-L., Wassmann,
P., Sirven, J., Ruiz-Pino, D., and Gascard, J.-C.: Role for Atlantic
inflows and sea ice loss on shifting phytoplankton blooms in the Barents
Sea, J. Geophys. Res.-Oceans, 122, 5121–5139,
https://doi.org/10.1002/2016JC012582, 2017.
Pavlov, A. K., Granskog, M. A., Stedmon, C. A., Ivanov, B. V., Hudson, S. R.,
and Falk-Petersen, S.: Contrasting optical properties of surface waters
across the Fram Strait and its potential biological implications, J. Mar. Syst., 143, 62–72, https://doi.org/10.1016/j.jmarsys.2014.11.001, 2015.
Pavlov, A. K., Stedmon, C. A., Semushin, A. V., Martma, T., Ivanov, B. V.,
Kowalczuk, P., Granskog, M. A.: Linkages between the circulation and
distribution of dissolved organic matter in the White Sea, Arctic Ocean,
Cont. Shelf Res., 119, 1–13,
https://doi.org/10.1016/j.csr.2016.03.004, 2016.
Pavlov, A. K., Taskjelle, T., Kauko, H. M., Hamre, B., Hudson, S. R., Assmy,
P., Duarte, P., Fernández-Méndez, M., Mundy, C. J., and Granskog, M. A.:
Altered inherent optical properties and estimates of the underwater
light field during an A rctic under-ice bloom of P haeocystis pouchetii,
J. Geophys. Res.-Oceans, 122, 4939–4961,
https://doi.org/10.1002/2016JC012471, 2017.
Pavlov, A. K., Leu, E., Hanelt, D., Bartsch, I., Karsten, U., Hudson, S. R.,
Gallet, J.-C., Cottier, F., Cohen, J. H., and Berge, J.: The underwater
light climate in Kongsfjorden and its ecological implications, in: The
Ecosystem of Kongsfjorden, Svalbard, Springer, 137–170, 2019.
Petit, T., Granskog, M. A., Hamre, B., Kowalczuk, P., and Röttgers, R.: Inherent optical properties of waters in Storfjorden (Svalbard) in summer 2020, Norwegian Polar Institute [data set], https://doi.org/10.21334/npolar.2022.e6974f73, 2022.
Roesler, C. S. and Barnard, A. H.: Optical proxy for phytoplankton biomass
in the absence of photophysiology: Rethinking the absorption line height,
Meth. Oceanogr., 7, 79–94, https://doi.org/10.1016/j.mio.2013.12.003, 2013.
Röttgers, R. and Gehnke, S.: Measurement of light absorption by
aquatic particles: improvement of the quantitative filter technique by use
of an integrating sphere approach, Appl. Opt., 51, 1336–1351,
https://doi.org/10.1364/AO.51.001336, 2012.
Röttgers, R., McKee, D., and Woźniak, S. B.: Evaluation of scatter
corrections for ac-9 absorption measurements in coastal waters, Meth. Oceanogr., 7, 21–39, https://doi.org/10.1016/j.mio.2013.11.001, 2013.
Röttgers, R., Doxaran, D., and Dupouy, C.: Quantitative filter
technique measurements of spectral light absorption by aquatic particles
using a portable integrating cavity absorption meter (QFT-ICAM), Opt. Expr., 24, 1–20, https://doi.org/10.1364/OE.24.0000A1, 2016.
Sagan, S. and Darecki, M.: Inherent optical properties and particulate
matter distribution in summer season in waters of Hornsund and
Kongsfjordenen, Spitsbergen, Oceanologia 60, 65–75,
https://doi.org/10.1016/j.oceano.2017.07.006, 2018.
Sagen, H., Botnen Van den Bergh, E., Klockmann, F., Råheim Økland,
H., Knutsen, J., Tesdal Galtung, K., Lunde, M., Helleve, M., Eryilmaz, N.,
and Sandven Sagen, T.: CTD data collected in Storfjorden, Svalbard, during
the UAK 2020, https://doi.org/10.21335/nmdc-nersc-758932911, 2020.
Skogseth, R., Fer, I., and Haugan, P. M.: Dense-Water Production and
Overflow from an Arctic Coastal Polynya in Storfjorden, in: The Nordic Seas:
An Integrated Perspective, American Geophysical Union (AGU), 73–88,
https://doi.org/10.1029/158GM07, 2005a.
Skogseth, R., Haugan, P. M., and Jakobsson, M.: Watermass transformations
in Storfjorden, Cont. Shelf Res., 25, 667–695,
https://doi.org/10.1016/j.csr.2004.10.005, 2005b.
Smedsrud, L. H., Budgell, W. P., Jenkins, A. D., and Ådlandsvik, B.:
Fine-scale sea-ice modelling of the Storfjorden polynya, Svalbard, Ann. Glaciol., 44, 73–79, https://doi.org/10.3189/172756406781811295, 2006.
Stedmon, C. A. and Markager, S.: Behaviour of the optical properties of
coloured dissolved organic matter under conservative mixing, Estuar. Coast. Shelf Sci., 57, 973–979,
https://doi.org/10.1016/S0272-7714(03)00003-9, 2003.
Tremblay, J.-É., Anderson, L. G., Matrai, P., Coupel, P., Bélanger,
S., Michel, C., and Reigstad, M.: Global and regional drivers of nutrient
supply, primary production and CO2 drawdown in the changing Arctic Ocean,
Prog. Oceanogr., 139, 171–196,
https://doi.org/10.1016/j.pocean.2015.08.009, 2015.
Van Zee, H., Hankins, D., deLespinasse, C., Bricaud, A., and Zaneveld, R.:
ac-9 and ac-s Protocol Document (Revision J), 2005.
Vanhellemont, Q. and Ruddick, K.: Acolite for Sentinel-2: Aquatic
applications of MSI imagery, in: Proceedings of the 2016 ESA Living Planet
Symposium, Prague, Czech Republic, 9–13, 2016.
Vermote, E. F., Tanré, D., Deuze, J. L., Herman, M., and Morcette, J.-J.:
Second simulation of the satellite signal in the solar spectrum, 6S:
An overview, IEEE T. Geosci. Remote, 35,
675–686, https://doi.org/10.1109/36.581987, 1997.
Wilson, R. T.: Py6S: A Python interface to the 6S radiative transfer
model, Comput. Geosci., 51, 166 pp., https://doi.org/10.1016/j.cageo.2012.08.002, 2013.
Yamashita, Y., Tosaka, T., Bamba, R., Kamezaki, R., Goto, S., Nishioka, J.,
Yasuda, I., Hirawake, T., Oida, J., and Obata, H.: Widespread distribution
of allochthonous fluorescent dissolved organic matter in the intermediate
water of the North Pacific, Prog. Oceanogr., 191, 102510,
https://doi.org/10.1016/j.pocean.2020.102510, 2021.
Short summary
We provide the first insights on bio-optical processes in Storfjorden (Svalbard). Information on factors controlling light propagation in the water column in this arctic fjord becomes crucial in times of rapid sea ice decline. We find a significant contribution of dissolved matter to light absorption and a subsurface absorption maximum linked to phytoplankton production. Dense bottom waters from sea ice formation carry elevated levels of dissolved and particulate matter.
We provide the first insights on bio-optical processes in Storfjorden (Svalbard). Information on...