Articles | Volume 18, issue 1
Research article
10 Feb 2022
Research article |  | 10 Feb 2022

Interannual variability of sea level in the southern Indian Ocean: local vs. remote forcing mechanisms

Marion Kersalé, Denis L. Volkov, Kandaga Pujiana, and Hong Zhang

Related authors

South Atlantic overturning and heat transport variations in ocean reanalyses and observation-based estimates
Jonathan Andrew Baker, Richard Renshaw, Laura Claire Jackson, Clotilde Dubois, Doroteaciro Iovino, Hao Zuo, Renellys C. Perez, Shenfu Dong, Marion Kersalé, Michael Mayer, Johannes Mayer, Sabrina Speich, and Tarron Lamont
State Planet, 1-osr7, 4,,, 2023
Short summary
Moored observations of mesoscale features in the Cape Basin: characteristics and local impacts on water mass distributions
Marion Kersalé, Tarron Lamont, Sabrina Speich, Thierry Terre, Remi Laxenaire, Mike J. Roberts, Marcel A. van den Berg, and Isabelle J. Ansorge
Ocean Sci., 14, 923–945,,, 2018

Cited articles

Allan, R., Chambers, D., Drosdowsky, W., Hendon, H., Latif, M., Nicholls, N., Smith, I., Stone, R., and Tourre, Y.: Is there an Indian Ocean dipole, and is it independent of El Niño-Southern Oscillation, CLIVAR Exchanges, 6, 18–22, 2001. 
Ashok, K., Guan, Z., and Yamagata, T.: A look at the relationship between the ENSO and the Indian Ocean dipole, J. Meteorol. Soc. Jpn., 81, 41–56, 2003. 
Birol, F. and Morrow, R.: Sources of the baroclinic waves in the southeast Indian Ocean, J. Geophys. Res., 106, 9145–9160, 2001. 
Cai, W., Meyers, G., and Shi, G.: Transmission of ENSO signal to the Indian Ocean, Geophys. Res. Lett., 32, L05616, 2005. 
Chambers, D. P., Tapley, B. D., and Stewart, R. H.: Anomalous warming in the Indian Ocean coincident with El Niño, J. Geophys. Res., 104, 3035–3047, 1999. 
Short summary
The southern Indian Ocean is one of the major basins for regional heat accumulation and sea level rise. The year-to-year changes of regional sea level are influenced by water exchange with the Pacific Ocean via the Indonesian Throughflow. Using a general circulation model, we show that the spatiotemporal pattern of these changes is primarily set by local wind forcing modulated by El Niño–Southern Oscillation, while oceanic signals originating in the Pacific can amplify locally forced signals.