Articles | Volume 18, issue 2
https://doi.org/10.5194/os-18-401-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-401-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Salinity as a key control on the diazotrophic community composition in the southern Baltic Sea
Christian Furbo Reeder
CORRESPONDING AUTHOR
Department of Biology, University of Southern Denmark, Campusvej 55,
5230 Odense M, Denmark
Ina Stoltenberg
Department of Biology, University of Southern Denmark, Campusvej 55,
5230 Odense M, Denmark
Jamileh Javidpour
Department of Biology, University of Southern Denmark, Campusvej 55,
5230 Odense M, Denmark
Carolin Regina Löscher
Department of Biology, University of Southern Denmark, Campusvej 55,
5230 Odense M, Denmark
Danish Institute for Advanced Study, University of Southern Denmark,
Campusvej 55, 5230 Odense M, Denmark
Related authors
No articles found.
Isabell Schlangen, Elizabeth Leon-Palmero, Annabell Moser, Peihang Xu, Erik Laursen, and Carolin Regina Löscher
EGUsphere, https://doi.org/10.5194/egusphere-2024-3680, https://doi.org/10.5194/egusphere-2024-3680, 2024
Short summary
Short summary
We explored nitrogen fixation in the Arctic Ocean, revealing its key role in supporting coastal productivity, especially near melting glaciers. By combining molecular data, rate measurements, and environmental analysis, we identified dominant microbes like symbiotic unicellular cyanobacteria and linked high nitrogen fixation to glacial melt. Our findings suggest that climate-driven changes may expand niches for these microbes, reshaping nitrogen cycles and Arctic productivity in the future.
Sebastian I. Cantarero, Edgart Flores, Harry Allbrook, Paulina Aguayo, Cristian A. Vargas, John E. Tamanaha, J. Bentley C. Scholz, Lennart T. Bach, Carolin R. Löscher, Ulf Riebesell, Balaji Rajagopalan, Nadia Dildar, and Julio Sepúlveda
Biogeosciences, 21, 3927–3958, https://doi.org/10.5194/bg-21-3927-2024, https://doi.org/10.5194/bg-21-3927-2024, 2024
Short summary
Short summary
Our study explores lipid remodeling in response to environmental stress, specifically how cell membrane chemistry changes. We focus on intact polar lipids in a phytoplankton community exposed to diverse stressors in a mesocosm experiment. The observed remodeling indicates acyl chain recycling for energy storage in intact polar lipids during stress, reallocating resources based on varying growth conditions. This understanding is essential to grasp the system's impact on cellular pools.
Jakob Rønning, Zarah J. Kofoed, Mats Jacobsen, and Carolin R. Löscher
EGUsphere, https://doi.org/10.5194/egusphere-2023-2884, https://doi.org/10.5194/egusphere-2023-2884, 2024
Short summary
Short summary
In our study, we assessed the impact of olivine on marine primary producers of ocean-based solutions. The experiments revealed no negative effects on carbon fixation rates. Additions of the alkaline minerals did not establish growth inhibition; instead, they showed slight growth increases with species-specific responses. Ni exposure from olivine did not inhibit growth. However, limitations include the absence of responses in natural settings.
Matthew D. Eisaman, Sonja Geilert, Phil Renforth, Laura Bastianini, James Campbell, Andrew W. Dale, Spyros Foteinis, Patricia Grasse, Olivia Hawrot, Carolin R. Löscher, Greg H. Rau, and Jakob Rønning
State Planet, 2-oae2023, 3, https://doi.org/10.5194/sp-2-oae2023-3-2023, https://doi.org/10.5194/sp-2-oae2023-3-2023, 2023
Short summary
Short summary
Ocean-alkalinity-enhancement technologies refer to various methods and approaches aimed at increasing the alkalinity of seawater. This chapter explores technologies for increasing ocean alkalinity, including electrochemical-based approaches, ocean liming, accelerated weathering of limestone, hydrated carbonate addition, and coastal enhanced weathering, and suggests best practices in research and development.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Carolin R. Löscher
Biogeosciences, 18, 4953–4963, https://doi.org/10.5194/bg-18-4953-2021, https://doi.org/10.5194/bg-18-4953-2021, 2021
Short summary
Short summary
The Bay of Bengal (BoB) is classically seen as an ocean region with low primary production, which has been predicted to decrease even further. Here, the importance of such a trend is used to explore what could happen to the BoB's low-oxygen core waters if primary production decreases. Lower biological production leads to less oxygen loss in deeper waters by respiration; thus it could be that oxygen will not further decrease and the BoB will not become anoxic, different to other low-oxygen areas.
Kai G. Schulz, Eric P. Achterberg, Javier Arístegui, Lennart T. Bach, Isabel Baños, Tim Boxhammer, Dirk Erler, Maricarmen Igarza, Verena Kalter, Andrea Ludwig, Carolin Löscher, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Elisabeth von der Esch, Bess B. Ward, and Ulf Riebesell
Biogeosciences, 18, 4305–4320, https://doi.org/10.5194/bg-18-4305-2021, https://doi.org/10.5194/bg-18-4305-2021, 2021
Short summary
Short summary
Upwelling of nutrient-rich deep waters to the surface make eastern boundary upwelling systems hot spots of marine productivity. This leads to subsurface oxygen depletion and the transformation of bioavailable nitrogen into inert N2. Here we quantify nitrogen loss processes following a simulated deep water upwelling. Denitrification was the dominant process, and budget calculations suggest that a significant portion of nitrogen that could be exported to depth is already lost in the surface ocean.
Siqi Wu, Moge Du, Xianhui Sean Wan, Corday Selden, Mar Benavides, Sophie Bonnet, Robert Hamersley, Carolin R. Löscher, Margaret R. Mulholland, Xiuli Yan, and Shuh-Ji Kao
Biogeosciences Discuss., https://doi.org/10.5194/bg-2021-104, https://doi.org/10.5194/bg-2021-104, 2021
Preprint withdrawn
Short summary
Short summary
Nitrogen (N2) fixation is one of the most important nutrient sources to the ocean. Here, we report N2 fixation in the deep, dark ocean in the South China Sea via a highly sensitive new method and elaborate controls, showing the overlooked importance of N2 fixation in the deep ocean. By global data compilation, we also provide an easy measured basic parameter to estimate deep N2 fixation. Our study may help to expand the area limit of N2 fixation studies and better constrain global N2 fixation.
Gerd Krahmann, Damian L. Arévalo-Martínez, Andrew W. Dale, Marcus Dengler, Anja Engel, Nicolaas Glock, Patricia Grasse, Johannes Hahn, Helena Hauss, Mark Hopwood, Rainer Kiko, Alexandra Loginova, Carolin R. Löscher, Marie Maßmig, Alexandra-Sophie Roy, Renato Salvatteci, Stefan Sommer, Toste Tanhua, and Hela Mehrtens
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-308, https://doi.org/10.5194/essd-2020-308, 2021
Preprint withdrawn
Short summary
Short summary
The project "Climate-Biogeochemistry Interactions in the Tropical Ocean" (SFB 754) was a multidisciplinary research project active from 2008 to 2019 aimed at a better understanding of the coupling between the tropical climate and ocean circulation and the ocean's oxygen and nutrient balance. On 34 research cruises, mainly in the Southeast Tropical Pacific and the Northeast Tropical Atlantic, 1071 physical, chemical and biological data sets were collected.
Lennart Thomas Bach, Allanah Joy Paul, Tim Boxhammer, Elisabeth von der Esch, Michelle Graco, Kai Georg Schulz, Eric Achterberg, Paulina Aguayo, Javier Arístegui, Patrizia Ayón, Isabel Baños, Avy Bernales, Anne Sophie Boegeholz, Francisco Chavez, Gabriela Chavez, Shao-Min Chen, Kristin Doering, Alba Filella, Martin Fischer, Patricia Grasse, Mathias Haunost, Jan Hennke, Nauzet Hernández-Hernández, Mark Hopwood, Maricarmen Igarza, Verena Kalter, Leila Kittu, Peter Kohnert, Jesus Ledesma, Christian Lieberum, Silke Lischka, Carolin Löscher, Andrea Ludwig, Ursula Mendoza, Jana Meyer, Judith Meyer, Fabrizio Minutolo, Joaquin Ortiz Cortes, Jonna Piiparinen, Claudia Sforna, Kristian Spilling, Sonia Sanchez, Carsten Spisla, Michael Sswat, Mabel Zavala Moreira, and Ulf Riebesell
Biogeosciences, 17, 4831–4852, https://doi.org/10.5194/bg-17-4831-2020, https://doi.org/10.5194/bg-17-4831-2020, 2020
Short summary
Short summary
The eastern boundary upwelling system off Peru is among Earth's most productive ocean ecosystems, but the factors that control its functioning are poorly constrained. Here we used mesocosms, moored ~ 6 km offshore Peru, to investigate how processes in plankton communities drive key biogeochemical processes. We show that nutrient and light co-limitation keep productivity and export at a remarkably constant level while stoichiometry changes strongly with shifts in plankton community structure.
Claudia Frey, Hermann W. Bange, Eric P. Achterberg, Amal Jayakumar, Carolin R. Löscher, Damian L. Arévalo-Martínez, Elizabeth León-Palmero, Mingshuang Sun, Xin Sun, Ruifang C. Xie, Sergey Oleynik, and Bess B. Ward
Biogeosciences, 17, 2263–2287, https://doi.org/10.5194/bg-17-2263-2020, https://doi.org/10.5194/bg-17-2263-2020, 2020
Short summary
Short summary
The production of N2O via nitrification and denitrification associated with low-O2 waters is a major source of oceanic N2O. We investigated the regulation and dynamics of these processes with respect to O2 and organic matter inputs. The transcription of the key nitrification gene amoA rapidly responded to changes in O2 and strongly correlated with N2O production rates. N2O production by denitrification was clearly stimulated by organic carbon, implying that its supply controls N2O production.
Carolin R. Löscher, Wiebke Mohr, Hermann W. Bange, and Donald E. Canfield
Biogeosciences, 17, 851–864, https://doi.org/10.5194/bg-17-851-2020, https://doi.org/10.5194/bg-17-851-2020, 2020
Short summary
Short summary
Oxygen minimum zones (OMZs) are ocean areas severely depleted in oxygen as a result of physical, chemical, and biological processes. Biologically, organic material is produced in the sea surface and exported to deeper waters, where it respires. In the Bay of Bengal (BoB), an OMZ is present, but there are traces of oxygen left. Our study now suggests that this is because one key process, nitrogen fixation, is absent in the BoB, thus preventing primary production and consecutive respiration.
Johanna Maltby, Lea Steinle, Carolin R. Löscher, Hermann W. Bange, Martin A. Fischer, Mark Schmidt, and Tina Treude
Biogeosciences, 15, 137–157, https://doi.org/10.5194/bg-15-137-2018, https://doi.org/10.5194/bg-15-137-2018, 2018
Short summary
Short summary
The activity and environmental controls of methanogenesis (MG) within the sulfate-reducing zone (0–30 cm below the seafloor) were investigated in organic-rich sediments of the seasonally hypoxic Eckernförde Bay, SW Baltic Sea. MG activity was mostly linked to non-competitive substrates. The major controls identified were organic matter availability, C / N, temperature, and O2 in the water column, revealing higher rates in warm, stratified, hypoxic seasons compared to colder, oxygenated seasons.
Johannes Karstensen, Florian Schütte, Alice Pietri, Gerd Krahmann, Björn Fiedler, Damian Grundle, Helena Hauss, Arne Körtzinger, Carolin R. Löscher, Pierre Testor, Nuno Vieira, and Martin Visbeck
Biogeosciences, 14, 2167–2181, https://doi.org/10.5194/bg-14-2167-2017, https://doi.org/10.5194/bg-14-2167-2017, 2017
Short summary
Short summary
High-resolution observational data from underwater gliders and ships are used to investigate drivers and pathways of nutrient upwelling in high-productive whirling ecosystems (eddies). The data suggest that the upwelling is created by the interaction of wind-induced internal waves with the local rotation of the eddy. Because of differences in nutrient and oxygen pathways, a low-oxygen core is established at shallow depth in the high-productive eddies.
Björn Fiedler, Damian S. Grundle, Florian Schütte, Johannes Karstensen, Carolin R. Löscher, Helena Hauss, Hannes Wagner, Alexandra Loginova, Rainer Kiko, Péricles Silva, Toste Tanhua, and Arne Körtzinger
Biogeosciences, 13, 5633–5647, https://doi.org/10.5194/bg-13-5633-2016, https://doi.org/10.5194/bg-13-5633-2016, 2016
Short summary
Short summary
Oxygen-depleted mesoscale features in the open eastern tropical North Atlantic, which are formed in the Mauritanian upwelling region, were discovered recently. This study examines biogeochemical structure and magnitudes of related processes within these isolated water masses. We found very low oxygen concentrations and strongly enhanced acidity at near-surface depth. Oxygen utilization and downward carbon export were found to exceed known values for this ocean region.
Jessica Gier, Stefan Sommer, Carolin R. Löscher, Andrew W. Dale, Ruth A. Schmitz, and Tina Treude
Biogeosciences, 13, 4065–4080, https://doi.org/10.5194/bg-13-4065-2016, https://doi.org/10.5194/bg-13-4065-2016, 2016
Short summary
Short summary
Benthic nitrogen fixation and sulfate reduction were investigated in the Peruvian oxygen minimum zone. The data suggest a coupling of both activities to a large extent, but that also sulfide and organic matter availability are controlling the benthic diazotrophy in this area. The molecular analysis confirms the presence of heterotrophic diazotrophs. This work improves our understanding of N cycling in OMZ sediments and the understanding of N sources in the marine environment.
Carolin R. Löscher, Hermann W. Bange, Ruth A. Schmitz, Cameron M. Callbeck, Anja Engel, Helena Hauss, Torsten Kanzow, Rainer Kiko, Gaute Lavik, Alexandra Loginova, Frank Melzner, Judith Meyer, Sven C. Neulinger, Markus Pahlow, Ulf Riebesell, Harald Schunck, Sören Thomsen, and Hannes Wagner
Biogeosciences, 13, 3585–3606, https://doi.org/10.5194/bg-13-3585-2016, https://doi.org/10.5194/bg-13-3585-2016, 2016
Short summary
Short summary
The ocean loses oxygen due to climate change. Addressing this issue in tropical ocean regions (off Peru and Mauritania), we aimed to understand the effects of oxygen depletion on various aspects of marine biogeochemistry, including primary production and export production, the nitrogen cycle, greenhouse gas production, organic matter fluxes and remineralization, and the role of zooplankton and viruses.
Carolin R. Löscher, Annie Bourbonnais, Julien Dekaezemacker, Chawalit N. Charoenpong, Mark A. Altabet, Hermann W. Bange, Rena Czeschel, Chris Hoffmann, and Ruth Schmitz
Biogeosciences, 13, 2889–2899, https://doi.org/10.5194/bg-13-2889-2016, https://doi.org/10.5194/bg-13-2889-2016, 2016
Short summary
Short summary
The ocean is full of eddies and they play a key role for ocean biogeochemistry. In order to understand dinitrogen (N2) fixation, one major control of oceanic primary production, we investigated three eddies in the eastern tropical South Pacific off Peru. We conducted the first detailed survey and found increased N2 fixation in the oxygen-depleted cores of anticyclonic mode water eddies. Taken together, we could – for the first time – show that eddies play an important role in N2 fixation off Peru.
Helena Hauss, Svenja Christiansen, Florian Schütte, Rainer Kiko, Miryam Edvam Lima, Elizandro Rodrigues, Johannes Karstensen, Carolin R. Löscher, Arne Körtzinger, and Björn Fiedler
Biogeosciences, 13, 1977–1989, https://doi.org/10.5194/bg-13-1977-2016, https://doi.org/10.5194/bg-13-1977-2016, 2016
Short summary
Short summary
In a low-oxygen eddy in the tropical Atlantic, total zooplankton biomass was increased. Larger plankton avoided the oxygen minimum zone (OMZ, < 20 µmol O2 kg−1). We identified four strategies by different plankton groups: (i) shallow OMZ avoidance and compression at surface, (ii) migration to shallow OMZ core during daytime, migration to surface at nighttime, (iii) residing in shallow OMZ day and night and (iv) migration through the shallow OMZ from oxygenated depths to surface and back.
Ulrike Lomnitz, Stefan Sommer, Andrew W. Dale, Carolin R. Löscher, Anna Noffke, Klaus Wallmann, and Christian Hensen
Biogeosciences, 13, 1367–1386, https://doi.org/10.5194/bg-13-1367-2016, https://doi.org/10.5194/bg-13-1367-2016, 2016
Short summary
Short summary
The study presents a P budget including the P input from the water column, the P burial in the sediments, as well as the P release from the sediments. We found that the P input could not maintain the P release rates. Consideration of other P sources, e.g., terrigenous P and P released from the dissolution of Fe oxyhydroxides, showed that none of these can account for the missing P. Thus, it is likely that abundant sulfide-oxidizing bacteria release the missing P during our measurement period.
Damian L. Arévalo-Martínez, Annette Kock, Carolin R. Löscher, Ruth A. Schmitz, Lothar Stramma, and Hermann W. Bange
Biogeosciences, 13, 1105–1118, https://doi.org/10.5194/bg-13-1105-2016, https://doi.org/10.5194/bg-13-1105-2016, 2016
Short summary
Short summary
We present the first measurements of N2O across three mesoscale eddies in the eastern tropical South Pacific. Eddie's vertical structure, offshore transport, properties during its formation and near-surface primary production determined the N2O distribution. Substantial depletion of N2O within the core of anticyclonic eddies suggests that although these are transient features, N-loss processes within their centres can lead to an enhanced N2O sink which is not accounted for in marine N2O budgets.
A. Kock, D. L. Arévalo-Martínez, C. R. Löscher, and H. W. Bange
Biogeosciences, 13, 827–840, https://doi.org/10.5194/bg-13-827-2016, https://doi.org/10.5194/bg-13-827-2016, 2016
Short summary
Short summary
We measured the nitrous oxide (N2O) distribution in the water column in the oxygen minimum zone off Peru, an area with extremely high N2O emissions. Our data show very variable and often very high N2O concentrations in the water column at the coast, which lead to high N2O emissions when these waters are brought to the surface. The very high N2O production off Peru may be caused by high nutrient turnover rates together with rapid changes in the oxygen concentrations.
J. Meyer, C. R. Löscher, S. C. Neulinger, A. F. Reichel, A. Loginova, C. Borchard, R. A. Schmitz, H. Hauss, R. Kiko, and U. Riebesell
Biogeosciences, 13, 781–794, https://doi.org/10.5194/bg-13-781-2016, https://doi.org/10.5194/bg-13-781-2016, 2016
C. R. Löscher, M. A. Fischer, S. C. Neulinger, B. Fiedler, M. Philippi, F. Schütte, A. Singh, H. Hauss, J. Karstensen, A. Körtzinger, S. Künzel, and R. A. Schmitz
Biogeosciences, 12, 7467–7482, https://doi.org/10.5194/bg-12-7467-2015, https://doi.org/10.5194/bg-12-7467-2015, 2015
Short summary
Short summary
The waters of the tropical Atlantic Open Ocean usually contain comparably high concentrations of oxygen. Now, it became clear that there are watermasses related to eddies that are nearly anoxic. We surveyed one of those eddies and found a biosphere that largely differed from the usual biosphere present in this area with a specific community responsible for primary production and for degradation processes. Further, we found the very first indication for active nitrogen loss in the open Atlantic.
V. J. Bertics, C. R. Löscher, I. Salonen, A. W. Dale, J. Gier, R. A. Schmitz, and T. Treude
Biogeosciences, 10, 1243–1258, https://doi.org/10.5194/bg-10-1243-2013, https://doi.org/10.5194/bg-10-1243-2013, 2013
Cited articles
Acinas, S. G., Haverkamp, T. H. A., Huisman, J., and Stal, L. J.: Phenotypic
and genetic diversification of Pseudanabaena spp. (cyanobacteria), ISME J.,
3, 31–46, https://doi.org/10.1038/ismej.2008.78, 2009.
Affourtit, J., Zehr, J. P., and Paerl, H. W.: Distribution of nitrogen-fixing
microorganisms along the Neuse River Estuary, North Carolina, Microb. Ecol.,
41, 114–123, https://doi.org/10.1007/s002480000090, 2001.
Anbar, A. D.: Oceans: Elements and evolution, Science, 322,
1481–1483, https://doi.org/10.1126/science.1163100, 2008.
Arrigo, K. R.: Marine microorganisms and global nutrient cycles, Nature,
438, 7064, https://doi.org/10.1038/nature04265, 2005.
Bauer, S., Blomqvist, S., and Ingri, J.: Distribution of dissolved and
suspended particulate molybdenum, vanadium, and tungsten in the Baltic Sea,
Mar. Chem., 196, 135–147, https://doi.org/10.1016/j.marchem.2017.08.010, 2017.
Bellenger, J. P., Wichard, T., Xu, Y., and Kraepiel, A. M. L.: Essential
metals for nitrogen fixation in a free-living N2-fixing bacterium:
Chelation, homeostasis and high use efficiency, Environ. Microbiol., 13,
1395–1411, https://doi.org/10.1111/j.1462-2920.2011.02440.x, 2011.
Bellenger, J. P., Xu, Y., Zhang, X., Morel, F. M. M., and Kraepiel, A. M. L.:
Possible contribution of alternative nitrogenases to nitrogen fixation by
asymbiotic N2-fixing bacteria in soils, Soil Biol. Biochem., 69,
413–420, https://doi.org/10.1016/j.soilbio.2013.11.015, 2014.
Benavides, M., Martias, C., Elifantz, H., Berman-Frank, I., Dupouy, C., and
Bonnet, S.: Dissolved organic matter influences N2 fixation in the New
Caledonian lagoon (western tropical South Pacific), Front. Mar. Sci.,
5, 1–12, https://doi.org/10.3389/fmars.2018.00089, 2018.
Bennett, W. W. and Canfield, D. E.: Redox-sensitive trace metals as
paleoredox proxies: A review and analysis of data from modern sediments,
Earth Sci. Rev., 204, 103175, https://doi.org/10.1016/j.earscirev.2020.103175,
2020.
Bentzon-Tilia, M., Traving, S. J., Mantikci, M., Knudsen-Leerbeck, H.,
Hansen, J. L. S., Markager, S., and Riemann, L.: Significant N 2 fixation by
heterotrophs, photoheterotrophs and heterocystous cyanobacteria in two
temperate estuaries, ISME J., 9, 273–285, https://doi.org/10.1038/ismej.2014.119,
2015.
Bertagnolli, A. D. and Stewart, F. J.: Microbial niches in marine oxygen
minimum zones, Nat. Rev. Microbiol., 16, 723–729,
https://doi.org/10.1038/s41579-018-0087-z, 2018.
Bertine, K. K. and Turekian, K. K.: Molybdenum in marine deposits, Geochim.
Cosmochim. Ac., 37, 1415–1434, https://doi.org/10.1016/0016-7037(73)90080-X, 1973.
Betancourt, D. A., Loveless, T. M., Brown, J. W., and Bishop, P. E.:
Characterization of diazotrophs containing Mo-independent nitrogenases,
isolated from diverse natural environments, Appl. Environ. Microbiol.,
74, 3471–3480, https://doi.org/10.1128/AEM.02694-07, 2008.
Boström, K. H., Riemann, L., Zweifel, U. L., and Hagström, Å.:
Nodularia sp. nifH gene transcripts in the Baltic Sea proper, J. Plankton
Res., 29, 391–399, https://doi.org/10.1093/plankt/fbm019, 2007.
Brauer, V. S., Stomp, M., Rosso, C., Van Beusekom, S. A. M., Emmerich, B.,
Stal, L. J., and Huisman, J.: Low temperature delays timing and enhances the
cost of nitrogen fixation in the unicellular cyanobacterium Cyanothece, ISME
J., 7, 2105–2115, https://doi.org/10.1038/ismej.2013.103, 2013.
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P.,
Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K.,
Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C.,
Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M.,
Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and coastal
waters, Science, 359, 6371, https://doi.org/10.1126/science.aam7240, 2018.
Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J.
A., and Holmes, S. P.: DADA2: High-resolution sample inference from Illumina
amplicon data, Nat. Methods, 13, 581–583, https://doi.org/10.1038/nmeth.3869, 2016.
Canfield, D. E.: Models of oxic respiration, denitrification and sulfate
reduction in zones of coastal upwelling, Geochim. Cosmochim. Ac., 70, 5753–5765, https://doi.org/10.1016/j.gca.2006.07.023, 2006.
Carpenter, E. J. and Capone, D. G.: Nitrogen fixation in the marine
environment, in: Nitrogen in marine environment, chap. 4, 2nd Edn., Elsevier Science and Technology, 141–198, https://doi.org/10.1016/B978-0-12-372522-6.00004-9, 2008.
Carstensen, J., Andersen, J. H., Gustafsson, B. G., and Conley, D. J.:
Deoxygenation of the baltic sea during the last century, P. Natl. Acad.
Sci. USA, 111, 5628–5633, https://doi.org/10.1073/pnas.1323156111, 2014.
Chakraborty, S., Andersen, K. H., Follows, M. J., and Riemann, L.:
Quantifying nitrogen fixation by heterotrophic bacteria in sinking marine
particles, Nat. Commun., 12, 4085, https://doi.org/10.1038/s41467-021-23875-6, 2021.
Chen, M., Lu, Y., Jiao, N., Tian, J., Kao, S. J., and Zhang, Y.:
Biogeographic drivers of diazotrophs in the western Pacific Ocean, Limnol.
Oceanogr., 64, 1403–1421, https://doi.org/10.1002/lno.11123, 2019.
Chisnell, J. R., Premakumar, R., and Bishop, P. E.: Purification of a second
alternative nitrogenase from a nifHDK deletion strain of Azotobacter
vinelandii., J. Bacteriol., 170, 27–33, https://doi.org/10.1128/jb.170.1.27-33.1988,
1988.
Christiansen, C. F. and Löscher, C. R.: Facets of diazotrophy in the OMZ
off Peru revisited- what we couldn't see from a single marker gene approach, BioarXiv [preprint],
https://doi.org/10.1101/558072, 2019.
Church, M. J., Mahaffey, C., Letelier, R. M., Lukas, R., Zehr, J. P., and
Karl, D. M.: Physical forcing of nitrogen fixation and diazotroph community
structure in the North Pacific subtropical gyre, Global Biogeochem. Cy.,
23, 2, https://doi.org/10.1029/2008GB003418, 2009.
Conley, D. J., Humborg, C., Rahm, L., Savchuk, O. P., and Wulff, F.: Hypoxia
in the baltic sea and basin-scale changes in phosphorus biogeochemistry,
Environ. Sci. Technol., 36, 5315–5320, https://doi.org/10.1021/es025763w, 2002.
Crusius, J., Calvert, S., Pedersen, T., and Sage, D.: Rhenium and molybdenum
enrichments in sediments as indicators of oxic, suboxic and sulfidic
conditions of deposition, Earth Planet. Sc. Lett., 145, 65–78,
https://doi.org/10.1016/s0012-821x(96)00204-x, 1996.
Dähnke, K. and Thamdrup, B.: Nitrogen isotope dynamics and fractionation during sedimentary denitrification in Boknis Eck, Baltic Sea, Biogeosciences, 10, 3079–3088, https://doi.org/10.5194/bg-10-3079-2013, 2013.
Degerholm, J., Gundersen, K., Bergman, B., and Söderbäck, E.:
Phosphorus-limited growth dynamics in two Baltic Sea cyanobacteria,
Nodularia sp. and Aphanizomenon sp., FEMS Microbiol. Ecol., 58, 323–332,
https://doi.org/10.1111/j.1574-6941.2006.00180.x, 2006.
Delwiche, C. C. and Steyn, P. L.: Nitrogen Isotope Fractionation in Soils
and Microbial Reactions, Environ. Sci. Technol., 4, 929–935,
https://doi.org/10.1021/es60046a004, 1970.
Dera, J. and Woźniak, B.: Solar radiation in the baltic sea,
Oceanologia, 52, 533–582, https://doi.org/10.5697/oc.52-4.533, 2010.
Diaz, R. J. and Rosenberg, R.: Spreading Dead Zones and Consequences for
Marine Ecosystems, Am. Assoc. Adv. Sci., 321, 926–929, 2008.
Dicker, H. J. and Smith, D. W.: Effects of Salinity on Acetylene Reduction
(Nitrogen Fixation) and Respiration in a Marine Azotobacter , Appl. Environ.
Microbiol., 42, 740–744, https://doi.org/10.1128/aem.42.4.740-744.1981, 1981.
Dixon, R. and Kahn, D.: Genetic regulation of biological nitrogen fixation,
Nat. Rev. Microbiol., 2, 621–631, https://doi.org/10.1038/nrmicro954, 2004.
Dore, J. E., Brum, J. R., Tupas, L. M., and Karl, D. M.: Seasonal and
interannual variability in sources of nitrogen supporting export in the
oligotrophic subtropical North Pacific Ocean, Limnol. Oceanogr., 47,
1595–1607, https://doi.org/10.4319/lo.2002.47.6.1595, 2002.
Dupont, C. L., Larsson, J., Yooseph, S., Ininbergs, K., Goll, J.,
Asplund-Samuelsson, J., McCrow, J. P., Celepli, N., Allen, L. Z., Ekman, M.,
Lucas, A. J., Hagström, Å., Thiagarajan, M., Brindefalk, B.,
Richter, A. R., Andersson, A. F., Tenney, A., Lundin, D., Tovchigrechko, A.,
Nylander, J. A. A., Brami, D., Badger, J. H., Allen, A. E., Rusch, D. B.,
Hoffman, J., Norrby, E., Friedman, R., Pinhassi, J., Venter, J. C., and
Bergman, B.: Functional tradeoffs underpin salinity-driven divergence in
microbial community composition, PLoS One, 9, e89549,
https://doi.org/10.1371/journal.pone.0089549, 2014.
Englund, B. and Meyerson, H.: In situ Measurement of Nitrogen Fixation at
Low Temperatures, Wiley, 25, 283–287, 1974.
Farnelid, H., Öberg, T., and Riemann, L.: Identity and dynamics of
putative N2-fixing picoplankton in the Baltic Sea proper suggest complex
patterns of regulation, Environ. Microbiol. Rep., 1, 145–154,
https://doi.org/10.1111/j.1758-2229.2009.00021.x, 2009.
Farnelid, H., Bentzon-Tilia, M., Andersson, A. F., Bertilsson, S., Jost, G.,
Labrenz, M., Jürgens, K., and Riemann, L.: Active nitrogen-fixing
heterotrophic bacteria at and below the chemocline of the central Baltic
Sea, ISME J., 7, 1413–1423, https://doi.org/10.1038/ismej.2013.26, 2013.
Farnelid, H., Turk-Kubo, K., Ploug, H., Ossolinski, J. E., Collins, J. R.,
Van Mooy, B. A. S., and Zehr, J. P.: Diverse diazotrophs are present on
sinking particles in the North Pacific Subtropical Gyre, ISME J., 13,
170–182, https://doi.org/10.1038/s41396-018-0259-x, 2019.
Fernandez, C., Farías, L., and Ulloa, O.: Nitrogen fixation in
denitrified marine waters, PLoS One, 6, e20539, https://doi.org/10.1371/journal.pone.0020539,
2011.
Fonseca-Batista, D., Li, X., Riou, V., Michotey, V., Deman, F., Fripiat, F.,
Guasco, S., Brion, N., Lemaitre, N., Tonnard, M., Gallinari, M., Planquette,
H., Planchon, F., Sarthou, G., Elskens, M., Laroche, J., Chou, L., and
Dehairs, F.: Evidence of high N2 fixation rates in the temperate
northeast Atlantic, Biogeosciences, 16, 999–1017,
https://doi.org/10.5194/bg-16-999-2019, 2019.
Gradoville, M. R., Farnelid, H., White, A. E., Turk-Kubo, K. A., Stewart,
B., Ribalet, F., Ferrón, S., Pinedo-gonzalez, P., Armbrust, E. V., Karl,
D. M., John, S., and Zehr, J. P.: Latitudinal constraints on the abundance
and activity of the cyanobacterium UCYN-A and other marine diazotrophs in
the North Pacific, Limnol. Oceanogr., 9999, 1–18, https://doi.org/10.1002/lno.11423, 2020.
Grasshoff, G., Kremling, K., and Erhardt, M.: Methods of seawater analysis,
Wiley VCH, Weinheim, 3rd Edn., ISBN 3527295895, 1999.
Gruber, N.: A bigger nitrogen fix, Nature, 436, 786–787,
https://doi.org/10.1038/436786a, 2005.
Gustafsson, E., Savchuk, O. P., Gustafsson, B. G., and Müller-Karulis,
B.: Key processes in the coupled carbon, nitrogen, and phosphorus cycling of
the Baltic Sea, Biogeochemistry, 134, 301–317,
https://doi.org/10.1007/s10533-017-0361-6, 2017.
Hall, P. 0. J. and Aller, R. C.: Rapid, small-volume, flow injection
analysis for SCO2, and NH in marine and freshwaters, Limnol. Oceanogr.,
37, 1113–1119, https://doi.org/10.4319/lo.1992.37.5.1113, 1992.
Hall, T. A.: BioEdit: a user-friendly biological sequence alignment editor
and analysis program for Windows, https://doi.org/10.14601/Phytopathol_Mediterr-14998u1.29, 1999.
Hamersley, M. R., Turk, K. A., Leinweber, A., Gruber, N., Zehr, J. P.,
Gunderson, T., and Capone, D. G.: Nitrogen fixation within the water column
associated with two hypoxic basins in the Southern California Bight, Aquat.
Microb. Ecol., 63, 193–205, https://doi.org/10.3354/ame01494, 2011.
Harding, K., Turk-Kubo, K. A., Sipler, R. E., Mills, M. M., Bronk, D. A., and
Zehr, J. P.: Symbiotic unicellular cyanobacteria fix nitrogen in the Arctic
Ocean, P. Natl. Acad. Sci. USA, 115, 13371–13375,
https://doi.org/10.1073/pnas.1813658115, 2018.
Helcom: HELCOM,
https://helcom.fi/baltic-sea-trends/indicators/ (last access: 9 June 2021), 2018.
Hietanen, S., Jäntti, H., Buizert, C., Jürgens, K., Labrenz, M.,
Voss, M., and Kuparinen, J.: Hypoxia and nitrogen processing in the Baltic
Sea water column, Limnol. Oceanogr., 57, 325–337,
https://doi.org/10.4319/lo.2012.57.1.0325, 2012.
ICES Copenhagen: International Council for the Exploration of the Sea (ICES)
– Dataset on Ocean Hydrography,
https://ocean.ices.dk/ (last access: 9 June 2021), 2020.
Ingall, E. and Jahnke, R.: Influence of water-column anoxia on the elemental
fractionation of carbon and phosphorus during sediment diagenesis, Mar.
Geol., 139, 219–229, https://doi.org/10.1016/S0025-3227(96)00112-0, 1997.
Janson, S., Carpenter, E. J., and Bergman, B.:
Fine structure and immunolocalisation of proteins in Aphanizomenon sp. from
the Baltic Sea, J. Europ. J. Phycol.,
29, 203–211, https://doi.org/10.1080/09670269400650651, 1994.
Jayakumar, A., Al-Rshaidat, M. M. D., Ward, B. B., and Mulholland, M. R.:
Diversity, distribution, and expression of diazotroph nifH genes in
oxygen-deficient waters of the Arabian Sea, FEMS Microbiol. Ecol., 82,
597–606, https://doi.org/10.1111/j.1574-6941.2012.01430.x, 2012.
Jayakumar, A., Chang, B. X., Widner, B., Bernhardt, P., Mulholland, M. R., and Ward, B. B.: Biological nitrogen fixation in the oxygen-minimum region
of the eastern tropical North Pacific ocean, ISME J., 11, 2356–2367,
https://doi.org/10.1038/ismej.2017.97, 2017.
Kahru, M. and Elmgren, R.: Multidecadal time series of satellite-detected
accumulations of cyanobacteria in the Baltic Sea, Biogeosciences, 11,
3619–3633, https://doi.org/10.5194/bg-11-3619-2014, 2014.
Kahru, M., Horstmann, U., and Rud, O.: Satellite detection of increased
cyanobacteria blooms in the Baltic Sea: Natural fluctuation or ecosystem
change?, Ambio, 23, 469–472, 1994.
Karjalainen, M., Engström-Öst, J., Korpinen, S., Peltonen, H.,
Pääkkönen, J. P., Rönkkönen, S., Suikkanen, S., and
Viitasalo, M.: Ecosystem consequences of cyanobacteria in the northern
Baltic Sea, Ambio, 36, 195–202,
https://doi.org/10.1579/0044-7447(2007)36[195:ECOCIT]2.0.CO;2, 2007.
Karlberg, M. and Wulff, A.: Impact of temperature and species interaction on
filamentous cyanobacteria may be more important than salinity and increased
pCO2 levels, Mar. Biol., 160, 2063–2072, https://doi.org/10.1007/s00227-012-2078-3,
2013.
Kassambara, A. and Mundt, F.: factoextra: Extract and Visualize the Results
of Multivariate Data Analyses, https://cran.r-project.org/web/packages/factoextra/index.html, 2020.
Keeling, R. F., Körtzinger, A., and Gruber, N.: Ocean Deoxygenation in a
Warming World, Ann. Rev. Mar. Sci., 2, 199–229,
https://doi.org/10.1146/annurev.marine.010908.163855, 2010.
Klawonn, I., Nahar, N., Walve, J., Andersson, B., Olofsson, M., Svedén,
J. B., Littmann, S., Whitehouse, M. J., Kuypers, M. M. M., and Ploug, H.:
Cell-specific nitrogen- and carbon-fixation of cyanobacteria in a temperate
marine system (Baltic Sea), Environ. Microbiol., 18, 4596–4609,
https://doi.org/10.1111/1462-2920.13557, 2016.
Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K.: MEGA X: Molecular
evolutionary genetics analysis across computing platforms, Mol. Biol. Evol.,
35, 1547–1549, https://doi.org/10.1093/molbev/msy096, 2018.
Langlois, R. J., Hümmer, D., and LaRoche, J.: Abundances and
distributions of the dominant nifH phylotypes in the Northern Atlantic
Ocean, Appl. Environ. Microbiol., 74, 1922–1931,
https://doi.org/10.1128/AEM.01720-07, 2008.
Larsson, U., Hajdu, S., Walve, J., and Elmgren, R.: Baltic Sea Nitrogen
Fixation Estimated from the Summer Increase in Upper Mixed Layer, Limno. Oceanogr., 46, 811–820, 2001.
Lehtimäki, J., Moisander, P., Sivonen, K., and Kononen, K.: Growth,
nitrogen fixation, and Nodularin production by two Baltic Sea cyanobacteria,
Appl. Environ. Microbiol., 63, 1647–1656,
https://doi.org/10.1128/aem.63.5.1647-1656.1997, 1997.
Lennartz, S. T., Lehmann, A., Herrford, J., Malien, F., Hansen, H. P.,
Biester, H., and Bange, H. W.: Long-term trends at the Boknis Eck time series
station (Baltic Sea), 1957–2013: Does climate change counteract the decline
in eutrophication?, Biogeosciences, 11, 6323–6339,
https://doi.org/10.5194/bg-11-6323-2014, 2014.
Leppanen, J., Niemi, A., and Rinne, I.: Nitrogen fixation of Cyanobacteria
(blue-green algae) and the nitrogen cycle of the Baltic Sea, Symbiosis, 6, 181–194, 1988.
Li, L., Wu, C., Huang, D., Ding, C., Wei, Y., and Sun, J.: Integrating
Stochastic and Deterministic Process in the Biogeography of N2-Fixing
Cyanobacterium Candidatus Atelocyanobacterium Thalassa, Front. Microbiol.,
12, 1–15, https://doi.org/10.3389/fmicb.2021.654646, 2021.
Liblik, T. and Lips, U.: Stratification has strengthened in the baltic sea
– an analysis of 35 years of observational data, Front. Earth Sci.,
7, 1–15, https://doi.org/10.3389/feart.2019.00174, 2019.
Löscher, C. R., Großkopf, T., Desai, F. D., Gill, D., Schunck, H.,
Croot, P. L., Schlosser, C., Neulinger, S. C., Pinnow, N., Lavik, G.,
Kuypers, M. M. M., Laroche, J., and Schmitz, R. A.: Facets of diazotrophy in
the oxygen minimum zone waters off Peru, ISME J., 8, 1–13,
https://doi.org/10.1038/ismej.2014.71, 2014.
Loveless, T. M., Saah, J. R., and Bishop, P. E.: Isolation of nitrogen-fixing
bacteria containing molybdenum-independent nitrogenases from natural
environments, Appl. Environ. Microbiol., 65, 4223–4226,
https://doi.org/10.1128/aem.65.9.4223-4226.1999, 1999.
Maar, M., Markager, S., Madsen, K. S., Windolf, J., Lyngsgaard, M. M.,
Andersen, H. E., and Møller, E. F.: The importance of local versus
external nutrient loads for Chl a and primary production in the Western
Baltic Sea, Ecol. Modell., 320, 258–272,
https://doi.org/10.1016/j.ecolmodel.2015.09.023, 2016.
Main, D. C., Berry, P. H., Peet, R. L., and Robertson, J. P.: Sheep
mortalities associated with the blue green alga Nodularia spumigena, Austr. Vet. J., 53, 578–581, https://doi.org/10.1111/j.1751-0813.1977.tb15830.x, 1977.
Man-Aharonovich, D., Kress, N., Zeev, E. B., Berman-Frank, I., and
Béjà, O.: Molecular ecology of nifH genes and transcripts in the
eastern Mediterranean Sea, Environ. Microbiol., 9, 2354–2363,
https://doi.org/10.1111/j.1462-2920.2007.01353.x, 2007.
Marino, R., Chan, F., Howarth, R. W., Pace, M. L., and Likens, G. E.:
Ecological constraints on planktonic nitrogen fixation in saline estuaries.
I. Nutrient and trophic controls, Mar. Ecol. Prog. Ser., 309, 25–39,
https://doi.org/10.3354/meps309025, 2006.
Martínez-Pérez, C., Mohr, W.,; Löscher, C. R., Dekaezemacker, J., Littmann, S., Yilmaz, P., Lehnen, N., Fuchs, B. M., Lavik, G., Schmitz, R. A., LaRoche, J., and Kuypers, M. M. M: The small
unicellular diazotrophic symbiont, UCYN-A, is a key player in the marine
nitrogen cycle, Nat. Microbiol., 1, 16163, https://doi.org/10.1038/nmicrobiol.2016.163, 2016.
McMurdie, P. J. and Holmes, S.: Phyloseq: An R Package for Reproducible
Interactive Analysis and Graphics of Microbiome Census Data, PLoS One, 8, e61217,
https://doi.org/10.1371/journal.pone.0061217, 2013.
McRose, D. L., Zhang, X., Kraepiel, A. M. L., and Morel, F. M. M.: Diversity
and activity of alternative nitrogenases in sequenced genomes and coastal
environments, Front. Microbiol., 8, 1–13,
https://doi.org/10.3389/fmicb.2017.00267, 2017.
Meier, H. E. M., Dieterich, C., and Gröger, M.: Natural variability is a
large source of uncertainty in future projections of hypoxia in the Baltic
Sea, Commun. Earth Environ., 2, 50, https://doi.org/10.1038/s43247-021-00115-9, 2021.
Meier, H. E. M., Dieterich, C., Gröger, M., Dutheil, C., Börgel, F., Safonova, K., Christensen, O. B., and Kjellström, E.: Oceanographic regional climate projections for the Baltic Sea until 2100, Earth Syst. Dynam., 13, 159–199, https://doi.org/10.5194/esd-13-159-2022, 2022.
Mills, M. M., Turk-Kubo, K. A., van Dijken, G. L., Henke, B. A., Harding,
K., Wilson, S. T., Arrigo, K. R., and Zehr, J. P.: Unusual marine
cyanobacteria/haptophyte symbiosis relies on N2 fixation even in N-rich
environments, ISME J., 14, 2395–2406, https://doi.org/10.1038/s41396-020-0691-6, 2020.
Moisander, P. H., Beinart, R. A., Hewson, I., White, A. E., Johnson, K. S.,
Carlson, C. A., Montoya, J. P., Zehr, J. P., Moisander, P. H., Beinart, R.
A., White, A. E., Johnson, K. S., Carlson, C. A., Montoya, J. P., and Zehr,
J. P.: Unicellular Cyanobacterial Distributions Broaden the Oceanic N2
Fixation Domain, Am. Assoc. Adv. Sci., 327, 1512–1514, 2010.
Montoya, J. P., Voss, M., Ka, P., and Capone, D. G.: A Simple,
High-Precision, High-Sensitivity Tracer Assay for N2 Fixation, Appl. Environ. Microbiol., 62, 986–993, 1996.
Morford, J. L. and Emerson, S.: The geochemistry of redox sensitive trace
metals in sediments, Geochim. Cosmochim. Ac., 63, 1735–1750,
https://doi.org/10.1016/S0016-7037(99)00126-X, 1999.
Mus, F., Colman, D. R., Peters, J. W., and Boyd, E. S.: Geobiological
feedbacks, oxygen, and the evolution of nitrogenase, Free Radic. Biol. Med.,
140, 250–259, https://doi.org/10.1016/j.freeradbiomed.2019.01.050, 2019.
Nehring, S.: Mortality of dogs associated with a mass development of
Nodularia spumigena (Cyanophyceae) in a brackish lake at the German North
Sea coast, J. Plankton Res., 15, 867–872,
https://doi.org/10.1093/plankt/15.7.867, 1993.
Oksanen, F. J., Blanchet, G., Friendly, M., Roeland Kindt, P., Legendre, D.,
McGlinn, P. R., Minchin, R. B. O., Simpson, G. L., Peter Solymos, M.,
Stevens, H. H., Szoecs, E., and Wagner, H.: vegan: Community Ecology Package, version 2.5.7, http://cran.r-project.org/, http://vegan.r-forge.r-project.org/,
2020.
Olofsson, M., Egardt, J., Singh, A., and Ploug, H.: Inorganic phosphorus
enrichments in Baltic Sea water have large effects on growth, carbon
fixation, and N2 fixation by Nodularia spumigena, Aquat. Microb. Ecol., 77, 111–123, https://doi.org/10.3354/ame01795,
2016.
Olofsson, M., Torstensson, A., Karlberg, M., Steinhoff, F. S., Dinasquet,
J., Riemann, L., Chierici, M., and Wulff, A.: Limited response of a spring
bloom community inoculated with filamentous cyanobacteria to elevated
temperature and pCO2, Bot. Mar., 62, 3–16, https://doi.org/10.1515/bot-2018-0005,
2019.
Olofsson, M., Suikkanen, S., Kobos, J., Wasmund, N., and Karlson, B.:
Basin-specific changes in filamentous cyanobacteria community composition
across four decades in the Baltic Sea, Harmful Algae, 91,
101685, https://doi.org/10.1016/j.hal.2019.101685, 2020.
Paerl, H. W. and Prufert, L. E.: Oxygen-Poor Microzones as Potential Sites
of Microbial N2 Fixation in Nitrogen-Depleted Aerobic Marine Waters, Appl.
Environ. Microbiol., 53, 1078–1087, https://doi.org/10.1128/aem.53.5.1078-1087.1987,
1987.
Paul, A. J., Achterberg, E. P., Bach, L. T., Boxhammer, T., Czerny, J.,
Haunost, M., Schulz, K. G., Stuhr, A., and Riebesell, U.: No observed effect
of ocean acidification on nitrogen biogeochemistry in a summer Baltic Sea
plankton community, Biogeosciences, 13, 3901–3913,
https://doi.org/10.5194/bg-13-3901-2016, 2016.
Pedersen, J. N., Bombar, D., Paerl, R. W., and Riemann, L.: Diazotrophs and
N2-Fixation associated with particles in coastal estuarine waters,
Front. Microbiol., 9, 1–11, https://doi.org/10.3389/fmicb.2018.02759, 2018.
Pelve, E. A., Fontanez, K. M., and DeLong, E. F.: Bacterial succession on
sinking particles in the ocean's interior, Front. Microbiol., 8, 1–15,
https://doi.org/10.3389/fmicb.2017.02269, 2017.
Ploug, H., Musat, N., Adam, B., Moraru, C. L., Lavik, G., Vagner, T.,
Bergman, B., and Kuypers, M. M. M.: Carbon and nitrogen fluxes associated
with the cyanobacterium Aphanizomenon sp. in the Baltic Sea, ISME J., 4,
1215–1223, https://doi.org/10.1038/ismej.2010.53, 2010.
Ploug, H., Adam, B., Musat, N., Kalvelage, T., Lavik, G., Wolf-Gladrow, D., and Kuypers, M. M. M.: Carbon, nitrogen and O2 fluxes associated with the
cyanobacterium Nodularia spumigena in the Baltic Sea, ISME J., 5,
1549–1558, https://doi.org/10.1038/ismej.2011.20, 2011.
Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P.,
Peplies, J., and Glöckner, F. O.: The SILVA ribosomal RNA gene database
project: Improved data processing and web-based tools, Nucleic Acids Res.,
41, 590–596, https://doi.org/10.1093/nar/gks1219, 2013.
R Foundation for Statistical Computing: R: A language and environment for
statistical computing, version 4.0.5, https://www.r-project.org/,
2017.
Rahav, E., Herut, B., Levi, A., Mulholland, M. R., and Berman-Frank, I.:
Springtime contribution of dinitrogen fixation to primary production across
the Mediterranean Sea, Ocean Sci., 9, 489–498,
https://doi.org/10.5194/os-9-489-2013, 2013.
Rakko, A. and Seppälä, J.: Effect of salinity on the growth rate and
nutrient stoichiometry of two Baltic Sea filamentous cyanobacterial species,
Est. J. Ecol., 63, 55–70, https://doi.org/10.3176/eco.2014.2.01, 2014.
Redfield, A. C.: On the proportions of Organic derivations in sea water and their relation to the composition of plankton, Univ. Press Liverpool, James Johnstone
Meml., 176–192, https://hahana.soest.hawaii.edu/cmoreserver/summercourse/2012/documents/bronk_05-30-12/Redfield_1934.pdf (last access: 23 August 2021),
1934.
Reusch, T. B. H., Dierking, J., Andersson, H. C., Bonsdorff, E., Carstensen,
J., Casini, M., Czajkowski, M., Hasler, B., Hinsby, K., Hyytiäinen, K.,
Johannesson, K., Jomaa, S., Jormalainen, V., Kuosa, H., Kurland, S., Laikre,
L., Mackenzie, B. R., Margonski, P., Melzner, F., Oesterwind, D., Ojaveer,
H., Refsgaard, J. C., Sandström, A., Schwarz, G., Tonderski, K., Winder,
M., and Zandersen, M.: The Baltic Sea as a time machine for the future
coastal ocean, Sci. Adv., 4, 5, https://doi.org/10.1126/sciadv.aar8195,
2018.
Robson, R. L., Eady, R. R., Richardson, T. H., Miller, R. W., Hawkins, M., and Postgate, J. R.: The alternative nitrogenase of Azotobacter chroococcum
is a vanadium enzyme, Nature, 322, 388–390, https://doi.org/10.1038/322388a0, 1986.
Rutgersson, A., Jaagus, J., Schenk, F., and Stendel, M.: Observed changes and
variability of atmospheric parameters in the Baltic Sea region during the
last 200 years, Clim. Res., 61, 177–190, https://doi.org/10.3354/cr01244, 2014.
Saito, M. A., Tyler, G. J., and Ritt, J. T.: Some Thoughts on the Concept of
Colimitation: Three Definitions and the Importance of Bioavailability, Limnol. Oceanogr.,
53, 276–290, 2008.
Saraiva, S., Markus Meier, H. E., Andersson, H., Höglund, A., Dieterich,
C., Gröger, M., Hordoir, R., and Eilola, K.: Baltic Sea ecosystem
response to various nutrient load scenarios in present and future climates,
Clim. Dyn., 52, 3369–3387, https://doi.org/10.1007/s00382-018-4330-0, 2019.
Saxena, H., Sahoo, D., Khan, M. A., Kumar, S., Sudheer, A. K., and Singh, A.:
Dinitrogen fixation rates in the Bay of Bengal during summer monsoon,
Environ. Res. Commun., 2, 051007, https://doi.org/10.1088/2515-7620/ab89fa, 2020.
Schmidtko, S., Stramma, L., and Visbeck, M.: Decline in global oceanic oxygen
content during the past five decades, Nature, 542, 335–339,
https://doi.org/10.1038/nature21399, 2017.
Schoffelen, N. J., Mohr, W., Ferdelman, T. G., Littmann, S., Duerschlag, J.,
Zubkov, M. V., Ploug, H., and Kuypers, M. M. M.: Single-cell imaging of
phosphorus uptake shows that key harmful algae rely on different phosphorus
sources for growth, Sci. Rep., 8, 1–14, https://doi.org/10.1038/s41598-018-35310-w,
2018.
Severin, I., Confurius-Guns, V., and Stal, L. J.: Effect of salinity on
nitrogenase activity and composition of the active diazotrophic community in
intertidal microbial mats, Arch. Microbiol., 194, 483–491,
https://doi.org/10.1007/s00203-011-0787-5, 2012.
Short, S. M. and Zehr, J. P.: Nitrogenase gene expression in the Chesapeake
Bay Estuary, Environ. Microbiol., 9, 1591–1596,
https://doi.org/10.1111/j.1462-2920.2007.01258.x, 2007.
Singh, A., Bach, L. T., Löscher, C. R., Paul, A. J., Ojha, N., and
Riebesell, U.: Impact of increasing carbon dioxide on dinitrogen and carbon
fixation rates under oligotrophic conditions and simulated upwelling,
Limnol. Oceanogr., 9999, 1–13, https://doi.org/10.1002/lno.11795, 2021.
Sivonen, K., Kononen, K., Carmichael, W. W., Dahlem, A. M., Rinehart, K. L.,
Kiviranta, J., and Niemela, S. I.: Occurrence of the hepatotoxic
cyanobacterium Nodularia spumigena in the Baltic Sea and structure of the
toxin., Appl. Environ. Microbiol., 55, 1990–1995,
https://doi.org/10.1128/aem.55.8.1990-1995.1989, 1989.
Staal, M., Te Lintel Hekkert, S., Herman, P., and Stal, L. J.: Comparison of
models describing light dependence of N2 fixation in heterocystous
cyanobacteria, Appl. Environ. Microbiol., 68, 4679–4683,
https://doi.org/10.1128/AEM.68.9.4679-4683.2002, 2002.
Stal, L. J.: Is the distribution of nitrogen-fixing cyanobacteria in the
oceans related to temperature?: Minireview, Environ. Microbiol., 11,
1632–1645, https://doi.org/10.1111/j.1758-2229.2009.00016.x, 2009.
Stal, L. J., Albertano, P., Bergman, B., Von Bröckel, K., Gallon, J. R.,
Hayes, P. K., Sivonen, K., and Walsby, A. E.: BASIC: Baltic Sea
cyanobacteria, An investigation of the structure and dynamics of water
blooms of cyanobacteria in the Baltic Sea – Responses to a changing
environment, Cont. Shelf Res., 23, 1695–1714,
https://doi.org/10.1016/j.csr.2003.06.001, 2003.
Steward, G. F., Jenkins, B. D., Ward, B. B., Zehr, J. P., and Short, S. M.:
Fingerprinting diazotroph communities in the Chesapeake Bay by using a DNA
macroarray, Appl. Environ. Microbiol., 70, 1767,
https://doi.org/10.1128/AEM.70.3.1767-1776.2004, 2004.
Stigebrandt, A. and Andersson, A.: The Eutrophication of the Baltic Sea has
been Boosted and Perpetuated by a Major Internal Phosphorus Source, Front.
Mar. Sci., 7, 572994, https://doi.org/10.3389/fmars.2020.572994, 2020.
Stramma, L., Johnson, G. C., Sprintall, J., and Mohrholz, V.: Expanding
Oxygen-Minimum Zones in the Tropical Oceans, Source Sci. New Ser.,
320, 655–658, 2008.
Suikkanen, S., Kaartokallio, H., Hällfors, S., Huttunen, M., and
Laamanen, M.: Life cycle strategies of bloom-forming, filamentous
cyanobacteria in the Baltic Sea, Deep-Sea Res. Pt. II,
57, 199–209, https://doi.org/10.1016/j.dsr2.2009.09.014, 2010.
Svedén, J. B., Adam, B., Walve, J., Nahar, N., Musat, N., Lavik, G.,
Whitehouse, M. J., Kuypers, M. M. M., and Ploug, H.: High cell-specific rates
of nitrogen and carbon fixation by the cyanobacterium Aphanizomenon sp. at
low temperatures in the Baltic Sea, FEMS Microbiol. Ecol., 91, 1–11,
https://doi.org/10.1093/femsec/fiv131, 2015.
Tan, J. W., Thong, K. L., Arumugam, N. D., Cheah, W. L., Lai, Y. W., Chua,
K. H., Rahim, R. A., and Vikineswary, S.: Development of a PCR assay for the
detection of nifH and nifD genes in indigenous photosynthetic bacteria, Int.
J. Hydrogen Energ., 34, 7538–7541, https://doi.org/10.1016/j.ijhydene.2009.04.029,
2009.
Tang, W. and Cassar, N.: Data-Driven Modeling of the Distribution of
Diazotrophs in the Global Ocean, Geophys. Res. Lett., 46, 12258–12269,
https://doi.org/10.1029/2019GL084376, 2019.
Tang, W., Wang, S., Fonseca-Batista, D., Dehairs, F., Gifford, S., Gonzalez,
A. G., Gallinari, M., Planquette, H., Sarthou, G., and Cassar, N.: Revisiting
the distribution of oceanic N2 fixation and estimating diazotrophic
contribution to marine production, Nat. Commun., 10, 831,
https://doi.org/10.1038/s41467-019-08640-0, 2019.
Turk-Kubo, K. A., Karamchandani, M., Capone, D. G., and Zehr, J. P.: The
paradox of marine heterotrophic nitrogen fixation: Abundances of
heterotrophic diazotrophs do not account for nitrogen fixation rates in the
Eastern Tropical South Pacific, Environ. Microbiol., 16, 3095–3114,
https://doi.org/10.1111/1462-2920.12346, 2014.
Vahtera, E., Conley, D. J., Gustafsson, B. G., Kuosa, H., Pitkänen, H.,
Savchuk, O. P., Tamminen, T., Viitasalo, M., Voss, M., Wasmund, N., and
Wulff, F.: Internal ecosystem feedbacks enhance nitrogen-fixing
cyanobacteria blooms and complicate management in the Baltic Sea, Ambio, 36,
186–194, https://doi.org/10.1579/0044-7447(2007)36[186:IEFENC]2.0.CO;2, 2007.
Wacklin, P., Hoffmann, L., and Komárek, J.: Nomenclatural validation of
the genetically revised cyanobacterial genus Dolichospermum (Ralfs ex Bornet
et Flahault) comb, nova, Fottea, 9, 59–64, https://doi.org/10.5507/fot.2009.005,
2009.
Wannicke, N., Frey, C., Law, C. S., and Voss, M.: The response of the marine
nitrogen cycle to ocean acidification, Glob. Change Biol., 24,
5031–5043, https://doi.org/10.1111/gcb.14424, 2018.
Wasmund, N.: Occurrence of cyanobacterial blooms in the baltic sea in
relation to environmental conditions, Int. Rev. Gesamten Hydrobiol.,
82, 169–174, https://doi.org/10.1002/iroh.19970820205, 1997.
Wasmund, N., Tuimala, J., Suikkanen, S., Vandepitte, L., and Kraberg, A.:
Long-term trends in phytoplankton composition in the western and central
Baltic Sea, J. Mar. Syst., 87, 145–159,
https://doi.org/10.1016/j.jmarsys.2011.03.010, 2011.
Wulff, A., Karlberg, M., Olofsson, M., Torstensson, A., Riemann, L.,
Steinhoff, F. S., Mohlin, M., Ekstrand, N., and Chierici, M.: Ocean
acidification and desalination: climate-driven change in a Baltic Sea summer
microplanktonic community, Mar. Biol., 165, 1–15,
https://doi.org/10.1007/s00227-018-3321-3, 2018.
Zani, S., Mellon, M. T., Collier, J. L., and Zehr, J. P.: Expression of nifH
Genes in Natural Microbial Assemblages in Lake George, New York, Detected by
Reverse Transcriptase PCR, Appl. Environ. Microbiol., 66, 3119, https://doi.org/10.1128/aem.66.7.3119-3124.2000, 2000.
Zehr, J. P., Mellon, M., Braun, S., Litaker, W., Steppe, T., and Paerl, H.
W.: Diversity of heterotrophic nitrogen fixation genes in a marine
cyanobacterial mat, Appl. Environ. Microbiol., 61, 2527–2532,
https://doi.org/10.1128/aem.61.7.2527-2532.1995, 1995.
Zehr, J. P., Mellon, M. T., and Zani, S.: New nitrogen-fixing microorganisms
detected in oligotrophic oceans by amplification of Nitrogenase (nifH)
genes., Appl. Environ. Microbiol., 64, 3444–3450, 1998.
Zehr, J. P., Jenkins, B. D., Short, S. M., and Steward, G. F.: Nitrogenase
gene diversity and microbial community structure: A cross-system comparison,
Environ. Microbiol., 5, 539–554, https://doi.org/10.1046/j.1462-2920.2003.00451.x,
2003.
Zehr, J. P., Shilova, I. N., Farnelid, H. M., Muñoz-Maríncarmen, M.
D. C., and Turk-Kubo, K. A.: Unusual marine unicellular symbiosis with the
nitrogen-fixing cyanobacterium UCYN-A, Nat. Microbiol., 2, 16214,
https://doi.org/10.1038/nmicrobiol.2016.214, 2016.
Zhang, X., McRose, D. L., Darnajoux, R., Bellenger, J. P., Morel, F. M. M., and Kraepiel, A. M. L.: Alternative nitrogenase activity in the environment
and nitrogen cycle implications, Biogeochemistry, 127, 189–198,
https://doi.org/10.1007/s10533-016-0188-6, 2016.
Short summary
The Baltic Sea is predicted to freshen in the future. To explore the effect of decreasing salinity on N2 fixers, we followed the natural salinity gradient in the Baltic Sea from the Kiel Fjord to the Gotland Basin and identified an N2 fixer community dominated by Nodularia and UCYN-A. A salinity threshold was identified at a salinity of 10, with Nodularia dominating at low and UCYN-A dominating at higher salinity, suggesting a future expansion of Nodularia N2 fixers and a retraction of UCYN-A.
The Baltic Sea is predicted to freshen in the future. To explore the effect of decreasing...