Articles | Volume 18, issue 2
https://doi.org/10.5194/os-18-437-2022
https://doi.org/10.5194/os-18-437-2022
Research article
 | 
31 Mar 2022
Research article |  | 31 Mar 2022

There and back again, a journey of many pathways: conceptualising the marine organic carbon cycle

Maike Iris Esther Scheffold and Inga Hense

Related authors

A missing link in the carbon cycle: phytoplankton light absorption under RCP emission scenarios
Rémy Asselot, Philip B. Holden, Frank Lunkeit, and Inga Hense
Earth Syst. Dynam., 15, 875–891, https://doi.org/10.5194/esd-15-875-2024,https://doi.org/10.5194/esd-15-875-2024, 2024
Short summary
Climate pathways behind phytoplankton-induced atmospheric warming
Rémy Asselot, Frank Lunkeit, Philip B. Holden, and Inga Hense
Biogeosciences, 19, 223–239, https://doi.org/10.5194/bg-19-223-2022,https://doi.org/10.5194/bg-19-223-2022, 2022
Short summary
Modeling cyanobacteria life cycle dynamics and historical nitrogen fixation in the Baltic Proper
Jenny Hieronymus, Kari Eilola, Malin Olofsson, Inga Hense, H. E. Markus Meier, and Elin Almroth-Rosell
Biogeosciences, 18, 6213–6227, https://doi.org/10.5194/bg-18-6213-2021,https://doi.org/10.5194/bg-18-6213-2021, 2021
Short summary
A missing link in the carbon cycle: phytoplankton light absorption
Rémy Asselot, Frank Lunkeit, Philip Holden, and Inga Hense
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-91,https://doi.org/10.5194/esd-2021-91, 2021
Revised manuscript not accepted
Short summary
ESD Reviews: Evidence of multiple inconsistencies between representations of terrestrial and marine ecosystems in Earth System Models
Félix Pellerin, Philipp Porada, and Inga Hense
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-55,https://doi.org/10.5194/esd-2020-55, 2020
Revised manuscript not accepted
Short summary

Cited articles

Anderson, T. R. and Ducklow, H. W.: Microbial loop carbon cycling in ocean environments studied using a simple steady-state model, Aquat. Microb. Ecol., 26, 37–49, https://doi.org/10.3354/ame026037, 2001. a
Arrieta, J. M., Mayol, E., Hansman, R. L., Herndl, G. J., Dittmar, T., and Duarte, C. M.: Ocean chemistry. Dilution limits dissolved organic carbon utilization in the deep ocean, Science, 348, 331–333, https://doi.org/10.1126/science.1258955, 2015. a
Azam, F. and Malfatti, F.: Microbial structuring of marine ecosystems, Nature reviews, Microbiology, 5, 782–791, https://doi.org/10.1038/nrmicro1747, 2007. a
Azam, F., Smith, D. C., Steward, G. F., and Hagström, A.: Bacteria-organic matter coupling and its significance for oceanic carbon cycling, Microb. Ecol., 28, 167–179, https://doi.org/10.1007/BF00166806, 1994. a
Baker, C. A., Henson, S. A., Cavan, E. L., Giering, S. L. C., Yool, A., Gehlen, M., Belcher, A., Riley, J. S., Smith, H. E. K., and Sanders, R.: Slow-sinking particulate organic carbon in the Atlantic Ocean: Magnitude, flux, and potential controls, Global Biogeochem. Cy., 31, 1051–1065, https://doi.org/10.1002/2017GB005638, 2017. a
Download
Short summary
Organic carbon in the oceans can take various paths: it may e.g. sink to the sediment, be eaten, or be recycled to start all over again. Where carbon ends up for how long has implications for atmospheric CO2 concentrations and our climate. To assess which pathways exist and how they are structured, we introduce a qualitative concept of organic carbon pathways. This concept helps to identify pathways, compare ecosystems, and assess how human actions and environmental changes alter pathways.