Articles | Volume 18, issue 1
https://doi.org/10.5194/os-18-233-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-233-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Autonomous methane seep site monitoring offshore western Svalbard: hourly to seasonal variability and associated oceanographic parameters
Centre for Arctic Gas Hydrate, Environment, and Climate, UiT The Arctic University of Norway, 9019 Tromsø, Norway
Bénédicte Ferré
Centre for Arctic Gas Hydrate, Environment, and Climate, UiT The Arctic University of Norway, 9019 Tromsø, Norway
Anna Silyakova
Centre for Arctic Gas Hydrate, Environment, and Climate, UiT The Arctic University of Norway, 9019 Tromsø, Norway
Pär Jansson
Multiconsult Kyst og Marin, 9013 Tromsø, Norway
Peter Linke
GEOMAR Helmholtz Centre for Ocean Research Kiel, 24148 Kiel, Germany
Manuel Moser
Centre for Arctic Gas Hydrate, Environment, and Climate, UiT The Arctic University of Norway, 9019 Tromsø, Norway
Related authors
Knut Ola Dølven, Juha Vierinen, Roberto Grilli, Jack Triest, and Bénédicte Ferré
Geosci. Instrum. Method. Data Syst., 11, 293–306, https://doi.org/10.5194/gi-11-293-2022, https://doi.org/10.5194/gi-11-293-2022, 2022
Short summary
Short summary
Sensors capable of measuring rapid fluctuations are important to improve our understanding of environmental processes. Many sensors are unable to do this, due to their reliance on the transfer of the measured property, for instance a gas, across a semi-permeable barrier. We have developed a mathematical tool which enables the retrieval of fast-response signals from sensors with this type of sensor design.
Knut Ola Dølven, Juha Vierinen, Roberto Grilli, Jack Triest, and Bénédicte Ferré
Geosci. Instrum. Method. Data Syst., 11, 293–306, https://doi.org/10.5194/gi-11-293-2022, https://doi.org/10.5194/gi-11-293-2022, 2022
Short summary
Short summary
Sensors capable of measuring rapid fluctuations are important to improve our understanding of environmental processes. Many sensors are unable to do this, due to their reliance on the transfer of the measured property, for instance a gas, across a semi-permeable barrier. We have developed a mathematical tool which enables the retrieval of fast-response signals from sensors with this type of sensor design.
Muhammed Fatih Sert, Helge Niemann, Eoghan P. Reeves, Mats A. Granskog, Kevin P. Hand, Timo Kekäläinen, Janne Jänis, Pamela E. Rossel, Bénédicte Ferré, Anna Silyakova, and Friederike Gründger
Biogeosciences, 19, 2101–2120, https://doi.org/10.5194/bg-19-2101-2022, https://doi.org/10.5194/bg-19-2101-2022, 2022
Short summary
Short summary
We investigate organic matter composition in the Arctic Ocean water column. We collected seawater samples from sea ice to deep waters at six vertical profiles near an active hydrothermal vent and its plume. In comparison to seawater, we found that the organic matter in waters directly affected by the hydrothermal plume had different chemical composition. We suggest that hydrothermal processes may influence the organic matter distribution in the deep ocean.
Henk-Jan Hoving, Svenja Christiansen, Eduard Fabrizius, Helena Hauss, Rainer Kiko, Peter Linke, Philipp Neitzel, Uwe Piatkowski, and Arne Körtzinger
Ocean Sci., 15, 1327–1340, https://doi.org/10.5194/os-15-1327-2019, https://doi.org/10.5194/os-15-1327-2019, 2019
Short summary
Short summary
The pelagic in situ observation system (PELAGIOS) is a towed observation system with HD video camera and environmental sensors. It is used for pelagic video transects down to 3000 m. The system enables the visualization and exploration of pelagic organisms (> 1 cm), in particular delicate gelatinous fauna, which cannot be captured by nets. The video and hydrographic data give insight into the biodiversity, abundance, and distribution of oceanic pelagic organisms from the surface to the deep sea.
Pär Jansson, Jack Triest, Roberto Grilli, Bénédicte Ferré, Anna Silyakova, Jürgen Mienert, and Jérôme Chappellaz
Ocean Sci., 15, 1055–1069, https://doi.org/10.5194/os-15-1055-2019, https://doi.org/10.5194/os-15-1055-2019, 2019
Short summary
Short summary
Methane seepage from the seafloor west of Svalbard was investigated with a fast-response membrane inlet laser spectrometer. The acquired data were in good agreement with traditional sparse discrete water sampling, subsequent gas chromatography, and with a new 2-D model based on echo-sounder data. However, the acquired high-resolution data revealed unprecedented details of the methane distribution, which highlights the need for high-resolution measurements for future climate studies.
Stephen M. Platt, Sabine Eckhardt, Benedicte Ferré, Rebecca E. Fisher, Ove Hermansen, Pär Jansson, David Lowry, Euan G. Nisbet, Ignacio Pisso, Norbert Schmidbauer, Anna Silyakova, Andreas Stohl, Tove M. Svendby, Sunil Vadakkepuliyambatta, Jürgen Mienert, and Cathrine Lund Myhre
Atmos. Chem. Phys., 18, 17207–17224, https://doi.org/10.5194/acp-18-17207-2018, https://doi.org/10.5194/acp-18-17207-2018, 2018
Short summary
Short summary
We measured atmospheric mixing ratios of methane over the Arctic Ocean around Svalbard and compared observed variations to inventories for anthropogenic, wetland, and biomass burning methane emissions and an atmospheric transport model. With knowledge of where variations were expected due to the aforementioned land-based emissions, we were able to identify and quantify a methane source from the ocean north of Svalbard, likely from sub-sea hydrocarbon seeps and/or gas hydrate decomposition.
Daiki Nomura, Mats A. Granskog, Agneta Fransson, Melissa Chierici, Anna Silyakova, Kay I. Ohshima, Lana Cohen, Bruno Delille, Stephen R. Hudson, and Gerhard S. Dieckmann
Biogeosciences, 15, 3331–3343, https://doi.org/10.5194/bg-15-3331-2018, https://doi.org/10.5194/bg-15-3331-2018, 2018
Sunil Vadakkepuliyambatta, Ragnhild B. Skeie, Gunnar Myhre, Stig B. Dalsøren, Anna Silyakova, Norbert Schmidbauer, Cathrine Lund Myhre, and Jürgen Mienert
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-110, https://doi.org/10.5194/esd-2017-110, 2017
Preprint retracted
Short summary
Short summary
Release of methane, one of the major greenhouse gases, from melting hydrates has been proposed as a mechanism that accelerated global warming in the past. We focus on Arctic Ocean warming as a robust case study for accelerated melting of hydrates, assessing the impact of Arctic methane release on global air temperatures during the next century. Contrary to popular belief, it is shown that methane emissions from melting hydrates from the Arctic seafloor is not a major driver of global warming.
Lorenzo Rovelli, Marcus Dengler, Mark Schmidt, Stefan Sommer, Peter Linke, and Daniel F. McGinnis
Biogeosciences, 13, 1609–1620, https://doi.org/10.5194/bg-13-1609-2016, https://doi.org/10.5194/bg-13-1609-2016, 2016
P. Steeb, S. Krause, P. Linke, C. Hensen, A. W. Dale, M. Nuzzo, and T. Treude
Biogeosciences, 12, 6687–6706, https://doi.org/10.5194/bg-12-6687-2015, https://doi.org/10.5194/bg-12-6687-2015, 2015
Short summary
Short summary
We combined field, laboratory (sediment-flow-through system) and numerical modeling work to investigate cold seep sediments at Quespos Slide, offshore of Costa Rica. The results demonstrated the efficiency of the benthic methane filter and provided an estimate for its response time (ca. 170 days) to changes in fluid fluxes.
A. Silyakova, R. G. J. Bellerby, K. G. Schulz, J. Czerny, T. Tanaka, G. Nondal, U. Riebesell, A. Engel, T. De Lange, and A. Ludvig
Biogeosciences, 10, 4847–4859, https://doi.org/10.5194/bg-10-4847-2013, https://doi.org/10.5194/bg-10-4847-2013, 2013
J. Czerny, K. G. Schulz, T. Boxhammer, R. G. J. Bellerby, J. Büdenbender, A. Engel, S. A. Krug, A. Ludwig, K. Nachtigall, G. Nondal, B. Niehoff, A. Silyakova, and U. Riebesell
Biogeosciences, 10, 3109–3125, https://doi.org/10.5194/bg-10-3109-2013, https://doi.org/10.5194/bg-10-3109-2013, 2013
T. Tanaka, S. Alliouane, R. G. B. Bellerby, J. Czerny, A. de Kluijver, U. Riebesell, K. G. Schulz, A. Silyakova, and J.-P. Gattuso
Biogeosciences, 10, 315–325, https://doi.org/10.5194/bg-10-315-2013, https://doi.org/10.5194/bg-10-315-2013, 2013
K. G. Schulz, R. G. J. Bellerby, C. P. D. Brussaard, J. Büdenbender, J. Czerny, A. Engel, M. Fischer, S. Koch-Klavsen, S. A. Krug, S. Lischka, A. Ludwig, M. Meyerhöfer, G. Nondal, A. Silyakova, A. Stuhr, and U. Riebesell
Biogeosciences, 10, 161–180, https://doi.org/10.5194/bg-10-161-2013, https://doi.org/10.5194/bg-10-161-2013, 2013
Cited articles
Ayyub, B. M. and McCuen, R. H.: Probability, Statistics, and Reliability for
Engineers and Scientists, Chapman & Hall/CRC, 3rd Edn., CRC Press, p. 409, ISBN 9781439809518, 2011. a
Berndt, C., Feseker, T., Treude, T., Krastel, S., Liebetrau, V., Niemann, H.,
Bertics, V. J., Dumke, I., Dünnbier, K., Ferré, B., Graves, C.,
Gross, F., Hissmann, K., Hühnerbach, V., Krause, S., Lieser, K.,
Schauer, J., and Steinle, L.: Temporal Constraints on Hydrate-Controlled
Methane Seepage off Svalbard, Science, 343, 284–287,
https://doi.org/10.1126/science.1246298, 2014. a
Braga, R., Iglesias, R., Romio, C., Praeg, D., Miller, D., Viana, A., and
Ketzer, J.: Modelling methane hydrate stability changes and gas release due
to seasonal oscillations in bottom water temperatures on the Rio Grande cone,
offshore southern Brazil, Mar. Petrol. Geol., 112, 104071,
https://doi.org/10.1016/j.marpetgeo.2019.104071, 2020. a
Canning, A., Fietzek, P., Rehder, G., and Körtzinger, A.: Technical
note: Seamless gas measurements across the land–ocean aquatic continuum –
corrections and evaluation of sensor data for CO2, CH4 and O2 from field
deployments in contrasting environments, Biogeosciences, 18, 1351–1373,
https://doi.org/10.5194/bg-18-1351-2021, 2021. a
Contros GmbH: CONTROS HydroC™ CH4 Sensor for dissolved methane,
available at: https://www.kongsberg.com/globalassets/ (last access: 5 January 2022),
2018. a
Cottier, F., Nilsen, F., Inall, M. E., Gerland, S., Tverberg, V., and Svendsen,
H.: Wintertime warming of an Arctic shelf in response to large-scale
atmospheric circulation, Geophys. Res. Lett., 34, L10607,
https://doi.org/10.1029/2007GL029948, 2007. a
Cushman-Roisin, B. and Beckers, J.-M.: Introduction to Geophysical Fluid
Dynamics, Elsevier Academic Press, 2nd Edn., ISBN 9780120887590, 2011. a
Dee, D., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S.,
Andrae, U., Balmaseda, M., Balsamo, G., Bauer, P., Bechtold, P., Beljaars,
A., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R.,
Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hersbach, H., Hólm,
E., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally,
A., Monge-Sanz, B., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P.,
Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim
reanalysis: configuration and performance of the data assimilation system,
Q. J. Roy. Meteorol. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011. a
Dølven, K. O.: Replication data for Autonomous methane seep site monitoring offshore Western Svalbard: Hourly to seasonal variability and associated oceanographic parameters, V1, DataverseNO [data set], https://doi.org/10.18710/CEIA1U, 2022. a
Dølven, K. O., Vierinen, J., Grilli, R., Triest, J., and Ferré, B.: Response time correction of slow response sensor data by deconvolution of the growth-law equation, Geosci. Instrum. Method. Data Syst. Discuss. [preprint], https://doi.org/10.5194/gi-2021-28, in review, 2021. a, b
Duan, Z. and Mao, S.: A thermodynamic model for calculating methane
solubility, density and gas phase composition of methane-bearing aqueous
fluids from 273 to 523 K and from 1 to 2000 bar, Geochim. Cosmochim.
Ac., 70, 3369–3386, https://doi.org/10.1016/j.gca.2006.03.018, 2006. a
Etiope, G., Ciotoli, G., Schwietzke, S., and Schoell, M.: Gridded maps of geological methane emissions and their isotopic signature, Earth Syst. Sci. Data, 11, 1–22, https://doi.org/10.5194/essd-11-1-2019, 2019. a
Ferré, B., Mienert, J., and Feseker, T.: Ocean temperature variability
for the past 60 years on the Norwegian-Svalbard margin influences gas hydrate
stability on human time scales, J. Geophys. Res.-Ocean.,
117, C10017, https://doi.org/10.1029/2012JC008300, 2012. a
Ferré, B., Jansson, P., Moser, M., Portnov, A., Graves, C., Panieri, G.,
Gründger, F., Berndt, C., Lehmann, M., and Niemann, H.: Reduced
methane seepage from Arctic sediments during cold bottom-water conditions,
Nat. Geosci., 13, 144–148, https://doi.org/10.1038/s41561-019-0515-3, 2020. a
Franek, P., Plaza-Faverola, A., Mienert, J., Buenz, S., Ferré, B., and
Hubbard, A.: Microseismicity Linked to Gas Migration and Leakage on the
Western Svalbard Shelf, Geochem. Geophy. Geosy., 18,
4623–4645, https://doi.org/10.1002/2017GC007107, 2017. a, b
Gerkema, T.: Tidal Constituents and the Harmonic Method, in: Introduction to Tides, Cambridge
University Press, 1st Edn., 60–86, ISBN 9781108474269, https://doi.org/10.1017/9781316998793.005, 2019. a, b
Graves, C. A., Lea, S., Gregor, R., Niemann, H., Connely, D. P., Lowry, D.,
Fisher, R. E., Stott, A. W., Sahling, H., and James, R. H.: Fluxes and fate
of dissolved methane released at the seafloor at the landward limit of the
gas hydrate stability zone offshore western Svalbard, J. Geophys.
Res.-Ocean., 120, 6185–6201, https://doi.org/10.1002/2015JC011084, 2015. a
Grilli, R., Triest, J., Chappellaz, J., Calzas, M., Desbois, T., Jansson, P.,
Guillerm, C., Ferré, B., Lechevallier, L., Ledoux, V., and Romanini,
D.: Sub-Ocean: Subsea Dissolved Methane Measurements Using an Embedded Laser
Spectrometer Technology, Environ. Sci. Technol., 52,
10543–10551, https://doi.org/10.1021/acs.est.7b06171, 2018. a
Hanson, R. S. and Hanson, T. E.: Methanotrophic bacteria, Microbiol.
Rev., 60, 439–471, https://doi.org/10.1128/mr.60.2.439-471.1996, 1996. a
Harvey, A. H.: Semiempirical correlation for Henry's constants over large
temperature ranges, AIChE J., 42, 1491–1494,
https://doi.org/10.1002/aic.690420531, 1996. a
Hattermann, T., Erik, I. P., Wilken Jon, A., Jon, A., and Arild, S.:
Eddy-driven recirculation of Atlantic Water in Fram Strait, Geophys.
Res. Lett., 43, 3406–3414, https://doi.org/10.1002/2016GL068323, 2016. a, b
James, R. H., Bousquet, P., Bussmann, I., Haeckel, M., Kipfer, R., Leifer, I.,
Niemann, H., Ostrovsky, I., Piskozub, J., Rehder, G., Treude, T.,
Vielstädte, L., and Greinert, J.: Effects of climate change on methane
emissions from seafloor sediments in the Arctic Ocean: A review, Limnol. Oceanogr., 61, S283–S299, https://doi.org/10.1002/lno.10307, 2016. a, b
Jansson, P., Ferré, B., Silyakova, A., Dølven, K. O., and Omstedt, A.:
A new numerical model for understanding free and dissolved gas progression
toward the atmosphere in aquatic methane seepage systems, Limnol.
Oceanogr.-Method., 17, 223–239, https://doi.org/10.1002/lom3.10307,
2019a. a, b
Jansson, P., Triest, J., Grilli, R., Ferré, B., Silyakova, A., Mienert,
J., and Chappellaz, J.: High-resolution underwater laser spectrometer
sensing provides new insights into methane distribution at an Arctic seepage
site, Ocean Sci., 15, 1055–1069, https://doi.org/10.5194/os-15-1055-2019,
2019b. a
Kossel, E., Bigalke, N., Piñero, E., and Haeckel, M.: The SUGAR
Toolbox, PANGAEA, https://doi.org/10.1594/PANGAEA.816333, 2013. a
Kreyszig, E.: Advanced Engineering Mathematics, Wiley, 4 Edn., John Wiley and Sons Ltd., ISBN 9780471042716, 1979. a
Kundu, P. K.: Ekman Veering Observed near the Ocean Bottom, J.
Phys. Oceanogr., 6, 238–242,
https://doi.org/10.1175/1520-0485(1976)006<0238:EVONTO>2.0.CO;2, 1976. a
Large, W. G. and Pond, S.: Open Ocean Momentum Flux Measurements in Moderate
to Strong Winds, J. Phys. Oceanogr., 11, 324–336,
https://doi.org/10.1175/1520-0485(1981)011<0324:OOMFMI>2.0.CO;2, 1981. a
Lincoln, B. J., Rippeth, T. P., and Simpson, J. H.: Surface mixed layer
deepening through wind shear alignment in a seasonally stratified shallow
sea, J. Geophys. Res.-Ocean., 121, 6021–6034,
https://doi.org/10.1002/2015JC011382, 2016. a
Linke, P., Sommer, S., Rovelli, L., and McGinnis, D. F.: Physical limitations
of dissolved methane fluxes: The role of bottom-boundary layer processes,
Mar. Geol., 272, 209–222, https://doi.org/10.1016/j.margeo.2009.03.020, 2009. a, b, c
Loeng, H.: Features of the physical oceanographic conditions of the Barents
Sea, Polar Res., 10, 5–18, https://doi.org/10.3402/polar.v10i1.6723, 1991. a
Mau, S., Romer, M., Torres, M. E., Bussmann, I., Pape, T., Damm, E., Geprags,
P., Wintersteller, P., Hsu, C.-W., Loher, M., and Bohrmann, G.: Widespread
methane seepage along the continental margin off Svalbard – from
Bjørnøya to Kongsfjorden, Sci. Rep., 7, 42997,
https://doi.org/10.1038/srep42997, 2017. a
McDougall, T. J. and Barker, P. M.: Getting started with TEOS-10 and the Gibbs
Seawater (GSW) Oceanographic Toolbox, SCOR/IAPSO WG127, 22 pp., ISBN 9780646556215, 2011. a
McGinnis, D. F., Greinert, J., Artemov, Y., Beaubien, S. E., and Wüest,
A.: Fate of rising methane bubbles in stratified waters: How much methane
reaches the atmosphere?, J. Geophys. Res.-Ocean., 111, C09007,
https://doi.org/10.1029/2005JC003183, 2006. a, b
Myhre, C. L., Ferré, B., Platt, S. M., Silyakova, A., Hermansen, O.,
Allen, G., Pisso, I., Schmidbauer, N., Stohl, A., Pitt, J., Jansson, P.,
Greinert, J., Percival, C., Fjaeraa, A. M., O'Shea, S. J., Gallagher, M., Le
Breton, M., Bower, K. N., Bauguitte, S. J. B., Dalsøren, S.,
Vadakkepuliyambatta, S., Fisher, R. E., Nisbet, E. G., Lowry, D., Myhre, G.,
Pyle, J. A., Cain, M., and Mienert, J.: Extensive release of methane from
Arctic seabed west of Svalbard during summer 2014 does not influence the
atmosphere, Geophys. Res. Lett., 43, 4624–4631,
https://doi.org/10.1002/2016GL068999, 2016a. a, b, c, d, e
Myhre, C. L., Hermansen, O., Fiebig, M., Lunder, C., Fjæraa, A. M.,
Svendby, T., Platt, M., Hansen, G., Scmidbauer, N., and T., K.: Monitoring
of greenhouse gases and aerosols at Svalbard and Birkenes in 2015 – Annual
report, Norwegian Institute for Air Research (NILU), NILU report, 31/2016, 2016b. a
Nilsen, F., Skogseth, R., Vaardal-Lunde, J., and Inall, M.: A Simple Shelf
Circulation Model: Intrusion of Atlantic Water on the West Spitsbergen
Shelf, J. Phys. Oceanogr., 46, 1209–1230,
https://doi.org/10.1175/JPO-D-15-0058.1, 2016. a, b, c
Pachauri, R. K. and Meyer, L. A. (Eds.): IPCC, 2014: Climate Change 2014:
Synthesis Report. Contribution of Working Groups I, II and III to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change, IPCC,
Geneva, Switzerland, 151 pp., 2014. a
Pawlowicz, R., B., B., and Lentz, S.: Classical Tidal Harmonic Analysis
Including Error Estimates in MATLAB using ttide, Comput. Geosci.,
28, 929–937, 2002. a
Platt, S. M., Eckhardt, S., Ferré, B., Fisher, R. E., Hermansen, O., Jansson,
P., Lowry, D., Nisbet, E. G., Pisso, I., Schmidbauer, N., Silyakova, A.,
Stohl, A., Svendby, T. M., Vadakkepuliyambatta, S., Mienert, J., and
Lund Myhre, C.: Methane at Svalbard and over the European Arctic Ocean,
Atmos. Chem. Phys., 18, 17207–17224,
https://doi.org/10.5194/acp-18-17207-2018, 2018. a
Portnov, A., Vadakkepuliyambatta, S., Mienert, J., and Hubbard, A.:
Ice-sheet-driven methane storage and release in the Arctic, Nat.
Commun., 7, 10314, https://doi.org/10.1038/ncomms10314, 2016. a
Rajan, A., Mienert, J., and Bünz, S.: Acoustic evidence for a gas
migration and release system in Arctic glaciated continental margins offshore
NW-Svalbard, Mar. Petrol. Geol., 32, 36–49,
https://doi.org/10.1016/j.marpetgeo.2011.12.008, 2012. a
Reagan, M. T., Moridis, G. J., Elliott, S. M., and Maltrud, M.: Contribution of
oceanic gas hydrate dissociation to the formation of Arctic Ocean methane
plumes, J. Geophys. Res.-Ocean., 116, C09014,
https://doi.org/10.1029/2011JC007189, 2011. a
Reeburgh, W. S.: Oceanic Methane Biogeochemistry, Chem. Rev., 107,
486–513, https://doi.org/10.1021/cr050362v, 2007. a
Robb, W. L.: Thin silicone membranes – Their permeation properties and some
applications, Ann. NY Acad. Sci., 146, 119–137,
https://doi.org/10.1111/j.1749-6632.1968.tb20277.x, 1968. a
Römer, M., Riedel, M., Scherwath, M., Heesemann, M., and Spence, G. D.:
Tidally controlled gas bubble emissions: A comprehensive study using
long-term monitoring data from the NEPTUNE cabled observatory offshore
Vancouver Island, Geochem. Geophy. Geosy., 17, 3797–3814,
https://doi.org/10.1002/2016GC006528, 2016. a, b, c
Ruppel, C. and Kessler, J.: The interaction of climate change and methane
hydrates, Rev. Geophys., 55, 126–168, https://doi.org/10.1002/2016RG000534,
2017. a
Sahling, H., Römer, M., Pape, T., Bergès, B., dos Santos
Fereirra, C., Boelmann, J., Geprägs, P., Tomczyk, M., Nowald, N.,
Dimmler, W., Schroedter, L., Glockzin, M., and Bohrmann, G.: Gas emissions
at the continental margin west of Svalbard: mapping, sampling, and
quantification, Biogeosciences, 11, 6029–6046,
https://doi.org/10.5194/bg-11-6029-2014, 2014. a, b, c
Sarkar, S., Berndt, C., Minshull, T. A., Westbrook, G. K., Klaeschen, D.,
Masson, D. G., Chabert, A., and Thatcher, K. E.: Seismic evidence for
shallow gas-escape features associated with a retreating gas hydrate zone
offshore west Svalbard, J. Geophys. Res.-Sol. Ea., 117, B09102,
https://doi.org/10.1029/2011JB009126, 2012. a
Saunois, M., Jackson, R. B., Bousquet, P., Poulter, B., and Canadell, J. G.:
The growing role of methane in anthropogenic climate change, Environ.
Res. Lett., 11, 120207, https://doi.org/10.1088/1748-9326/11/12/120207, 2016. a, b
Saunois, M., R. Stavert, A., Poulter, B., Bousquet, P., G. Canadell, J.,
B. Jackson, R., A. Raymond, P., J. Dlugokencky, E., Houweling, S., K.
Patra, P., Ciais, P., K. Arora, V., Bastviken, D., Bergamaschi, P., R.
Blake, D., Brailsford, G., Bruhwiler, L., M. Carlson, K., Carrol, M.,
Castaldi, S., Chandra, N., Crevoisier, C., M. Crill, P., Covey, K., L.
Curry, C., Etiope, G., Frankenberg, C., Gedney, N., I. Hegglin, M.,
Höglund-Isaksson, L., Hugelius, G., Ishizawa, M., Ito, A.,
Janssens-Maenhout, G., M. Jensen, K., Joos, F., Kleinen, T., B. Krummel,
P., L. Langenfelds, R., G. Laruelle, G., Liu, L., MacHida, T., Maksyutov,
S., C. McDonald, K., McNorton, J., A. Miller, P., R. Melton, J.,
Morino, I., Müller, J., Murguia-Flores, F., Naik, V., Niwa, Y., Noce,
S., O'Doherty, S., J. Parker, R., Peng, C., Peng, S., P. Peters, G.,
Prigent, C., Prinn, R., Ramonet, M., Regnier, P., J. Riley, W., A.
Rosentreter, J., Segers, A., J. Simpson, I., Shi, H., J. Smith, S.,
Paul Steele, L., F. Thornton, B., Tian, H., Tohjima, Y., N. Tubiello,
F., Tsuruta, A., Viovy, N., Voulgarakis, A., S. Weber, T., Van Weele, M.,
R. Van Der Werf, G., F. Weiss, R., Worthy, D., Wunch, D., Yin, Y.,
Yoshida, Y., Zhang, W., Zhang, Z., Zhao, Y., Zheng, B., Zhu, Q., Zhu, Q., and
Zhuang, Q.: The global methane budget 2000–2017, Earth Syst. Sci. Data,
12, 1561–1623, https://doi.org/10.5194/essd-12-1561-2020, 2020. a, b, c
Schlüter, M., Linke, P., and Suess, E.: Geochemistry of a sealed
deep-sea borehole on the Cascadia Margin, Mar. Geol., 148, 9–20,
https://doi.org/10.1016/S0025-3227(98)00016-4, 1998. a
Shakhova, N., Semiletov, I., Leifer, I., Salyuk, A., Rekant, P., and Kosmach,
D.: Geochemical and geophysical evidence of methane release over the East
Siberian Arctic Shelf, J. Geophys. Res.-Ocean., 115, C08007,
https://doi.org/10.1029/2009JC005602, 2010. a
Silyakova, A., Jansson, P., Serov, P., Ferré, B., Pavlov, A. K.,
Hattermann, T., Graves, C. A., Platt, S. M., Myhre, C. L., Gründger,
F., and Niemann, H.: Physical controls of dynamics of methane venting from a
shallow seep area west of Svalbard, Cont. Shelf Res., 194,
104030, https://doi.org/10.1016/j.csr.2019.104030, 2020. a, b, c, d, e, f, g
Sommer, S., Schmidt, M., and Linke, P.: Continuous inline mapping of a
dissolved methane plume at a blowout site in the Central North Sea UK using a
membrane inlet mass spectrometer – Water column stratification impedes
immediate methane release into the atmosphere, Mar. Petrol. Geol.,
68, 766–775, https://doi.org/10.1016/j.marpetgeo.2015.08.020, 2015. a
Steinle, L., Graves, C., Treude, T., Ferre, B., Biastoch, A., Bussmann, I.,
Berndt, C., Krastel, S., James, R., Behrens, E., Böning, C., Greinert, J.,
Sapart, C., Scheinert, M., Sommer, S., Lehmann, M., and Niemann, H.: Water
column methanotrophy controlled by a rapid oceanographic switch, Nat.
Geosci., 8, 378–382, https://doi.org/10.1038/NGEO2420, 2015. a
Swift, J. H. and Aagaard, K.: Seasonal transitions and water mass formation in
the Iceland and Greenland seas, Deep-Sea Res. Pt. A., 28, 1107–1129, https://doi.org/10.1016/0198-0149(81)90050-9, 1981.
a
Talley, L. D., Pickard, G. L., Emery, W. J., and Swift, J. H.: Chapter 1 –
Introduction to Descriptive Physical Oceanography, in: Descriptive Physical
Oceanography, 6th Edn., edited by: Talley, L. D., Pickard, G. L., Emery,
W. J., and Swift, J. H., Academic Press, Boston, 1–6, https://doi.org/10.1016/B978-0-7506-4552-2.10001-0, 2011. a
Tverberg, V., Nøst, O. A., Lydersen, C., and Kovacs, K. M.: Winter sea ice
melting in the Atlantic Water subduction area, Svalbard Norway, J.
Geophys. Res.-Ocean., 119, 5945–5967, https://doi.org/10.1002/2014JC010013,
2014. a
Veloso, M., Greinert, J., Mienert, J., and Batist, M.: A new methodology for
quantifying bubble flow rates in deep water using splitbeam echosounders:
Examples from the Arctic offshore NW-Svalbard, Limnol. Oceanogr.-Method., 13, 267–287, 2015. a
Veloso-Alarcón, M. E., Jansson, P., Batist, M. D., Minshull, T. A.,
Westbrook, G. K., Pälike, H., Bünz, S., Wright, I., and Greinert,
J.: Variability of Acoustically Evidenced Methane Bubble Emissions Offshore
Western Svalbard, Geophys. Res. Lett., 46, 9072–9081,
https://doi.org/10.1029/2019GL082750, 2019. a, b, c, d
von Appen, W.-J., Schauer, U., Hattermann, T., and Beszczynska-Möller,
A.: Seasonal Cycle of Mesoscale Instability of the West Spitsbergen
Current, J. Phys. Oceanogr., 46, 1231–1254,
https://doi.org/10.1175/JPO-D-15-0184.1, 2016. a
Westbrook, G. K., Thatcher, K. E., Rohling, E. J., Piotrowski, A. M.,
Pälike, H., Osborne, A. H., Nisbet, E. G., Minshull, T. A.,
Lanoisellé, M., James, R. H., Hühnerbach, V., Green, D., Fisher,
R. E., Crocker, A. J., Chabert, A., Bolton, C., Beszczynska-Möller, A.,
Berndt, C., and Aquilina, A.: Escape of methane gas from the seabed along
the West Spitsbergen continental margin, Geophys. Res. Lett., 36, L15608,
https://doi.org/10.1029/2009GL039191, 2009. a, b
Short summary
Natural sources of atmospheric methane need to be better described and quantified. We present time series from ocean observatories monitoring two seabed methane seep sites in the Arctic. Methane concentration varied considerably on short timescales and seasonal scales. Seeps persisted throughout the year, with increased potential for atmospheric release in winter due to water mixing. The results highlight and constrain uncertainties in current methane estimates from seabed methane seepage.
Natural sources of atmospheric methane need to be better described and quantified. We present...