Articles | Volume 18, issue 1
https://doi.org/10.5194/os-18-233-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-233-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Autonomous methane seep site monitoring offshore western Svalbard: hourly to seasonal variability and associated oceanographic parameters
Centre for Arctic Gas Hydrate, Environment, and Climate, UiT The Arctic University of Norway, 9019 Tromsø, Norway
Bénédicte Ferré
Centre for Arctic Gas Hydrate, Environment, and Climate, UiT The Arctic University of Norway, 9019 Tromsø, Norway
Anna Silyakova
Centre for Arctic Gas Hydrate, Environment, and Climate, UiT The Arctic University of Norway, 9019 Tromsø, Norway
Pär Jansson
Multiconsult Kyst og Marin, 9013 Tromsø, Norway
Peter Linke
GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany
Manuel Moser
Centre for Arctic Gas Hydrate, Environment, and Climate, UiT The Arctic University of Norway, 9019 Tromsø, Norway
Related authors
Knut Ola Dølven, Håvard Espenes, Alfred Hanssen, Muhammed Fatih Sert, Magnus Drivdal, Achim Randelhoff, and Bénédicte Ferré
EGUsphere, https://doi.org/10.5194/egusphere-2025-998, https://doi.org/10.5194/egusphere-2025-998, 2025
Short summary
Short summary
We have modelled how gas seeping from the seafloor spreads in the ocean and how much reaches the atmosphere. We estimate how much free gas dissolves in water, atmospheric release and 3-D concentration using data from a hydrodynamic model and gas loss modules. We applied the framework to a methane (CH4) seep site offshore Norway showing that atmospheric CH4 release is spread over a large area. However, with our assumptions, most of the CH4 (>90 %) is converted to CO2 by microbes.
Knut Ola Dølven, Juha Vierinen, Roberto Grilli, Jack Triest, and Bénédicte Ferré
Geosci. Instrum. Method. Data Syst., 11, 293–306, https://doi.org/10.5194/gi-11-293-2022, https://doi.org/10.5194/gi-11-293-2022, 2022
Short summary
Short summary
Sensors capable of measuring rapid fluctuations are important to improve our understanding of environmental processes. Many sensors are unable to do this, due to their reliance on the transfer of the measured property, for instance a gas, across a semi-permeable barrier. We have developed a mathematical tool which enables the retrieval of fast-response signals from sensors with this type of sensor design.
Claudio Argentino, Luca Fallati, Sebastian Petters, Hans Christopher Bernstein, Ines Barrenechea Angeles, Jorge Corrales-Guerrero, Alessandra Savini, Benedicte Ferré, and Giuliana Panieri
EGUsphere, https://doi.org/10.5194/egusphere-2025-3906, https://doi.org/10.5194/egusphere-2025-3906, 2025
This preprint is open for discussion and under review for Biogeosciences (BG).
Short summary
Short summary
Seafloor methane emissions associated with cold-water corals have been reported worldwide. Yet, there are still knowledge gaps regarding their ecological relationships. We studied the geology, chemistry and biology of methane seeps in a coral area off northern Norway. We found that corals thrive in areas with methane-rich sediments and benefit from strong currents that deliver food, but the seep activity itself does not directly determine coral distribution.
Knut Ola Dølven, Håvard Espenes, Alfred Hanssen, Muhammed Fatih Sert, Magnus Drivdal, Achim Randelhoff, and Bénédicte Ferré
EGUsphere, https://doi.org/10.5194/egusphere-2025-998, https://doi.org/10.5194/egusphere-2025-998, 2025
Short summary
Short summary
We have modelled how gas seeping from the seafloor spreads in the ocean and how much reaches the atmosphere. We estimate how much free gas dissolves in water, atmospheric release and 3-D concentration using data from a hydrodynamic model and gas loss modules. We applied the framework to a methane (CH4) seep site offshore Norway showing that atmospheric CH4 release is spread over a large area. However, with our assumptions, most of the CH4 (>90 %) is converted to CO2 by microbes.
Knut Ola Dølven, Juha Vierinen, Roberto Grilli, Jack Triest, and Bénédicte Ferré
Geosci. Instrum. Method. Data Syst., 11, 293–306, https://doi.org/10.5194/gi-11-293-2022, https://doi.org/10.5194/gi-11-293-2022, 2022
Short summary
Short summary
Sensors capable of measuring rapid fluctuations are important to improve our understanding of environmental processes. Many sensors are unable to do this, due to their reliance on the transfer of the measured property, for instance a gas, across a semi-permeable barrier. We have developed a mathematical tool which enables the retrieval of fast-response signals from sensors with this type of sensor design.
Muhammed Fatih Sert, Helge Niemann, Eoghan P. Reeves, Mats A. Granskog, Kevin P. Hand, Timo Kekäläinen, Janne Jänis, Pamela E. Rossel, Bénédicte Ferré, Anna Silyakova, and Friederike Gründger
Biogeosciences, 19, 2101–2120, https://doi.org/10.5194/bg-19-2101-2022, https://doi.org/10.5194/bg-19-2101-2022, 2022
Short summary
Short summary
We investigate organic matter composition in the Arctic Ocean water column. We collected seawater samples from sea ice to deep waters at six vertical profiles near an active hydrothermal vent and its plume. In comparison to seawater, we found that the organic matter in waters directly affected by the hydrothermal plume had different chemical composition. We suggest that hydrothermal processes may influence the organic matter distribution in the deep ocean.
Cited articles
Ayyub, B. M. and McCuen, R. H.: Probability, Statistics, and Reliability for
Engineers and Scientists, Chapman & Hall/CRC, 3rd Edn., CRC Press, p. 409, ISBN 9781439809518, 2011. a
Berndt, C., Feseker, T., Treude, T., Krastel, S., Liebetrau, V., Niemann, H.,
Bertics, V. J., Dumke, I., Dünnbier, K., Ferré, B., Graves, C.,
Gross, F., Hissmann, K., Hühnerbach, V., Krause, S., Lieser, K.,
Schauer, J., and Steinle, L.: Temporal Constraints on Hydrate-Controlled
Methane Seepage off Svalbard, Science, 343, 284–287,
https://doi.org/10.1126/science.1246298, 2014. a
Braga, R., Iglesias, R., Romio, C., Praeg, D., Miller, D., Viana, A., and
Ketzer, J.: Modelling methane hydrate stability changes and gas release due
to seasonal oscillations in bottom water temperatures on the Rio Grande cone,
offshore southern Brazil, Mar. Petrol. Geol., 112, 104071,
https://doi.org/10.1016/j.marpetgeo.2019.104071, 2020. a
Canning, A., Fietzek, P., Rehder, G., and Körtzinger, A.: Technical
note: Seamless gas measurements across the land–ocean aquatic continuum –
corrections and evaluation of sensor data for CO2, CH4 and O2 from field
deployments in contrasting environments, Biogeosciences, 18, 1351–1373,
https://doi.org/10.5194/bg-18-1351-2021, 2021. a
Contros GmbH: CONTROS HydroC™ CH4 Sensor for dissolved methane,
available at: https://www.kongsberg.com/globalassets/ (last access: 5 January 2022),
2018. a
Cottier, F., Nilsen, F., Inall, M. E., Gerland, S., Tverberg, V., and Svendsen,
H.: Wintertime warming of an Arctic shelf in response to large-scale
atmospheric circulation, Geophys. Res. Lett., 34, L10607,
https://doi.org/10.1029/2007GL029948, 2007. a
Cushman-Roisin, B. and Beckers, J.-M.: Introduction to Geophysical Fluid
Dynamics, Elsevier Academic Press, 2nd Edn., ISBN 9780120887590, 2011. a
Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S.,
Andrae, U., Balmaseda, M., Balsamo, G., Bauer, P., Bechtold, P., Beljaars,
A., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R.,
Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hersbach, H., Hólm,
E., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally,
A., Monge-Sanz, B., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P.,
Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim
reanalysis: configuration and performance of the data assimilation system,
Q. J. Roy. Meteorol. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011. a
Dølven, K. O.: Replication data for Autonomous methane seep site monitoring offshore Western Svalbard: Hourly to seasonal variability and associated oceanographic parameters, V1, DataverseNO [data set], https://doi.org/10.18710/CEIA1U, 2022. a
Dølven, K. O., Vierinen, J., Grilli, R., Triest, J., and Ferré, B.: Response time correction of slow response sensor data by deconvolution of the growth-law equation, Geosci. Instrum. Method. Data Syst. Discuss. [preprint], https://doi.org/10.5194/gi-2021-28, in review, 2021. a, b
Duan, Z. and Mao, S.: A thermodynamic model for calculating methane
solubility, density and gas phase composition of methane-bearing aqueous
fluids from 273 to 523 K and from 1 to 2000 bar, Geochim. Cosmochim.
Ac., 70, 3369–3386, https://doi.org/10.1016/j.gca.2006.03.018, 2006. a
Etiope, G., Ciotoli, G., Schwietzke, S., and Schoell, M.: Gridded maps of geological methane emissions and their isotopic signature, Earth Syst. Sci. Data, 11, 1–22, https://doi.org/10.5194/essd-11-1-2019, 2019. a
Ferré, B., Mienert, J., and Feseker, T.: Ocean temperature variability
for the past 60 years on the Norwegian-Svalbard margin influences gas hydrate
stability on human time scales, J. Geophys. Res.-Ocean.,
117, C10017, https://doi.org/10.1029/2012JC008300, 2012. a
Ferré, B., Jansson, P., Moser, M., Portnov, A., Graves, C., Panieri, G.,
Gründger, F., Berndt, C., Lehmann, M., and Niemann, H.: Reduced
methane seepage from Arctic sediments during cold bottom-water conditions,
Nat. Geosci., 13, 144–148, https://doi.org/10.1038/s41561-019-0515-3, 2020. a
Franek, P., Plaza-Faverola, A., Mienert, J., Buenz, S., Ferré, B., and
Hubbard, A.: Microseismicity Linked to Gas Migration and Leakage on the
Western Svalbard Shelf, Geochem. Geophy. Geosy., 18,
4623–4645, https://doi.org/10.1002/2017GC007107, 2017. a, b
Gerkema, T.: Tidal Constituents and the Harmonic Method, in: Introduction to Tides, Cambridge
University Press, 1st Edn., 60–86, ISBN 9781108474269, https://doi.org/10.1017/9781316998793.005, 2019. a, b
Graves, C. A., Lea, S., Gregor, R., Niemann, H., Connely, D. P., Lowry, D.,
Fisher, R. E., Stott, A. W., Sahling, H., and James, R. H.: Fluxes and fate
of dissolved methane released at the seafloor at the landward limit of the
gas hydrate stability zone offshore western Svalbard, J. Geophys.
Res.-Ocean., 120, 6185–6201, https://doi.org/10.1002/2015JC011084, 2015. a
Grilli, R., Triest, J., Chappellaz, J., Calzas, M., Desbois, T., Jansson, P.,
Guillerm, C., Ferré, B., Lechevallier, L., Ledoux, V., and Romanini,
D.: Sub-Ocean: Subsea Dissolved Methane Measurements Using an Embedded Laser
Spectrometer Technology, Environ. Sci. Technol., 52,
10543–10551, https://doi.org/10.1021/acs.est.7b06171, 2018. a
Hanson, R. S. and Hanson, T. E.: Methanotrophic bacteria, Microbiol.
Rev., 60, 439–471, https://doi.org/10.1128/mr.60.2.439-471.1996, 1996. a
Harvey, A. H.: Semiempirical correlation for Henry's constants over large
temperature ranges, AIChE J., 42, 1491–1494,
https://doi.org/10.1002/aic.690420531, 1996. a
Hattermann, T., Erik, I. P., Wilken Jon, A., Jon, A., and Arild, S.:
Eddy-driven recirculation of Atlantic Water in Fram Strait, Geophys.
Res. Lett., 43, 3406–3414, https://doi.org/10.1002/2016GL068323, 2016. a, b
James, R. H., Bousquet, P., Bussmann, I., Haeckel, M., Kipfer, R., Leifer, I.,
Niemann, H., Ostrovsky, I., Piskozub, J., Rehder, G., Treude, T.,
Vielstädte, L., and Greinert, J.: Effects of climate change on methane
emissions from seafloor sediments in the Arctic Ocean: A review, Limnol. Oceanogr., 61, S283–S299, https://doi.org/10.1002/lno.10307, 2016. a, b
Jansson, P., Ferré, B., Silyakova, A., Dølven, K. O., and Omstedt, A.:
A new numerical model for understanding free and dissolved gas progression
toward the atmosphere in aquatic methane seepage systems, Limnol.
Oceanogr.-Method., 17, 223–239, https://doi.org/10.1002/lom3.10307,
2019a. a, b
Jansson, P., Triest, J., Grilli, R., Ferré, B., Silyakova, A., Mienert,
J., and Chappellaz, J.: High-resolution underwater laser spectrometer
sensing provides new insights into methane distribution at an Arctic seepage
site, Ocean Sci., 15, 1055–1069, https://doi.org/10.5194/os-15-1055-2019,
2019b. a
Kossel, E., Bigalke, N., Piñero, E., and Haeckel, M.: The SUGAR
Toolbox, PANGAEA, https://doi.org/10.1594/PANGAEA.816333, 2013. a
Kreyszig, E.: Advanced Engineering Mathematics, Wiley, 4 Edn., John Wiley and Sons Ltd., ISBN 9780471042716, 1979. a
Kundu, P. K.: Ekman Veering Observed near the Ocean Bottom, J.
Phys. Oceanogr., 6, 238–242,
https://doi.org/10.1175/1520-0485(1976)006<0238:EVONTO>2.0.CO;2, 1976. a
Large, W. G. and Pond, S.: Open Ocean Momentum Flux Measurements in Moderate
to Strong Winds, J. Phys. Oceanogr., 11, 324–336,
https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2, 1981. a
Lincoln, B. J., Rippeth, T. P., and Simpson, J. H.: Surface mixed layer
deepening through wind shear alignment in a seasonally stratified shallow
sea, J. Geophys. Res.-Ocean., 121, 6021–6034,
https://doi.org/10.1002/2015JC011382, 2016. a
Linke, P., Sommer, S., Rovelli, L., and McGinnis, D. F.: Physical limitations
of dissolved methane fluxes: The role of bottom-boundary layer processes,
Mar. Geol., 272, 209–222, https://doi.org/10.1016/j.margeo.2009.03.020, 2009. a, b, c
Loeng, H.: Features of the physical oceanographic conditions of the Barents
Sea, Polar Res., 10, 5–18, https://doi.org/10.3402/polar.v10i1.6723, 1991. a
Mau, S., Romer, M., Torres, M. E., Bussmann, I., Pape, T., Damm, E., Geprags,
P., Wintersteller, P., Hsu, C.-W., Loher, M., and Bohrmann, G.: Widespread
methane seepage along the continental margin off Svalbard – from
Bjørnøya to Kongsfjorden, Sci. Rep., 7, 42997,
https://doi.org/10.1038/srep42997, 2017. a
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs
Seawater (GSW) Oceanographic Toolbox, SCOR/IAPSO WG127, 22 pp., ISBN 9780646556215, 2011. a
McGinnis, D. F., Greinert, J., Artemov, Y., Beaubien, S. E., and Wüest,
A.: Fate of rising methane bubbles in stratified waters: How much methane
reaches the atmosphere?, J. Geophys. Res.-Ocean., 111, C09007,
https://doi.org/10.1029/2005JC003183, 2006. a, b
Myhre, C. L., Ferré, B., Platt, S. M., Silyakova, A., Hermansen, O.,
Allen, G., Pisso, I., Schmidbauer, N., Stohl, A., Pitt, J., Jansson, P.,
Greinert, J., Percival, C., Fjaeraa, A. M., O'Shea, S. J., Gallagher, M., Le
Breton, M., Bower, K. N., Bauguitte, S. J. B., Dalsøren, S.,
Vadakkepuliyambatta, S., Fisher, R. E., Nisbet, E. G., Lowry, D., Myhre, G.,
Pyle, J. A., Cain, M., and Mienert, J.: Extensive release of methane from
Arctic seabed west of Svalbard during summer 2014 does not influence the
atmosphere, Geophys. Res. Lett., 43, 4624–4631,
https://doi.org/10.1002/2016GL068999, 2016a. a, b, c, d, e
Myhre, C. L., Hermansen, O., Fiebig, M., Lunder, C., Fjæraa, A. M.,
Svendby, T., Platt, M., Hansen, G., Scmidbauer, N., and T., K.: Monitoring
of greenhouse gases and aerosols at Svalbard and Birkenes in 2015 – Annual
report, Norwegian Institute for Air Research (NILU), NILU report, 31/2016, 2016b. a
Nilsen, F., Skogseth, R., Vaardal-Lunde, J., and Inall, M.: A Simple Shelf
Circulation Model: Intrusion of Atlantic Water on the West Spitsbergen
Shelf, J. Phys. Oceanogr., 46, 1209–1230,
https://doi.org/10.1175/JPO-D-15-0058.1, 2016. a, b, c
Pachauri, R. K. and Meyer, L. A. (Eds.): IPCC, 2014: Climate Change 2014:
Synthesis Report. Contribution of Working Groups I, II and III to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, IPCC,
Geneva, Switzerland, 151 pp., 2014. a
Pawlowicz, R., B., B., and Lentz, S.: Classical Tidal Harmonic Analysis
Including Error Estimates in MATLAB using ttide, Comput. Geosci.,
28, 929–937, 2002. a
Platt, S. M., Eckhardt, S., Ferré, B., Fisher, R. E., Hermansen, O., Jansson,
P., Lowry, D., Nisbet, E. G., Pisso, I., Schmidbauer, N., Silyakova, A.,
Stohl, A., Svendby, T. M., Vadakkepuliyambatta, S., Mienert, J., and
Lund Myhre, C.: Methane at Svalbard and over the European Arctic Ocean,
Atmos. Chem. Phys., 18, 17207–17224,
https://doi.org/10.5194/acp-18-17207-2018, 2018. a
Portnov, A., Vadakkepuliyambatta, S., Mienert, J., and Hubbard, A.:
Ice-sheet-driven methane storage and release in the Arctic, Nat.
Commun., 7, 10314, https://doi.org/10.1038/ncomms10314, 2016. a
Rajan, A., Mienert, J., and Bünz, S.: Acoustic evidence for a gas
migration and release system in Arctic glaciated continental margins offshore
NW-Svalbard, Mar. Petrol. Geol., 32, 36–49,
https://doi.org/10.1016/j.marpetgeo.2011.12.008, 2012. a
Reagan, M. T., Moridis, G. J., Elliott, S. M., and Maltrud, M.: Contribution of
oceanic gas hydrate dissociation to the formation of Arctic Ocean methane
plumes, J. Geophys. Res.-Ocean., 116, C09014,
https://doi.org/10.1029/2011JC007189, 2011. a
Reeburgh, W. S.: Oceanic Methane Biogeochemistry, Chem. Rev., 107,
486–513, https://doi.org/10.1021/cr050362v, 2007. a
Robb, W. L.: Thin silicone membranes – Their permeation properties and some
applications, Ann. NY Acad. Sci., 146, 119–137,
https://doi.org/10.1111/j.1749-6632.1968.tb20277.x, 1968. a
Römer, M., Riedel, M., Scherwath, M., Heesemann, M., and Spence, G. D.:
Tidally controlled gas bubble emissions: A comprehensive study using
long-term monitoring data from the NEPTUNE cabled observatory offshore
Vancouver Island, Geochem. Geophy. Geosy., 17, 3797–3814,
https://doi.org/10.1002/2016GC006528, 2016. a, b, c
Ruppel, C. and Kessler, J.: The interaction of climate change and methane
hydrates, Rev. Geophys., 55, 126–168, https://doi.org/10.1002/2016RG000534,
2017. a
Sahling, H., Römer, M., Pape, T., Bergès, B., dos Santos
Fereirra, C., Boelmann, J., Geprägs, P., Tomczyk, M., Nowald, N.,
Dimmler, W., Schroedter, L., Glockzin, M., and Bohrmann, G.: Gas emissions
at the continental margin west of Svalbard: mapping, sampling, and
quantification, Biogeosciences, 11, 6029–6046,
https://doi.org/10.5194/bg-11-6029-2014, 2014. a, b, c
Sarkar, S., Berndt, C., Minshull, T. A., Westbrook, G. K., Klaeschen, D.,
Masson, D. G., Chabert, A., and Thatcher, K. E.: Seismic evidence for
shallow gas-escape features associated with a retreating gas hydrate zone
offshore west Svalbard, J. Geophys. Res.-Sol. Ea., 117, B09102,
https://doi.org/10.1029/2011JB009126, 2012. a
Saunois, M., Jackson, R. B., Bousquet, P., Poulter, B., and Canadell, J. G.:
The growing role of methane in anthropogenic climate change, Environ.
Res. Lett., 11, 120207, https://doi.org/10.1088/1748-9326/11/12/120207, 2016. a, b
Saunois, M., R. Stavert, A., Poulter, B., Bousquet, P., G. Canadell, J.,
B. Jackson, R., A. Raymond, P., J. Dlugokencky, E., Houweling, S., K.
Patra, P., Ciais, P., K. Arora, V., Bastviken, D., Bergamaschi, P., R.
Blake, D., Brailsford, G., Bruhwiler, L., M. Carlson, K., Carrol, M.,
Castaldi, S., Chandra, N., Crevoisier, C., M. Crill, P., Covey, K., L.
Curry, C., Etiope, G., Frankenberg, C., Gedney, N., I. Hegglin, M.,
Höglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A.,
Janssens-Maenhout, G., M. Jensen, K., Joos, F., Kleinen, T., B. Krummel,
P., L. Langenfelds, R., G. Laruelle, G., Liu, L., MacHida, T., Maksyutov,
S., C. McDonald, K., McNorton, J., A. Miller, P., R. Melton, J.,
Morino, I., Müller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce,
S., O'Doherty, S., J. Parker, R., Peng, C., Peng, S., P. Peters, G.,
Prigent, C., Prinn, R., Ramonet, M., Regnier, P., J. Riley, W., A.
Rosentreter, J., Segers, A., J. Simpson, I., Shi, H., J. Smith, S.,
Paul Steele, L., F. Thornton, B., Tian, H., Tohjima, Y., N. Tubiello,
F., Tsuruta, A., Viovy, N., Voulgarakis, A., S. Weber, T., Van Weele, M.,
R. Van Der Werf, G., F. Weiss, R., Worthy, D., Wunch, D., Yin, Y.,
Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., Zhu, Q., and
Zhuang, Q.: The global methane budget 2000–2017, Earth Syst. Sci. Data,
12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, 2020. a, b, c
Schlüter, M., Linke, P., and Suess, E.: Geochemistry of a sealed
deep-sea borehole on the Cascadia Margin, Mar. Geol., 148, 9–20,
https://doi.org/10.1016/S0025-3227(98)00016-4, 1998. a
Shakhova, N., Semiletov, I., Leifer, I., Salyuk, A., Rekant, P., and Kosmach,
D.: Geochemical and geophysical evidence of methane release over the East
Siberian Arctic Shelf, J. Geophys. Res.-Ocean., 115, C08007,
https://doi.org/10.1029/2009JC005602, 2010. a
Silyakova, A., Jansson, P., Serov, P., Ferré, B., Pavlov, A. K.,
Hattermann, T., Graves, C. A., Platt, S. M., Myhre, C. L., Gründger,
F., and Niemann, H.: Physical controls of dynamics of methane venting from a
shallow seep area west of Svalbard, Cont. Shelf Res., 194,
104030, https://doi.org/10.1016/j.csr.2019.104030, 2020. a, b, c, d, e, f, g
Sommer, S., Schmidt, M., and Linke, P.: Continuous inline mapping of a
dissolved methane plume at a blowout site in the Central North Sea UK using a
membrane inlet mass spectrometer – Water column stratification impedes
immediate methane release into the atmosphere, Mar. Petrol. Geol.,
68, 766–775, https://doi.org/10.1016/j.marpetgeo.2015.08.020, 2015. a
Steinle, L., Graves, C., Treude, T., Ferre, B., Biastoch, A., Bussmann, I.,
Berndt, C., Krastel, S., James, R., Behrens, E., Böning, C., Greinert, J.,
Sapart, C., Scheinert, M., Sommer, S., Lehmann, M., and Niemann, H.: Water
column methanotrophy controlled by a rapid oceanographic switch, Nat.
Geosci., 8, 378–382, https://doi.org/10.1038/NGEO2420, 2015. a
Swift, J. H. and Aagaard, K.: Seasonal transitions and water mass formation in
the Iceland and Greenland seas, Deep-Sea Res. Pt. A., 28, 1107–1129, https://doi.org/10.1016/0198-0149(81)90050-9, 1981.
a
Talley, L. D., Pickard, G. L., Emery, W. J., and Swift, J. H.: Chapter 1 –
Introduction to Descriptive Physical Oceanography, in: Descriptive Physical
Oceanography, 6th Edn., edited by: Talley, L. D., Pickard, G. L., Emery,
W. J., and Swift, J. H., Academic Press, Boston, 1–6, https://doi.org/10.1016/B978-0-7506-4552-2.10001-0, 2011. a
Tverberg, V., Nøst, O. A., Lydersen, C., and Kovacs, K. M.: Winter sea ice
melting in the Atlantic Water subduction area, Svalbard Norway, J.
Geophys. Res.-Ocean., 119, 5945–5967, https://doi.org/10.1002/2014JC010013,
2014. a
Veloso, M., Greinert, J., Mienert, J., and Batist, M.: A new methodology for
quantifying bubble flow rates in deep water using splitbeam echosounders:
Examples from the Arctic offshore NW-Svalbard, Limnol. Oceanogr.-Method., 13, 267–287, 2015. a
Veloso-Alarcón, M. E., Jansson, P., Batist, M. D., Minshull, T. A.,
Westbrook, G. K., Pälike, H., Bünz, S., Wright, I., and Greinert,
J.: Variability of Acoustically Evidenced Methane Bubble Emissions Offshore
Western Svalbard, Geophys. Res. Lett., 46, 9072–9081,
https://doi.org/10.1029/2019GL082750, 2019. a, b, c, d
von Appen, W.-J., Schauer, U., Hattermann, T., and Beszczynska-Möller,
A.: Seasonal Cycle of Mesoscale Instability of the West Spitsbergen
Current, J. Phys. Oceanogr., 46, 1231–1254,
https://doi.org/10.1175/JPO-D-15-0184.1, 2016. a
Westbrook, G. K., Thatcher, K. E., Rohling, E. J., Piotrowski, A. M.,
Pälike, H., Osborne, A. H., Nisbet, E. G., Minshull, T. A.,
Lanoisellé, M., James, R. H., Hühnerbach, V., Green, D., Fisher,
R. E., Crocker, A. J., Chabert, A., Bolton, C., Beszczynska-Möller, A.,
Berndt, C., and Aquilina, A.: Escape of methane gas from the seabed along
the West Spitsbergen continental margin, Geophys. Res. Lett., 36, L15608,
https://doi.org/10.1029/2009GL039191, 2009. a, b
Short summary
Natural sources of atmospheric methane need to be better described and quantified. We present time series from ocean observatories monitoring two seabed methane seep sites in the Arctic. Methane concentration varied considerably on short timescales and seasonal scales. Seeps persisted throughout the year, with increased potential for atmospheric release in winter due to water mixing. The results highlight and constrain uncertainties in current methane estimates from seabed methane seepage.
Natural sources of atmospheric methane need to be better described and quantified. We present...