Articles | Volume 18, issue 2
https://doi.org/10.5194/os-18-437-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-437-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
There and back again, a journey of many pathways: conceptualising the marine organic carbon cycle
Maike Iris Esther Scheffold
CORRESPONDING AUTHOR
Institute of Marine Ecosystem and Fishery Science, Center for Earth System Research and Sustainability, University of Hamburg, Hamburg, Germany
Inga Hense
Institute of Marine Ecosystem and Fishery Science, Center for Earth System Research and Sustainability, University of Hamburg, Hamburg, Germany
Related authors
No articles found.
Rémy Asselot, Philip B. Holden, Frank Lunkeit, and Inga Hense
Earth Syst. Dynam., 15, 875–891, https://doi.org/10.5194/esd-15-875-2024, https://doi.org/10.5194/esd-15-875-2024, 2024
Short summary
Short summary
Phytoplankton are tiny oceanic algae able to absorb the light penetrating the ocean. The light absorbed by these organisms is re-emitted as heat in the surrounding environment, a process commonly called phytoplankton light absorption (PLA). As a consequence, PLA increases the oceanic temperature. We studied this mechanism with a climate model under different climate scenarios. We show that phytoplankton light absorption is reduced under strong warming scenarios, limiting oceanic warming.
Rémy Asselot, Frank Lunkeit, Philip B. Holden, and Inga Hense
Biogeosciences, 19, 223–239, https://doi.org/10.5194/bg-19-223-2022, https://doi.org/10.5194/bg-19-223-2022, 2022
Short summary
Short summary
Previous studies show that phytoplankton light absorption can warm the atmosphere, but how this warming occurs is still unknown. We compare the importance of air–sea heat versus CO2 flux in the phytoplankton-induced atmospheric warming and determine the main driver. To shed light on this research question, we conduct simulations with a climate model of intermediate complexity. We show that phytoplankton mainly warms the atmosphere by increasing the air–sea CO2 flux.
Jenny Hieronymus, Kari Eilola, Malin Olofsson, Inga Hense, H. E. Markus Meier, and Elin Almroth-Rosell
Biogeosciences, 18, 6213–6227, https://doi.org/10.5194/bg-18-6213-2021, https://doi.org/10.5194/bg-18-6213-2021, 2021
Short summary
Short summary
Dense blooms of cyanobacteria occur every summer in the Baltic Proper and can add to eutrophication by their ability to turn nitrogen gas into dissolved inorganic nitrogen. Being able to correctly estimate the size of this nitrogen fixation is important for management purposes. In this work, we find that the life cycle of cyanobacteria plays an important role in capturing the seasonality of the blooms as well as the size of nitrogen fixation in our ocean model.
Rémy Asselot, Frank Lunkeit, Philip Holden, and Inga Hense
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2021-91, https://doi.org/10.5194/esd-2021-91, 2021
Revised manuscript not accepted
Short summary
Short summary
Phytoplankton absorbing light can influence the climate system but its future effect on the climate is still unclear. We use a climate model to investigate the role of phytoplankton light absorption under global warming. We find out that the effect of phytoplankton light absorption is smaller under a high greenhouse gas emissions compared to reduced and intermediate greenhouse gas emissions. Additionally, we show that phytoplankton light absorption is an important mechanism for the carbon cycle.
Félix Pellerin, Philipp Porada, and Inga Hense
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2020-55, https://doi.org/10.5194/esd-2020-55, 2020
Revised manuscript not accepted
Short summary
Short summary
While several biological processes are similar among terrestrial and marine ecosystems, their representation in Earth System Models may differ. By comparing the terrestrial and marine modules of 17 Earth System Models, we found multiple evidences of unjustified differences in processes representation. These inconsistencies may lead to wrong predictions about the role of biosphere in the climate system and skew our perception of the relative influence of each ecosystem on climate.
Inga Hense, Irene Stemmler, and Sebastian Sonntag
Biogeosciences, 14, 403–413, https://doi.org/10.5194/bg-14-403-2017, https://doi.org/10.5194/bg-14-403-2017, 2017
Short summary
Short summary
Marine biota drives a number of climate-relevant mechanisms, not all of which are included in current Earth system models (ESMs) used for climate projections. We identify three classes of mechanisms and argue that, to adequately resolve these mechanisms and to ensure links to and feedbacks with other Earth system components, ESMs need to account for five marine organism groups.
Cited articles
Anderson, T. R. and Ducklow, H. W.: Microbial loop carbon cycling in ocean
environments studied using a simple steady-state model, Aquat. Microb.
Ecol., 26, 37–49, https://doi.org/10.3354/ame026037, 2001. a
Arrieta, J. M., Mayol, E., Hansman, R. L., Herndl, G. J., Dittmar, T., and
Duarte, C. M.: Ocean chemistry. Dilution limits dissolved organic carbon
utilization in the deep ocean, Science, 348, 331–333,
https://doi.org/10.1126/science.1258955, 2015. a
Azam, F. and Malfatti, F.: Microbial structuring of marine ecosystems,
Nature reviews, Microbiology, 5, 782–791, https://doi.org/10.1038/nrmicro1747, 2007. a
Azam, F., Smith, D. C., Steward, G. F., and Hagström, A.: Bacteria-organic
matter coupling and its significance for oceanic carbon cycling, Microb.
Ecol., 28, 167–179, https://doi.org/10.1007/BF00166806, 1994. a
Baker, C. A., Henson, S. A., Cavan, E. L., Giering, S. L. C., Yool, A., Gehlen,
M., Belcher, A., Riley, J. S., Smith, H. E. K., and Sanders, R.:
Slow-sinking particulate organic carbon in the Atlantic Ocean: Magnitude,
flux, and potential controls, Global Biogeochem. Cy., 31,
1051–1065, https://doi.org/10.1002/2017GB005638, 2017. a
Barange, M., Butenschön, M., Yool, A., Beaumont, N., Fernandes, J. A.,
Martin, A. P., and Allen, J. I.: The Cost of Reducing the North Atlantic
Ocean Biological Carbon Pump, Front. Mar. Sci., 3, 1–10,
https://doi.org/10.3389/fmars.2016.00290, 2017. a
Benner, R. and Biddanda, B.: Photochemical transformations of surface and deep
marine dissolved organic matter: Effects on bacterial growth, Limnol.
Oceanogr., 43, 1373–1378, 1998. a
Berke, S. K.: Functional groups of ecosystem engineers: a proposed
classification with comments on current issues, Integr. Comp. Biol., 50, 147–157, https://doi.org/10.1093/icb/icq077, 2010. a
Bianchi, D., Carozza, D. A., Galbraith, E. D., Guiet, J., and DeVries, T.:
Estimating global biomass and biogeochemical cycling of marine fish with and
without fishing, Sci. Adv., 7, eabd7554,
https://doi.org/10.1126/sciadv.abd7554, 2021. a
Boscolo-Galazzo, F., Crichton, K. A., Barker, S., and Pearson, P. N.:
Temperature dependency of metabolic rates in the upper ocean: A positive
feedback to global climate change?, Glob. Planet. Change, 170,
201–212, https://doi.org/10.1016/j.gloplacha.2018.08.017, 2018. a, b
Boudreau, B. P.: Mean mixed depth of sediments: The wherefore and the why,
Limnol. Oceanogr., 43, 524–526, https://doi.org/10.4319/lo.1998.43.3.0524,
1998. a
Boyd, P. W., Claustre, H., Levy, M., Siegel, D. A., and Weber, T.:
Multi-faceted particle pumps drive carbon sequestration in the ocean,
Nature, 568, 327–335, https://doi.org/10.1038/s41586-019-1098-2, 2019. a, b
Briggs, N., Dall'Olmo, G., and Claustre, H.: Major role of particle
fragmentation in regulating biological sequestration of CO2 by the oceans,
Science, 367, 791–793, https://doi.org/10.1126/science.aay1790, 2020. a
Buchan, A., LeCleir, G. R., Gulvik, C. A., and González, J. M.: Master
recyclers: features and functions of bacteria associated with phytoplankton
blooms, Nature reviews, Microbiology, 12, 686–698,
https://doi.org/10.1038/nrmicro3326, 2014. a
Bunke, D., Leipe, T., Moros, M., Morys, C., Tauber, F., Virtasalo, J. J.,
Forster, S., and Arz, H. W.: Natural and Anthropogenic Sediment Mixing
Processes in the South-Western Baltic Sea, Front. Mar. Sci., 6,
1–20, https://doi.org/10.3389/fmars.2019.00677, 2019. a
Burdige, D. J., Berelson, W. M., Coale, K. H., McManus, J., and Johnson, K. S.:
Fluxes of dissolved organic carbon from California continental margin
sediments, Geochim. Cosmochim. Ac., 63, 1507–1515,
https://doi.org/10.1016/S0016-7037(99)00066-6, 1999. a
Carlson, C. A. and Hansell, D. A.: Chap. 3 – DOM Sources, Sinks, Reactivity,
and Budgets, in: Biogeochemistry of marine dissolved organic matter,
edited by: Carlson, C. A., Hansell, D. A., and Amon, R. M. W.,
Academic Press, London, 65–126, https://doi.org/10.1016/B978-0-12-405940-5.00003-0, 2015. a
Cavan, E. L., Belcher, A., Atkinson, A., Hill, S. L., Kawaguchi, S., McCormack,
S., Meyer, B., Nicol, S., Ratnarajah, L., Schmidt, K., Steinberg, D. K.,
Tarling, G. A., and Boyd, P. W.: The importance of Antarctic krill in
biogeochemical cycles, Nat. Commun., 10, 4742,
https://doi.org/10.1038/s41467-019-12668-7, 2019. a
Dai, M., Yin, Z., Meng, F., Liu, Q., and Cai, W.-J.: Spatial distribution of
riverine DOC inputs to the ocean: an updated global synthesis, Curr.
Opin. Environ. Sustain., 4, 170–178,
https://doi.org/10.1016/j.cosust.2012.03.003, 2012. a
DeVries, T., Primeau, F., and Deutsch, C.: The sequestration efficiency of the
biological pump, Geophys. Res. Lett., 39, 1–5,
https://doi.org/10.1029/2012GL051963, 2012. a
Dickey, T. D.: Physical-optical-biological scales relevant to recruitment in
large marine ecosystems, Large marine ecosystems: Patterns, processes, and
yields, edited by: Sherman, K., Alexander, LM, and Gold, BD, Am. Assoc. Adv.
Sci. Publ, 90, 82–98, 1990. a
Dilling, L. and Alldredge, A. L.: Fragmentation of marine snow by swimming
macrozooplankton: A new process impacting carbon cycling in the sea, Deep-Sea Res. Pt. I, 47, 1227–1245,
https://doi.org/10.1016/S0967-0637(99)00105-3, 2000. a
Doney, S. C. and Ducklow, H. W.: A decade of synthesis and modeling in the US
Joint Global Ocean Flux Study, Deep-Sea Res. Pt. II, 53, 451–458, https://doi.org/10.1016/j.dsr2.2006.01.019, 2006. a
Duarte, C. M. and Cebrián, J.: The fate of marine autotrophic production,
Limnol. Oceanogr., 41, 1758–1766,
https://doi.org/10.4319/lo.1996.41.8.1758, 1996. a
Fortuin, K. P. J., van Koppen, C. S. A., and Leemans, R.: The Value of
Conceptual Models in Coping with Complexity and Interdisciplinarity in
Environmental Sciences Education, BioScience, 61, 802–814,
https://doi.org/10.1525/bio.2011.61.10.10, 2011. a
Gardner, W. D., Chung, S. P., Richardson, M. J., and Walsh, I. D.: The oceanic
mixed-layer pump, Deep-Sea Res. Pt. II, 42, 757–775, https://doi.org/10.1016/0967-0645(95)00037-Q, 1995. a
Giering, S. L. C., Sanders, R., Lampitt, R. S., Anderson, T. R., Tamburini, C.,
Boutrif, M., Zubkov, M. V., Marsay, C. M., Henson, S. A., Saw, K., Cook, K.,
and Mayor, D. J.: Reconciliation of the carbon budget in the ocean's
twilight zone, Nature, 507, 480–483, https://doi.org/10.1038/nature13123, 2014. a
Gnanadesikan, A. and Marinov, I.: Export is not enough: nutrient cycling and
carbon sequestration, Mar. Ecol. Prog. Ser., 364, 289–294,
https://doi.org/10.3354/meps07550, 2008. a
Goldthwait, S., Yen, J., Brown, J., and Alldredge, A.: Quantification of
marine snow fragmentation by swimming euphausiids, Limnol.
Oceanogr., 49, 940–952, https://doi.org/10.4319/lo.2004.49.4.0940, 2004. a
Griffiths, J. R., Kadin, M., Nascimento, F. J. A., Tamelander, T.,
Törnroos, A., Bonaglia, S., Bonsdorff, E., Brüchert, V.,
Gårdmark, A., Järnström, M., Kotta, J., Lindegren, M.,
Nordström, M. C., Norkko, A., Olsson, J., Weigel, B., Žydelis, R.,
Blenckner, T., Niiranen, S., and Winder, M.: The importance of
benthic-pelagic coupling for marine ecosystem functioning in a changing
world, Glob. Change Biol., 23, 2179–2196, https://doi.org/10.1111/gcb.13642,
2017. a
Halsey, K. H., Giovannoni, S. J., Graus, M., Zhao, Y., Landry, Z., Thrash,
J. C., Vergin, K. L., and de Gouw, J.: Biological cycling of volatile
organic carbon by phytoplankton and bacterioplankton, Limnol.
Oceanogr., 62, 2650–2661, https://doi.org/10.1002/lno.10596, 2017. a
Hansell, D., Carlson, C., Repeta, D., and Schlitzer, R.: Dissolved Organic
Matter in the Ocean: A Controversy Stimulates New Insights, Oceanography,
22, 202–211, https://doi.org/10.5670/oceanog.2009.109, 2009. a
Hansell, D. A.: Recalcitrant dissolved organic carbon fractions, Ann.
Rev. Mar. Sci., 5, 421–445,
https://doi.org/10.1146/annurev-marine-120710-100757, 2013. a, b, c, d
Heemskerk, M., Wilson, K., and Pavao-Zuckerman, M.: Conceptual models as tools
for communication across disciplines, Conserv. Ecol., 7, 8, https://doi.org/10.5751/ES-00554-070308, 2003. a
Honjo, S., Eglinton, T., Taylor, C., Ulmer, K., Sievert, S., Bracher, A.,
German, C., Edgcomb, V., Francois, R., Iglesias-Rodriguez, M. D., van Mooy,
B., and Rapeta, D.: Understanding the Role of the Biological Pump in the
Global Carbon Cycle: An Imperative for Ocean Science, Oceanography, 27,
10–16, https://doi.org/10.5670/oceanog.2014.78, 2014. a
Huntley, M. E. and Zhou, M.: Influence of animals on turbulence in the sea,
Mar. Ecol. Prog. Ser., 273, 65–79, https://doi.org/10.3354/meps273065,
2004. a
Jiao, N., Herndl, G. J., Hansell, D. A., Benner, R., Kattner, G., Wilhelm,
S. W., Kirchman, D. L., Weinbauer, M. G., Luo, T., Chen, F., and Azam, F.:
Microbial production of recalcitrant dissolved organic matter: long-term
carbon storage in the global ocean, Nature reviews, Microbiology, 8,
593–599, https://doi.org/10.1038/nrmicro2386, 2010. a, b, c
Jiao, N., Guo, Z., Legendre, L., Suttle, C., Rivkin, R., and Azam, F.:
Editorial for the special issue on marine carbon sequestration and climate
change, Nat. Sci. Rev., 5, 456–457, https://doi.org/10.1093/nsr/nwy068,
2018. a
Jónasdóttir, S. H., Visser, A. W., Richardson, K., and Heath, M. R.:
Seasonal copepod lipid pump promotes carbon sequestration in the deep North
Atlantic, P. Natl. Acad. Sci. USA, 112, 12122–12126, https://doi.org/10.1073/pnas.1512110112,
2015. a
Katija, K. and Dabiri, J. O.: A viscosity-enhanced mechanism for biogenic
ocean mixing, Nature, 460, 624–626, https://doi.org/10.1038/nature08207, 2009. a
Kharbush, J. J., Close, H. G., van Mooy, B. A. S., Arnosti, C., Smittenberg,
R. H., Le Moigne, F. A. C., Mollenhauer, G., Scholz-Böttcher, B.,
Obreht, I., Koch, B. P., Becker, K. W., Iversen, M. H., and Mohr, W.:
Particulate Organic Carbon Deconstructed: Molecular and Chemical Composition
of Particulate Organic Carbon in the Ocean, Front. Mar. Sci.,
7, 1–10, https://doi.org/10.3389/fmars.2020.00518, 2020. a, b
Kieber, D. J., McDaniel, J., and Mopper, K.: Photochemical source of
biological substrates in sea water: implications for carbon cycling,
Nature, 341, 637–639, https://doi.org/10.1038/341637a0, 1989. a, b
Kristensen, E., Penha-Lopes, G., Delefosse, M., Valdemarsen, T., Quintana,
C. O., and Banta, G. T.: What is bioturbation? The need for a precise
definition for fauna in aquatic sciences, Mar. Ecol. Prog. Ser.,
446, 285–302, https://doi.org/10.3354/meps09506, 2012. a
Kunze, E., Dower, J. F., Beveridge, I., Dewey, R., and Bartlett, K. P.:
Observations of biologically generated turbulence in a coastal inlet,
Science, 313, 1768–1770, https://doi.org/10.1126/science.1129378,
2006. a
Lampert, W.: Release of dissolved organic carbon by grazing zooplankton,
Limnol. Oceanogr., 23, 831–834, https://doi.org/10.4319/lo.1978.23.4.0831,
1978. a
Lampitt, R. S., Noji, T., and von Bodungen, B.: What happens to zooplankton
faecal pellets? Implications for material flux, Mar. Biol., 104,
15–23, https://doi.org/10.1007/BF01313152, 1990. a
Lang, S. Q., Butterfield, D. A., Lilley, M. D., Paul Johnson, H., and Hedges,
J. I.: Dissolved organic carbon in ridge-axis and ridge-flank hydrothermal
systems, Geochim. Cosmochim. Ac., 70, 3830–3842,
https://doi.org/10.1016/j.gca.2006.04.031, 2006. a
Legendre, L., Rivkin, R. B., Weinbauer, M. G., Guidi, L., and Uitz, J.: The
microbial carbon pump concept: Potential biogeochemical significance in the
globally changing ocean, Prog. Oceanogr., 134, 432–450,
https://doi.org/10.1016/j.pocean.2015.01.008, 2015. a
Lenhart, K., Klintzsch, T., Langer, G., Nehrke, G., Bunge, M., Schnell, S., and
Keppler, F.: Evidence for methane production by the marine algae Emiliania
huxleyi, Biogeosciences, 13, 3163–3174, https://doi.org/10.5194/bg-13-3163-2016,
2016. a
Levy, M., Bopp, L., Karleskind, P., Resplandy, L., Ethe, C., and Pinsard, F.:
Physical pathways for carbon transfers between the surface mixed layer and
the ocean interior, Global Biogeochem. Cy., 27, 1001–1012,
https://doi.org/10.1002/gbc.20092, 2013. a
Margoluis, R., Stem, C., Salafsky, N., and Brown, M.: Using conceptual models
as a planning and evaluation tool in conservation, Eval. Program
Plann., 32, 138–147, https://doi.org/10.1016/j.evalprogplan.2008.09.007, 2009. a
Martin, A. H., Pearson, H. C., Saba, G. K., and Olsen, E. M.: Integral
functions of marine vertebrates in the ocean carbon cycle and climate change
mitigation, One Earth, 4, 680–693, https://doi.org/10.1016/j.oneear.2021.04.019,
2021. a
Mayer, L. M., Schick, L. L., Skorko, K., and Boss, E.: Photodissolution of
particulate organic matter from sediments, Limnol. Oceanogr., 51,
1064–1071, https://doi.org/10.4319/lo.2006.51.2.1064, 2006. a
Mayer, L. M., Schick, L. L., Hardy, K. R., and Estapa, M. L.: Photodissolution
and other photochemical changes upon irradiation of algal detritus,
Limnol. Oceanogr., 54, 1688–1698,
https://doi.org/10.4319/lo.2009.54.5.1688, 2009. a
McClain, C. R., Nunnally, C., Dixon, R., Rouse, G. W., and Benfield, M.:
Alligators in the abyss: The first experimental reptilian food fall in the
deep ocean, PloS one, 14, e0225 345, https://doi.org/10.1371/journal.pone.0225345,
2019. a
Middelboe, M., Jorgensen, N., and Kroer, N.: Effects of viruses on nutrient
turnover and growth efficiency of noninfected marine bacterioplankton,
Appl. Environ. Microbiol., 62, 1991–1997,
https://doi.org/10.1128/aem.62.6.1991-1997.1996, 1996. a
Middelburg, J. J.: Carbon Processing at the Seafloor, in: Marine Carbon
Biogeochemistry, edited by: Middelburg, J. J., SpringerBriefs in Earth
System Sciences, Springer International Publishing, Cham, 57–75,
https://doi.org/10.1007/978-3-030-10822-9_4, 2019. a, b, c
Mopper, K. and Kieber, D. J.: Photochemistry and the cycling of carbon,
sulfer, nitrogen and phosphorus, in: Biogeochemistry of marine dissolved
organic matter, edited by: Hansell, D. A. and Carlson, C. A.,
Academic Press, Amsterdam and Boston, 455–508, ISBN 9780123238412, 2002. a
Oka, A.: Ocean carbon pump decomposition and its application to CMIP5 earth
system model simulations, Prog. Earth Planet. Sci., 7,
1–17, https://doi.org/10.1186/s40645-020-00338-y, 2020. a
Omand, M. M., D'Asaro, E. A., Lee, C. M., Perry, M. J., Briggs, N.,
Cetinić, I., and Mahadevan, A.: Eddy-driven subduction exports
particulate organic carbon from the spring bloom, Science, 348, 222–225, https://doi.org/10.1126/science.1260062, 2015. a
Passow, U. and Carlson, C. A.: The biological pump in a high CO2 world,
Mar. Ecol. Prog. Ser., 470, 249–271, https://doi.org/10.3354/meps09985,
2012. a
Pedersen, O., Sand-Jensen, K., and Revsbech, N. P.: Diel Pulses of O2 and CO2
in Sandy Lake Sediments Inhabited by Lobelia Dortmanna, Ecology, 76,
1536–1545, https://doi.org/10.2307/1938155, 1995. a
Roman, J. and McCarthy, J. J.: The whale pump: marine mammals enhance primary
productivity in a coastal basin, PloS One, 5, e13255,
https://doi.org/10.1371/journal.pone.0013255, 2010. a
Roshan, S. and DeVries, T.: Efficient dissolved organic carbon production and
export in the oligotrophic ocean, Nat. Commun., 8, 2036,
https://doi.org/10.1038/s41467-017-02227-3, 2017. a
Rowe, G. T. and Deming, J. W.: An alternative view of the role of
heterotrophic microbes in the cycling of organic matter in deep-sea
sediments, Mar. Biol. Res., 7, 629–636,
https://doi.org/10.1080/17451000.2011.560269, 2011. a
Ruiz, J.: What generates daily cycles of marine snow?, Deep-Sea Res.
Pt. I, 44, 1105–1126,
https://doi.org/10.1016/S0967-0637(97)00012-5, 1997. a
Schmale, O., Wäge, J., Mohrholz, V., Wasmund, N., Gräwe, U., Rehder,
G., Labrenz, M., and Loick-Wilde, N.: The contribution of zooplankton to
methane supersaturation in the oxygenated upper waters of the central Baltic
Sea, Limnol. Oceanogr., 63, 412–430, 2018. a
Shen, Y. and Benner, R.: Mixing it up in the ocean carbon cycle and the
removal of refractory dissolved organic carbon, Sci. Rep., 8,
2542, https://doi.org/10.1038/s41598-018-20857-5, 2018. a
Sigman, D. M. and Haug, G. H.: 6.18 – The Biological Pump in the Past, in:
6: The oceans and marine geochemistry, edited by: Elderfield, H.,
Elsevier, Amsterdam, 491–528, https://doi.org/10.1016/B0-08-043751-6/06118-1, 2004. a
Smith, D. C., Simon, M., Alldredge, A. L., and Azam, F.: Intense hydrolytic
enzyme activity on marine aggregates and implications for rapid particle
dissolution, Nature, 359, 139–142, https://doi.org/10.1038/359139a0, 1992. a
Steinberg, D. K. and Landry, M. R.: Zooplankton and the Ocean Carbon Cycle,
Ann. Rev. Mar. Sci., 9, 413–444,
https://doi.org/10.1146/annurev-marine-010814-015924, 2017. a, b
Steinberg, D. K., Goldthwait, S. A., and Hansell, D. A.: Zooplankton vertical
migration and the active transport of dissolved organic and inorganic
nitrogen in the Sargasso Sea, Deep-Sea Res. Pt. I, 49, 1445–1461, https://doi.org/10.1016/S0967-0637(02)00037-7, 2002.
a
Stoderegger, K. and Herndl, G. J.: Production and release of bacterial
capsular material and its subsequent utilization by marine bacterioplankton,
Limnol. Oceanogr., 43, 877–884, https://doi.org/10.4319/lo.1998.43.5.0877,
1998. a, b
Ullah, H., Nagelkerken, I., Goldenberg, S. U., and Fordham, D. A.: Climate
change could drive marine food web collapse through altered trophic flows and
cyanobacterial proliferation, PLoS Biol., 16, e2003446,
https://doi.org/10.1371/journal.pbio.2003446, 2018. a
Weber, T., Wiseman, N. A., and Kock, A.: Global ocean methane emissions
dominated by shallow coastal waters, Nat. Commun., 10, 4584,
https://doi.org/10.1038/s41467-019-12541-7, 2019. a
Wooster, M. K., McMurray, S. E., Pawlik, J. R., Morán, X. A. G., and
Berumen, M. L.: Feeding and respiration by giant barrel sponges across a
gradient of food abundance in the Red Sea, Limnol. Oceanogr., 64,
1790–1801, https://doi.org/10.1002/lno.11151, 2019. a
Short summary
Organic carbon in the oceans can take various paths: it may e.g. sink to the sediment, be eaten, or be recycled to start all over again. Where carbon ends up for how long has implications for atmospheric CO2 concentrations and our climate. To assess which pathways exist and how they are structured, we introduce a qualitative concept of organic carbon pathways. This concept helps to identify pathways, compare ecosystems, and assess how human actions and environmental changes alter pathways.
Organic carbon in the oceans can take various paths: it may e.g. sink to the sediment, be eaten,...