Articles | Volume 18, issue 5
https://doi.org/10.5194/os-18-1535-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-1535-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The role of oceanic heat flux in reducing thermodynamic ice growth in Nares Strait and promoting earlier collapse of the ice bridge
Sergei Kirillov
CORRESPONDING AUTHOR
Centre for Earth Observation Science, University of Manitoba,
Winnipeg, Manitoba, Canada
Igor Dmitrenko
Centre for Earth Observation Science, University of Manitoba,
Winnipeg, Manitoba, Canada
David G. Babb
Centre for Earth Observation Science, University of Manitoba,
Winnipeg, Manitoba, Canada
Jens K. Ehn
Centre for Earth Observation Science, University of Manitoba,
Winnipeg, Manitoba, Canada
Nikolay Koldunov
Climate DynamicsDepartment, Alfred Wegener Institute, Bremerhaven, Germany
Søren Rysgaard
Centre for Earth Observation Science, University of Manitoba,
Winnipeg, Manitoba, Canada
Arctic Research Centre, Aarhus University, Aarhus, Denmark
Greenland Climate Research Centre Department, Greenland Institute of Natural Resources, Nuuk, Greenland
David Jensen
Centre for Earth Observation Science, University of Manitoba,
Winnipeg, Manitoba, Canada
David G. Barber
Centre for Earth Observation Science, University of Manitoba,
Winnipeg, Manitoba, Canada
deceased, 15 April 2022
Related authors
Igor Dmitrenko, Vladislav Petrusevich, Andreas Preußer, Ksenia Kosobokova, Caroline Bouchard, Maxime Geoffroy, Alexander Komarov, David Babb, Sergei Kirillov, and David Barber
EGUsphere, https://doi.org/10.5194/egusphere-2024-1637, https://doi.org/10.5194/egusphere-2024-1637, 2024
Short summary
Short summary
The diel vertical migration (DVM) of zooplankton is one of the largest species migrations to occur globally and is a key driver of regional ecosystems. Here, time series of acoustic data collected at the circumpolar Arctic polynya system were used to examine the annual cycle of DVM. We revealed that the formation of polynya open water disrupts DVM. This disruption is attributed to a predator avoidance behavior of zooplankton in response to higher polar cod abundance attracted by the polynya.
Igor A. Dmitrenko, Denis L. Volkov, Tricia A. Stadnyk, Andrew Tefs, David G. Babb, Sergey A. Kirillov, Alex Crawford, Kevin Sydor, and David G. Barber
Ocean Sci., 17, 1367–1384, https://doi.org/10.5194/os-17-1367-2021, https://doi.org/10.5194/os-17-1367-2021, 2021
Short summary
Short summary
Significant trends of sea ice in Hudson Bay have led to a considerable increase in shipping activity. Therefore, understanding sea level variability is an urgent issue crucial for safe navigation and coastal infrastructure. Using the sea level, atmospheric and river discharge data, we assess environmental factors impacting variability of sea level at Churchill. We find that it is dominated by wind forcing, with the seasonal cycle generated by the seasonal cycle in atmospheric circulation.
Igor A. Dmitrenko, Vladislav Petrusevich, Gérald Darnis, Sergei A. Kirillov, Alexander S. Komarov, Jens K. Ehn, Alexandre Forest, Louis Fortier, Søren Rysgaard, and David G. Barber
Ocean Sci., 16, 1261–1283, https://doi.org/10.5194/os-16-1261-2020, https://doi.org/10.5194/os-16-1261-2020, 2020
Short summary
Short summary
Diel vertical migration (DVM) of zooplankton is the largest nonhuman migration on the Earth. DVM in the eastern Beaufort Sea was assessed using a 2-year-long time series of currents and acoustic signal from a bottom-anchored oceanographic mooring. Our results show that DVM is deviated by the (i) seasonal and interannual variability in sea ice and (ii) wind-driven water dynamics. We also observed the midnight-sun DVM during summer 2004, a signal masked by suspended particles in summer 2005.
Vladislav Y. Petrusevich, Igor A. Dmitrenko, Andrea Niemi, Sergey A. Kirillov, Christina Michelle Kamula, Zou Zou A. Kuzyk, David G. Barber, and Jens K. Ehn
Ocean Sci., 16, 337–353, https://doi.org/10.5194/os-16-337-2020, https://doi.org/10.5194/os-16-337-2020, 2020
Short summary
Short summary
The diel vertical migration of zooplankton is considered the largest daily migration of biomass on Earth. This study investigates zooplankton distribution, dynamics, and factors controlling them during open-water and ice cover periods in Hudson Bay, a large seasonally ice-covered Canadian inland sea. The presented data constitute the first-ever observed diel vertical migration of zooplankton in Hudson Bay during winter and its interaction with the tidal dynamics.
Igor A. Dmitrenko, Sergey A. Kirillov, Bert Rudels, David G. Babb, Leif Toudal Pedersen, Søren Rysgaard, Yngve Kristoffersen, and David G. Barber
Ocean Sci., 13, 1045–1060, https://doi.org/10.5194/os-13-1045-2017, https://doi.org/10.5194/os-13-1045-2017, 2017
Sergei Kirillov, Igor Dmitrenko, Søren Rysgaard, David Babb, Leif Toudal Pedersen, Jens Ehn, Jørgen Bendtsen, and David Barber
Ocean Sci., 13, 947–959, https://doi.org/10.5194/os-13-947-2017, https://doi.org/10.5194/os-13-947-2017, 2017
Short summary
Short summary
This paper reports the analysis of 3-week oceanographic data obtained in the front of Flade Isblink Glacier in northeast Greenland. The major focus of research is considering the changes of water dynamics and the altering of temperature and salinity vertical distribution occurring during the storm event. We discuss the mechanisms that are responsible for the formation of two-layer circulation cell and release of cold and relatively fresh sub-glacial waters into the ocean.
Ja-Yeon Moon, Jan Streffing, Sun-Seon Lee, Tido Semmler, Miguel Andrés-Martínez, Jiao Chen, Eun-Byeoul Cho, Jung-Eun Chu, Christian Franzke, Jan P. Gärtner, Rohit Ghosh, Jan Hegewald, Songyee Hong, Nikolay Koldunov, June-Yi Lee, Zihao Lin, Chao Liu, Svetlana Loza, Wonsun Park, Woncheol Roh, Dmitry V. Sein, Sahil Sharma, Dmitry Sidorenko, Jun-Hyeok Son, Malte F. Stuecker, Qiang Wang, Gyuseok Yi, Martina Zapponini, Thomas Jung, and Axel Timmermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2491, https://doi.org/10.5194/egusphere-2024-2491, 2024
Short summary
Short summary
Based on a series of storm-resolving greenhouse warming simulations conducted with the AWI-CM3 model at 9 km global atmosphere, 4–25 km ocean resolution, we present new projections of regional climate change, modes of climate variability and extreme events. The 10-year-long high resolution simulations for the 2000s, 2030s, 2060s, 2090s were initialized from a coarser resolution transient run (31 km atmosphere) which follows the SSP5-8.5 greenhouse gas emission scenario from 1950–2100 CE.
Swantje Bastin, Aleksei Koldunov, Florian Schütte, Oliver Gutjahr, Marta Agnieszka Mrozowska, Tim Fischer, Radomyra Shevchenko, Arjun Kumar, Nikolay Koldunov, Helmuth Haak, Nils Brüggemann, Rebecca Hummels, Mia Sophie Specht, Johann Jungclaus, Sergey Danilov, Marcus Dengler, and Markus Jochum
EGUsphere, https://doi.org/10.5194/egusphere-2024-2281, https://doi.org/10.5194/egusphere-2024-2281, 2024
Short summary
Short summary
Vertical mixing is an important process e.g. for tropical sea surface temperature, but cannot be resolved by ocean models. Comparisons of mixing schemes and settings have usually been done with a single model, sometimes yielding conflicting results. We systematically compare two widely used schemes, TKE and KPP, with different parameter settings, in two different ocean models, and show that most effects from mixing scheme parameter changes are model dependent.
Igor Dmitrenko, Vladislav Petrusevich, Andreas Preußer, Ksenia Kosobokova, Caroline Bouchard, Maxime Geoffroy, Alexander Komarov, David Babb, Sergei Kirillov, and David Barber
EGUsphere, https://doi.org/10.5194/egusphere-2024-1637, https://doi.org/10.5194/egusphere-2024-1637, 2024
Short summary
Short summary
The diel vertical migration (DVM) of zooplankton is one of the largest species migrations to occur globally and is a key driver of regional ecosystems. Here, time series of acoustic data collected at the circumpolar Arctic polynya system were used to examine the annual cycle of DVM. We revealed that the formation of polynya open water disrupts DVM. This disruption is attributed to a predator avoidance behavior of zooplankton in response to higher polar cod abundance attracted by the polynya.
Stephen E. L. Howell, David G. Babb, Jack C. Landy, Isolde A. Glissenaar, Kaitlin McNeil, Benoit Montpetit, and Mike Brady
The Cryosphere, 18, 2321–2333, https://doi.org/10.5194/tc-18-2321-2024, https://doi.org/10.5194/tc-18-2321-2024, 2024
Short summary
Short summary
The CAA serves as both a source and a sink for sea ice from the Arctic Ocean, while also exporting sea ice into Baffin Bay. It is also an important region with respect to navigating the Northwest Passage. Here, we quantify sea ice transport and replenishment across and within the CAA from 2016 to 2022. We also provide the first estimates of the ice area and volume flux within the CAA from the Queen Elizabeth Islands to Parry Channel, which spans the central region of the Northwest Passage.
Thomas Rackow, Xabier Pedruzo-Bagazgoitia, Tobias Becker, Sebastian Milinski, Irina Sandu, Razvan Aguridan, Peter Bechtold, Sebastian Beyer, Jean Bidlot, Souhail Boussetta, Michail Diamantakis, Peter Dueben, Emanuel Dutra, Richard Forbes, Helge F. Goessling, Ioan Hadade, Jan Hegewald, Sarah Keeley, Lukas Kluft, Nikolay Koldunov, Alexei Koldunov, Tobias Kölling, Josh Kousal, Kristian Mogensen, Tiago Quintino, Inna Polichtchouk, Domokos Sármány, Dmitry Sidorenko, Jan Streffing, Birgit Sützl, Daisuke Takasuka, Steffen Tietsche, Mirco Valentini, Benoît Vannière, Nils Wedi, Lorenzo Zampieri, and Florian Ziemen
EGUsphere, https://doi.org/10.5194/egusphere-2024-913, https://doi.org/10.5194/egusphere-2024-913, 2024
Short summary
Short summary
Detailed global climate model simulations have been created based on a numerical weather prediction model, offering more accurate spatial detail down to the scale of individual cities ("kilometre-scale"), and a better understanding of climate phenomena such as atmospheric storms, whirls in the ocean, and cracks in sea ice. The new model aims to provide globally consistent information on local climate change with greater precision, benefiting environmental planning and local impact modelling.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024, https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
Short summary
Increasing resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least of the same importance for obtaining reliable simulations.
Isolde A. Glissenaar, Jack C. Landy, David G. Babb, Geoffrey J. Dawson, and Stephen E. L. Howell
The Cryosphere, 17, 3269–3289, https://doi.org/10.5194/tc-17-3269-2023, https://doi.org/10.5194/tc-17-3269-2023, 2023
Short summary
Short summary
Observations of large-scale ice thickness have unfortunately only been available since 2003, a short record for researching trends and variability. We generated a proxy for sea ice thickness in the Canadian Arctic for 1996–2020. This is the longest available record for large-scale sea ice thickness available to date and the first record reliably covering the channels between the islands in northern Canada. The product shows that sea ice has thinned by 21 cm over the 25-year record in April.
Vishnu Nandan, Rosemary Willatt, Robbie Mallett, Julienne Stroeve, Torsten Geldsetzer, Randall Scharien, Rasmus Tonboe, John Yackel, Jack Landy, David Clemens-Sewall, Arttu Jutila, David N. Wagner, Daniela Krampe, Marcus Huntemann, Mallik Mahmud, David Jensen, Thomas Newman, Stefan Hendricks, Gunnar Spreen, Amy Macfarlane, Martin Schneebeli, James Mead, Robert Ricker, Michael Gallagher, Claude Duguay, Ian Raphael, Chris Polashenski, Michel Tsamados, Ilkka Matero, and Mario Hoppmann
The Cryosphere, 17, 2211–2229, https://doi.org/10.5194/tc-17-2211-2023, https://doi.org/10.5194/tc-17-2211-2023, 2023
Short summary
Short summary
We show that wind redistributes snow on Arctic sea ice, and Ka- and Ku-band radar measurements detect both newly deposited snow and buried snow layers that can affect the accuracy of snow depth estimates on sea ice. Radar, laser, meteorological, and snow data were collected during the MOSAiC expedition. With frequent occurrence of storms in the Arctic, our results show that
wind-redistributed snow needs to be accounted for to improve snow depth estimates on sea ice from satellite radars.
Jan Streffing, Dmitry Sidorenko, Tido Semmler, Lorenzo Zampieri, Patrick Scholz, Miguel Andrés-Martínez, Nikolay Koldunov, Thomas Rackow, Joakim Kjellsson, Helge Goessling, Marylou Athanase, Qiang Wang, Jan Hegewald, Dmitry V. Sein, Longjiang Mu, Uwe Fladrich, Dirk Barbi, Paul Gierz, Sergey Danilov, Stephan Juricke, Gerrit Lohmann, and Thomas Jung
Geosci. Model Dev., 15, 6399–6427, https://doi.org/10.5194/gmd-15-6399-2022, https://doi.org/10.5194/gmd-15-6399-2022, 2022
Short summary
Short summary
We developed a new atmosphere–ocean coupled climate model, AWI-CM3. Our model is significantly more computationally efficient than its predecessors AWI-CM1 and AWI-CM2. We show that the model, although cheaper to run, provides results of similar quality when modeling the historic period from 1850 to 2014. We identify the remaining weaknesses to outline future work. Finally we preview an improved simulation where the reduction in computational cost has to be invested in higher model resolution.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, Qiang Wang, Nikolay Koldunov, Dmitry Sein, and Thomas Jung
Geosci. Model Dev., 15, 335–363, https://doi.org/10.5194/gmd-15-335-2022, https://doi.org/10.5194/gmd-15-335-2022, 2022
Short summary
Short summary
Structured-mesh ocean models are still the most mature in terms of functionality due to their long development history. However, unstructured-mesh ocean models have acquired new features and caught up in their functionality. This paper continues the work by Scholz et al. (2019) of documenting the features available in FESOM2.0. It focuses on the following two aspects: (i) partial bottom cells and embedded sea ice and (ii) dealing with mixing parameterisations enabled by using the CVMix package.
Igor A. Dmitrenko, Denis L. Volkov, Tricia A. Stadnyk, Andrew Tefs, David G. Babb, Sergey A. Kirillov, Alex Crawford, Kevin Sydor, and David G. Barber
Ocean Sci., 17, 1367–1384, https://doi.org/10.5194/os-17-1367-2021, https://doi.org/10.5194/os-17-1367-2021, 2021
Short summary
Short summary
Significant trends of sea ice in Hudson Bay have led to a considerable increase in shipping activity. Therefore, understanding sea level variability is an urgent issue crucial for safe navigation and coastal infrastructure. Using the sea level, atmospheric and river discharge data, we assess environmental factors impacting variability of sea level at Churchill. We find that it is dominated by wind forcing, with the seasonal cycle generated by the seasonal cycle in atmospheric circulation.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Igor A. Dmitrenko, Vladislav Petrusevich, Gérald Darnis, Sergei A. Kirillov, Alexander S. Komarov, Jens K. Ehn, Alexandre Forest, Louis Fortier, Søren Rysgaard, and David G. Barber
Ocean Sci., 16, 1261–1283, https://doi.org/10.5194/os-16-1261-2020, https://doi.org/10.5194/os-16-1261-2020, 2020
Short summary
Short summary
Diel vertical migration (DVM) of zooplankton is the largest nonhuman migration on the Earth. DVM in the eastern Beaufort Sea was assessed using a 2-year-long time series of currents and acoustic signal from a bottom-anchored oceanographic mooring. Our results show that DVM is deviated by the (i) seasonal and interannual variability in sea ice and (ii) wind-driven water dynamics. We also observed the midnight-sun DVM during summer 2004, a signal masked by suspended particles in summer 2005.
Eric P. Chassignet, Stephen G. Yeager, Baylor Fox-Kemper, Alexandra Bozec, Frederic Castruccio, Gokhan Danabasoglu, Christopher Horvat, Who M. Kim, Nikolay Koldunov, Yiwen Li, Pengfei Lin, Hailong Liu, Dmitry V. Sein, Dmitry Sidorenko, Qiang Wang, and Xiaobiao Xu
Geosci. Model Dev., 13, 4595–4637, https://doi.org/10.5194/gmd-13-4595-2020, https://doi.org/10.5194/gmd-13-4595-2020, 2020
Short summary
Short summary
This paper presents global comparisons of fundamental global climate variables from a suite of four pairs of matched low- and high-resolution ocean and sea ice simulations to assess the robustness of climate-relevant improvements in ocean simulations associated with moving from coarse (∼1°) to eddy-resolving (∼0.1°) horizontal resolutions. Despite significant improvements, greatly enhanced horizontal resolution does not deliver unambiguous bias reduction in all regions for all models.
Hiroyuki Tsujino, L. Shogo Urakawa, Stephen M. Griffies, Gokhan Danabasoglu, Alistair J. Adcroft, Arthur E. Amaral, Thomas Arsouze, Mats Bentsen, Raffaele Bernardello, Claus W. Böning, Alexandra Bozec, Eric P. Chassignet, Sergey Danilov, Raphael Dussin, Eleftheria Exarchou, Pier Giuseppe Fogli, Baylor Fox-Kemper, Chuncheng Guo, Mehmet Ilicak, Doroteaciro Iovino, Who M. Kim, Nikolay Koldunov, Vladimir Lapin, Yiwen Li, Pengfei Lin, Keith Lindsay, Hailong Liu, Matthew C. Long, Yoshiki Komuro, Simon J. Marsland, Simona Masina, Aleksi Nummelin, Jan Klaus Rieck, Yohan Ruprich-Robert, Markus Scheinert, Valentina Sicardi, Dmitry Sidorenko, Tatsuo Suzuki, Hiroaki Tatebe, Qiang Wang, Stephen G. Yeager, and Zipeng Yu
Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, https://doi.org/10.5194/gmd-13-3643-2020, 2020
Short summary
Short summary
The OMIP-2 framework for global ocean–sea-ice model simulations is assessed by comparing multi-model means from 11 CMIP6-class global ocean–sea-ice models calculated separately for the OMIP-1 and OMIP-2 simulations. Many features are very similar between OMIP-1 and OMIP-2 simulations, and yet key improvements in transitioning from OMIP-1 to OMIP-2 are also identified. Thus, the present assessment justifies that future ocean–sea-ice model development and analysis studies use the OMIP-2 framework.
Veronika Eyring, Lisa Bock, Axel Lauer, Mattia Righi, Manuel Schlund, Bouwe Andela, Enrico Arnone, Omar Bellprat, Björn Brötz, Louis-Philippe Caron, Nuno Carvalhais, Irene Cionni, Nicola Cortesi, Bas Crezee, Edouard L. Davin, Paolo Davini, Kevin Debeire, Lee de Mora, Clara Deser, David Docquier, Paul Earnshaw, Carsten Ehbrecht, Bettina K. Gier, Nube Gonzalez-Reviriego, Paul Goodman, Stefan Hagemann, Steven Hardiman, Birgit Hassler, Alasdair Hunter, Christopher Kadow, Stephan Kindermann, Sujan Koirala, Nikolay Koldunov, Quentin Lejeune, Valerio Lembo, Tomas Lovato, Valerio Lucarini, François Massonnet, Benjamin Müller, Amarjiit Pandde, Núria Pérez-Zanón, Adam Phillips, Valeriu Predoi, Joellen Russell, Alistair Sellar, Federico Serva, Tobias Stacke, Ranjini Swaminathan, Verónica Torralba, Javier Vegas-Regidor, Jost von Hardenberg, Katja Weigel, and Klaus Zimmermann
Geosci. Model Dev., 13, 3383–3438, https://doi.org/10.5194/gmd-13-3383-2020, https://doi.org/10.5194/gmd-13-3383-2020, 2020
Short summary
Short summary
The Earth System Model Evaluation Tool (ESMValTool) is a community diagnostics and performance metrics tool designed to improve comprehensive and routine evaluation of earth system models (ESMs) participating in the Coupled Model Intercomparison Project (CMIP). It has undergone rapid development since the first release in 2016 and is now a well-tested tool that provides end-to-end provenance tracking to ensure reproducibility.
Dmitry Sidorenko, Sergey Danilov, Nikolay Koldunov, Patrick Scholz, and Qiang Wang
Geosci. Model Dev., 13, 3337–3345, https://doi.org/10.5194/gmd-13-3337-2020, https://doi.org/10.5194/gmd-13-3337-2020, 2020
Short summary
Short summary
Computation of barotropic and meridional overturning streamfunctions for models formulated on unstructured meshes is commonly preceded by interpolation to a regular mesh. This operation destroys the original conservation, which can be then be artificially imposed to make the computation possible. An elementary method is proposed that avoids interpolation and preserves conservation in a strict model sense.
Vladislav Y. Petrusevich, Igor A. Dmitrenko, Andrea Niemi, Sergey A. Kirillov, Christina Michelle Kamula, Zou Zou A. Kuzyk, David G. Barber, and Jens K. Ehn
Ocean Sci., 16, 337–353, https://doi.org/10.5194/os-16-337-2020, https://doi.org/10.5194/os-16-337-2020, 2020
Short summary
Short summary
The diel vertical migration of zooplankton is considered the largest daily migration of biomass on Earth. This study investigates zooplankton distribution, dynamics, and factors controlling them during open-water and ice cover periods in Hudson Bay, a large seasonally ice-covered Canadian inland sea. The presented data constitute the first-ever observed diel vertical migration of zooplankton in Hudson Bay during winter and its interaction with the tidal dynamics.
Mattia Righi, Bouwe Andela, Veronika Eyring, Axel Lauer, Valeriu Predoi, Manuel Schlund, Javier Vegas-Regidor, Lisa Bock, Björn Brötz, Lee de Mora, Faruk Diblen, Laura Dreyer, Niels Drost, Paul Earnshaw, Birgit Hassler, Nikolay Koldunov, Bill Little, Saskia Loosveldt Tomas, and Klaus Zimmermann
Geosci. Model Dev., 13, 1179–1199, https://doi.org/10.5194/gmd-13-1179-2020, https://doi.org/10.5194/gmd-13-1179-2020, 2020
Short summary
Short summary
This paper describes the second major release of ESMValTool, a community diagnostic and performance metrics tool for the evaluation of Earth system models. This new version features a brand new design, with an improved interface and a revised preprocessor. It takes advantage of state-of-the-art computational libraries and methods to deploy efficient and user-friendly data processing, improving the performance over its predecessor by more than a factor of 30.
Patrick Scholz, Dmitry Sidorenko, Ozgur Gurses, Sergey Danilov, Nikolay Koldunov, Qiang Wang, Dmitry Sein, Margarita Smolentseva, Natalja Rakowsky, and Thomas Jung
Geosci. Model Dev., 12, 4875–4899, https://doi.org/10.5194/gmd-12-4875-2019, https://doi.org/10.5194/gmd-12-4875-2019, 2019
Short summary
Short summary
This paper is the first in a series documenting and assessing important key components of the Finite-volumE Sea ice-Ocean Model version 2.0 (FESOM2.0). We assess the hydrographic biases, large-scale circulation, numerical performance and scalability of FESOM2.0 compared with its predecessor, FESOM1.4. The main conclusion is that the results of FESOM2.0 compare well to FESOM1.4 in terms of model biases but with a remarkable performance speedup with a 3 times higher throughput.
Nikolay V. Koldunov, Vadym Aizinger, Natalja Rakowsky, Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, and Thomas Jung
Geosci. Model Dev., 12, 3991–4012, https://doi.org/10.5194/gmd-12-3991-2019, https://doi.org/10.5194/gmd-12-3991-2019, 2019
Short summary
Short summary
We measure how computational performance of the global FESOM2 ocean model (formulated on an unstructured mesh) changes with the increase in the number of computational cores. We find that for many components of the model the performance increases linearly but we also identify two bottlenecks: sea ice and ssh submodules. We show that FESOM2 is on par with the state-of-the-art ocean models in terms of throughput that reach 16 simulated years per day for eddy resolving configuration (1/10°).
Thomas Rackow, Dmitry V. Sein, Tido Semmler, Sergey Danilov, Nikolay V. Koldunov, Dmitry Sidorenko, Qiang Wang, and Thomas Jung
Geosci. Model Dev., 12, 2635–2656, https://doi.org/10.5194/gmd-12-2635-2019, https://doi.org/10.5194/gmd-12-2635-2019, 2019
Short summary
Short summary
Current climate models show errors in the deep ocean that are larger than the level of natural variability and the response to enhanced greenhouse gas concentrations. These errors are larger than the signals we aim to predict. With the AWI Climate Model, we show that increasing resolution to resolve eddies can lead to major reductions in deep ocean errors. AWI's next-generation (CMIP6) model configuration will thus use locally eddy-resolving computational grids for projecting climate change.
Jens K. Ehn, Rick A. Reynolds, Dariusz Stramski, David Doxaran, Bruno Lansard, and Marcel Babin
Biogeosciences, 16, 1583–1605, https://doi.org/10.5194/bg-16-1583-2019, https://doi.org/10.5194/bg-16-1583-2019, 2019
Short summary
Short summary
Beam attenuation at 660 nm and suspended particle matter (SPM) relationships were determined during the MALINA cruise in August 2009 to the Canadian Beaufort Sea in order to expand our knowledge of particle distributions in Arctic shelf seas. The relationship was then used to determine SPM distributions for four other expeditions to the region. SPM patterns on the shelf were explained by an interplay between wind forcing, river discharge, and melting sea ice that controls the circulation.
Nikolay V. Koldunov and Luisa Cristini
Adv. Geosci., 45, 295–303, https://doi.org/10.5194/adgeo-45-295-2018, https://doi.org/10.5194/adgeo-45-295-2018, 2018
Short summary
Short summary
We believe that project managers can benefit from using programming languages in their work. In this paper we show several simple examples of how python programming language can be used for some of the basic text manipulation tasks, as well as describe more complicated test cases using a HORIZON 2020 type European project as an example.
Igor A. Dmitrenko, Sergey A. Kirillov, Bert Rudels, David G. Babb, Leif Toudal Pedersen, Søren Rysgaard, Yngve Kristoffersen, and David G. Barber
Ocean Sci., 13, 1045–1060, https://doi.org/10.5194/os-13-1045-2017, https://doi.org/10.5194/os-13-1045-2017, 2017
Heather Kyle, Søren Rysgaard, Feiyue Wang, and Mostafa Fayek
The Cryosphere Discuss., https://doi.org/10.5194/tc-2017-226, https://doi.org/10.5194/tc-2017-226, 2017
Revised manuscript not accepted
Short summary
Short summary
Ikaite may play a major role in air-sea carbon fluxes, but its importance is not well known due to difficulties with quantification. A new technique for measuring ikaite was developed and tested and our findings showed this method is effective. Sea ice properties were also measured. Results indicate that ikaite is most abundant in the upper layers of first-year sea ice so will likely play a more significant role in air-sea carbon fluxes in future as seasonal sea ice becomes more common.
Sergei Kirillov, Igor Dmitrenko, Søren Rysgaard, David Babb, Leif Toudal Pedersen, Jens Ehn, Jørgen Bendtsen, and David Barber
Ocean Sci., 13, 947–959, https://doi.org/10.5194/os-13-947-2017, https://doi.org/10.5194/os-13-947-2017, 2017
Short summary
Short summary
This paper reports the analysis of 3-week oceanographic data obtained in the front of Flade Isblink Glacier in northeast Greenland. The major focus of research is considering the changes of water dynamics and the altering of temperature and salinity vertical distribution occurring during the storm event. We discuss the mechanisms that are responsible for the formation of two-layer circulation cell and release of cold and relatively fresh sub-glacial waters into the ocean.
Nikolay V. Koldunov, Armin Köhl, Nuno Serra, and Detlef Stammer
The Cryosphere, 11, 2265–2281, https://doi.org/10.5194/tc-11-2265-2017, https://doi.org/10.5194/tc-11-2265-2017, 2017
Short summary
Short summary
The paper describes one of the first attempts to use the so-called adjoint data assimilation method to bring Arctic Ocean model simulations closer to observation, especially in terms of the sea ice. It is shown that after assimilation the model bias in simulating the Arctic sea ice is considerably reduced. There is also additional improvement in the sea ice thickens representation that is not assimilated directly.
Jennifer V. Lukovich, Cathleen A. Geiger, and David G. Barber
The Cryosphere, 11, 1707–1731, https://doi.org/10.5194/tc-11-1707-2017, https://doi.org/10.5194/tc-11-1707-2017, 2017
Short summary
Short summary
In this study we develop a framework to characterize directional changes in sea ice drift and associated deformation in response to atmospheric forcing. Lagrangian dispersion statistics applied to ice beacons deployed in a triangular configuration in the Beaufort Sea capture a shift in ice dynamical regimes and local differences in deformation. This framework contributes to diagnostic development relevant for ice hazard assessments and forecasting required by indigenous communities and industry.
Nicolas-Xavier Geilfus, Ryan J. Galley, Brent G. T. Else, Karley Campbell, Tim Papakyriakou, Odile Crabeck, Marcos Lemes, Bruno Delille, and Søren Rysgaard
The Cryosphere, 10, 2173–2189, https://doi.org/10.5194/tc-10-2173-2016, https://doi.org/10.5194/tc-10-2173-2016, 2016
Short summary
Short summary
The fate of ikaite precipitation within sea ice is poorly understood. In this study, we estimated ikaite precipitation of up to 167 µmol kg-1 within sea ice, while its export and dissolution into the underlying seawater was responsible for a TA increase of 64–66 μmol kg-1. We estimated that more than half of the total ikaite precipitated was still contained in the ice when sea ice began to melt. The dissolution of the ikaite crystals in the water column kept the seawater pCO2 undersaturated.
J. Sievers, L. L. Sørensen, T. Papakyriakou, B. Else, M. K. Sejr, D. Haubjerg Søgaard, D. Barber, and S. Rysgaard
The Cryosphere, 9, 1701–1713, https://doi.org/10.5194/tc-9-1701-2015, https://doi.org/10.5194/tc-9-1701-2015, 2015
R. K. Scharien, J. Landy, and D. G. Barber
The Cryosphere, 8, 2147–2162, https://doi.org/10.5194/tc-8-2147-2014, https://doi.org/10.5194/tc-8-2147-2014, 2014
R. K. Scharien, K. Hochheim, J. Landy, and D. G. Barber
The Cryosphere, 8, 2163–2176, https://doi.org/10.5194/tc-8-2163-2014, https://doi.org/10.5194/tc-8-2163-2014, 2014
I. A. Dmitrenko, S. A. Kirillov, N. Serra, N. V. Koldunov, V. V. Ivanov, U. Schauer, I. V. Polyakov, D. Barber, M. Janout, V. S. Lien, M. Makhotin, and Y. Aksenov
Ocean Sci., 10, 719–730, https://doi.org/10.5194/os-10-719-2014, https://doi.org/10.5194/os-10-719-2014, 2014
J. V. Lukovich, D. G. Babb, R. J. Galley, R. L. Raddatz, and D. G. Barber
The Cryosphere Discuss., https://doi.org/10.5194/tcd-8-4281-2014, https://doi.org/10.5194/tcd-8-4281-2014, 2014
Revised manuscript not accepted
S. Bélanger, S. A. Cizmeli, J. Ehn, A. Matsuoka, D. Doxaran, S. Hooker, and M. Babin
Biogeosciences, 10, 6433–6452, https://doi.org/10.5194/bg-10-6433-2013, https://doi.org/10.5194/bg-10-6433-2013, 2013
S. Rysgaard, D. H. Søgaard, M. Cooper, M. Pućko, K. Lennert, T. N. Papakyriakou, F. Wang, N. X. Geilfus, R. N. Glud, J. Ehn, D. F. McGinnis, K. Attard, J. Sievers, J. W. Deming, and D. Barber
The Cryosphere, 7, 707–718, https://doi.org/10.5194/tc-7-707-2013, https://doi.org/10.5194/tc-7-707-2013, 2013
Cited articles
Babb, D., Kirillov, S., Kuzyk, Z., Netser, T., Liesch, J., Kamula, C. M.,
Zagon, T., Barber, D. G., and Ehn, J.: On the intermittent formation of an
ice bridge (Nunniq) across Roes Welcome Sound, Northwestern Hudson Bay, and
its use to local Inuit hunters, Arctic, 75, 198–224,
https://doi.org/10.14430/arctic74957, 2022.
Barber, D. G. and Massom, R. A.: The role of sea ice in Arctic and Antarctic
polynyas, in: Polynyas: Windows to the World, edited by: Smith, W. O. and Barber, D. G.,
Elsevier Oceanogr. Ser., 74, 1–54, 2007.
Barber, D. G., Babb, D. G., Ehn, J. K., Chan, W., Matthes, L., Dalman, L.
A., Campbell, Y., Harasyn, M. L., Firoozy, N., Theriault, N., Lukovich, J.
V., Zagon, T., Papakyriakou, T., Capelle, D. W., Forest, A., and Gariepy, A.:
Increasing mobility of high Arctic sea ice increases marine hazards off the
east coast of Newfoundland, Geophys. Res. Lett., 45, 2370–2379,
https://doi.org/10.1002/2017GL076587, 2018.
Beszczynska-Möller, A., Woodgate, R. A., Lee, C., Melling, H., and
Karcher, M.: A synthesis of exchanges through the main oceanic gateways to
the Arctic Ocean, Oceanography, 24, 82–99, https://doi.org/10.5670/oceanog.2011.59,
2011.
Bilello, M. A.: Formation, growth, and decay of sea-ice in the Canadian
Arctic Archipelago, Arctic, 14, 2–24, 1961.
Bourke, R. H., Addison, V. G., and Paquette, R. G.: Oceanography of Nares
Strait and northern Baffin Bay in 1986 with emphasis on deep and bottom
water formation, J. Geophys. Res., 94, 8289–8302,
https://doi.org/10.1029/JC094iC06p08289, 1989.
Brunt, K. M., Neumann, T. A., and Smith, B. E.: Assessment of ICESat-2 ice
sheet surface heights, based on comparisons over the interior of the
Antarctic ice sheet, Geophys. Res. Lett., 46, 13072–13078,
https://doi.org/10.1029/2019GL084886, 2019.
Cavalieri, D. J., Markus, T., and Comiso, J. C.: AMSR-E/Aqua daily L3 6.25 km
89 GHz brightness temperature polar grids, version 3, Boulder, Colorado USA,
NASA National Snow and Ice Data Center Distributed Active Archive Center,
https://doi.org/10.5067/AMSR-E/AE_SI6.003, 2014.
Danilov, S., Sidorenko, D., Wang, Q., and Jung, T.: The Finite-volumE Sea ice–Ocean Model (FESOM2), Geosci. Model Dev., 10, 765–789, https://doi.org/10.5194/gmd-10-765-2017, 2017 (data available at: https://github.com/FESOM/fesom2, last access: 19 October 2022).
de Steur, L., Steele, M., Hansen, E., Morison, J., Polyakov, I., Olsen, S.
M., Melling, H., McLaughlin, F. A., Kwok, R., Smethie Jr., W. M., and
Schlosser, P.: Hydrographic changes in the Lincoln Sea in the Arctic Ocean
with focus on an upper ocean freshwater anomaly between 2007 and 2010,
J. Geophys. Res.-Oceans, 118, 4699–4715,
https://doi.org/10.1002/jgrc.20341, 2013.
Dumont, D., Gratton, Y., and Arbetter, T. E.: Modeling wind-driven
circulation and Landfast Ice-Edge Processes during Polynya Events in
Northern Baffin Bay, J. Phys. Ocean., 40, 1356–1372,
https://doi.org/10.1175/2010JPO4292.1, 2010.
Davis, P. E. D., Johnson, H. L., and Melling, H.: Propagation and vertical
structure of the tidal flow in Nares Strait, J. Geophys. Res.-Oceans, 124, 281–301, https://doi.org/10.1029/2018JC014122, 2019.
Glissenaar, I. A., Landy, J. C., Petty, A. A., Kurtz, N. T., and Stroeve, J. C.: Impacts of snow data and processing methods on the interpretation of long-term changes in Baffin Bay early spring sea ice thickness, The Cryosphere, 15, 4909–4927, https://doi.org/10.5194/tc-15-4909-2021, 2021.
Hannah, C., Dupont, F., and Dunphy, M.: Polynyas and Tidal Currents in the
Canadian Arctic Archipelago, Arctic, 62, 83–95, https://doi.org/10.14430/arctic115,
2009.
Hastrup, K., Mosbech, A., and Grønnow, B.: Introducing the North Water:
Histories of exploration, ice dynamics, living resources, and human
settlement in the Thule Region, Ambio, 47, 162–174,
https://doi.org/10.1007/s13280-018-1030-2, 2018.
Hayes, I. I.: The open Polar sea: a narrative of a voyage of discovery
towards the North pole, in the schooner “United States”, New York, Hurd and
Houghton, Cambridge University Press, ISBN-10: 1108049869,
ISBN-13: 978-1108049863,
1867.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis,
Q. J. Roy. Meteor. Soc., 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
Ito, H.: Wind through a channel – surface wind measurements in Smith Sound
and Jones Sound in Northern Baffin Bay, J. Appl. Meteorol., 21,
1053–1062, 1982.
Jones, E. P., Swift, J. H., Anderson, L. G., Lipizer, M., Civitarese, G.,
Falkner, K. K., Kattner, G., and McLaughlin, F.: Tracing Pacific water in
the North Atlantic Ocean, J. Geophys. Res., 108, 3116,
https://doi.org/10.1029/2001JC001141, 2003.
Jones, E. and Eert, A.: Waters of Nares Strait in 2001, Polarforschung, Bremerhaven, Alfred Wegener Institute for Polar and Marine Research & German Society of Polar Research, 74, 185–189,
2006.
Kane, E. K.: Arctic explorations: the second Grinnell expedition in
search of Sir John Franklin, 1853, '54, '55, Vol. I, Philadelphia: Childs
& Peterson, https://doi.org/10.5962/bhl.title, 1856.
Kirillov, S. and Koldunov, N.: 1km-res FESOM2 data for Nares Strait, Zenodo [data set], https://doi.org/10.5281/zenodo.6360063, 2022.
Kirillov, S., Dmitrenko, I., Babb, D., Rysgaard, S., and Barber, D.: The
effect of ocean heat flux on seasonal ice growth in Young Sound (Northeast
Greenland), J. Geophys. Res-Oceans, 120, 4803–4824,
https://doi.org/10.1002/2015JC010720, 2015.
Kirillov, S., Babb, D. G., Komarov, A. S., Dmitrenko, I., Ehn, J. K.,
Worden, E., Candlish, L., Rysgaard, S., and Barber, D. G.: On the physical
settings of ice bridge formation in Nares Strait, J. Geophys. Res.-Oceans, 126, e2021JC017331, https://doi.org/10.1029/2021JC017331, 2021.
Koldunov, N. V., Danilov, S., Sidorenko, D., Hutter, N., Losch, M.,
Goessling, H., and Jung, T.: Fast EVP solutions in a high-resolution sea ice
model, J. Adv. Model. Earth Sy., 11, 1269–1284,
https://doi.org/10.1029/2018MS001485, 2019.
Kwok, R.: Variability of Nares Strait ice flux, Geophys. Res. Lett., 32, L24502, https://doi.org/10.1029/2005GL024768, 2005.
Kwok, R. Toudal Pedersen, L., Gudmandsen, P., and Pang, S. S.: Large sea ice
outflow into the Nares Strait in 2007, Geophys. Res. Lett., 37,
L03502, https://doi.org/10.1029/2009GL041872, 2010.
Kwok, R., Cunningham, G., Markus, T., Hancock, D., Morison, J. H., Palm, S. P., Farrell, S. L., Ivanoff, A., Wimert, J., and the ICESat-2 Science Team: ATLAS/ICESat-2 L3A Sea Ice Height, Version 3, Boulder, Colorado USA, NASA National Snow and Ice Data Center Distributed Active Archive Center [data set], https://doi.org/10.5067/ATLAS/ATL07.003, 2020a
Kwok, R., Kacimi, S., Webster, M. A., Kurtz, N. T. and Petty, A. A.: Arctic
snow depth and sea ice thickness from ICESat-2 and CryoSat-2 freeboards: A
first examination, J. Geophys. Res.-Oceans, 125,
https://doi.org/10.1029/2019JC016008, 2020b.
Landy, J. C., Ehn, J. K., Babb, D. G., Thériault, N., and Barber, D. G.:
Sea ice thickness in the Eastern Canadian Arctic: Hudson Bay Complex &
Baffin Bay, Remote Sens. Environ., 200, 281–294,
https://doi.org/10.1016/j.rse.2017.08.019, 2017.
Lebedev, V. V.: Ice growth in the Arctic rivers and seas and its dependence
on negative air temperatures, Arc. Proceed., 5, 9–25, 1938.
Loewe, F.: On melting of fresh-water Ice in sea-water, J. Glaciol., 3, 1051–1052, https://doi.org/10.3189/S0022143000017457, 1961.
Meier, W. N., Comiso, J. C., and Markus, T.: AMSR-E/AMSR2 Unified L3 Daily
6.25 km Polar Gridded 89 GHz Brightness Temperatures, Version 1, Boulder,
Colorado USA, NASA National Snow and Ice Data Center Distributed Active
Archive Center [data set], https://doi.org/10.5067/NX1R09ORNOZN, 2018.
Melling, H., Gratton, Y., and Ingram, G.: Ocean circulation within the North
Water polynya of Baffin Bay, Atmos. Ocean, 39, 301–325,
https://doi.org/10.1080/07055900.2001.9649683, 2001.
Melling, H., Haas, C., and Brossier, E.: Invisible polynyas: Modulation of
fast ice thickness by ocean heat flux on the Canadian polar shelf, J. Geophys. Res.-Oceans, 120, 777–795, https://doi.org/10.1002/2014JC010404,
2015.
Moore, G. W. K.: Impact of model resolution on the representation of the wind
field along Nares Strait, Sci. Rep., 11, 13271,
https://doi.org/10.1038/s41598-021-92813-9, 2021.
Moore, G. W. K. and Våge, K.: Impact of model resolution on the
representation of the air–sea interaction associated with the North Water
Polynya, Q. J. Roy. Meteor. Soc., 144,
1474–1489, https://doi.org/10.1002/qj.3295, 2018.
Moore, G. W. K., Schweiger, A., Zhang, J., and Steele, M.: Spatiotemporal
variability of sea ice in the arctic's last ice area, Geophys. Res. Lett., 46, 11237–11243, https://doi.org/10.1029/2019GL083722, 2019.
Moynihan, M. J.: Oceanographic observations in Kane Basin, September 1968
and July–September 1969, U.S. Coast Guard Oceanographic Report No. 55, 70 pp., 1972.
Münchow, A., Melling, H., and Falkner, K. K.: An Observational Estimate
of Volume and Freshwater Flux Leaving the Arctic Ocean through Nares Strait,
J. Phys. Ocean., 36, 2025–2041, https://doi.org/10.1175/JPO2962.1,
2006.
Münchow, A., Falkner, K. K., and Melling, H.: Spatial continuity of
measured seawater and tracer fluxes through Nares Strait, a dynamically wide
channel bordering the Canadian Archipelago, J. Mar. Res.,
65, 759–788, 2007.
Münchow, A. and Melling, H.: Ocean current observations from Nares
Strait to the west of Greenland: Interannual to tidal variability and
forcing, J. Mar. Res., 66, 801–833,
https://doi.org/10.1357/002224008788064612, 2008.
Münchow, A., Falkner, K., Melling, H., Rabe, B., and Johnson, H.: Ocean
Warming of Nares Strait Bottom Waters O? Northwest Greenland, 2003–2009,
Oceanography, 24, 114–123, https://doi.org/10.5670/oceanog.2011.62, 2011.
Münchow, A.: Volume and Freshwater Flux Observations from Nares Strait
to the West of Greenland at Daily Time Scales from 2003 to 2009, J.
Phys. Ocean., 46, 141–157, https://doi.org/10.1175/JPO-D-15-0093.1, 2016.
Plante, M., Tremblay, B., Losch, M., and Lemieux, J.-F.: Landfast sea ice material properties derived from ice bridge simulations using the Maxwell elasto-brittle rheology, The Cryosphere, 14, 2137–2157, https://doi.org/10.5194/tc-14-2137-2020, 2020.
Preußer, A., Ohshima, K. I., Iwamoto, K., Willmes, S., and Heinemann, G.:
Retrieval of wintertime sea ice production in Arctic polynyas using thermal
infrared and passive microwave remote sensing data, J. Geophys. Res.-Oceans, 124, 5503–5528, https://doi.org/10.1029/2019JC014976, 2019.
QIA (Qikiqtani Inuit Association): Sarvarjuaq and Qikiqtait: Inuit
Stewardship and the Blue Economy in Nunavut's Qikiqtani Region (Draft), 37 pp.,
https://www.qia.ca/ (last access: 19 October 2022), 2020.
Rasmussen, K.: Greenland by the Polar Sea: the story of the Thule expedition
from Melville Bay to cape Morris Jesup, London: William Heinemann, ISBN-10: 0282425152,
ISBN-13: 9780282425159,
1921.
Rostosky, P., Spreen, G., Farrell, S. L., Frost, T., Heygster, G., and
Melsheimer, C.: Snow depth retrieval on Arctic sea ice from passive
microwave radiometers – Improvements and extensions to multiyear ice using
lower frequencies, J. Geophys. Res.-Oceans, 123, 7120–7138,
https://doi.org/10.1029/2018JC014028, 2018.
Rabe, B., Münchow, A., Johnson, H. L., and Melling, H.: Nares Strait
hydrography and salinity field from a 3-year moored array, J. Geophys. Res., 115, C07010, https://doi.org/10.1029/2009JC005966, 2010.
Rabe, B., Johnson, H. L., Münchow, A., and Melling, H.: Geostrophic ocean
currents and freshwater fluxes across the Canadian polar shelf via Nares
Strait, J. Mar. Res., 70, 603–640, 2012.
Rignot, E., An, L., Chauche, N., Morlighem, M., Jeong, S., Wood, M.,
Mouginot, J., Willis, J. K., Klaucke, I., Weinrebe, W., and Münchow, A.:
Retreat of Humboldt Gletscher, North Greenland, driven by undercutting from
a warmer ocean, Geophys. Res. Lett., 48, e2020GL091342, https://doi.org/10.1029/2020GL091342, 2021.
Ryan, P. A. and Münchow, A.: Sea ice draft observations in Nares Strait
from 2003 to 2012, J. Geophys. Res.-Oceans, 122, 3057–3080, https://doi.org/10.1002/2016JC011966, 2017.
Sadler, H. E.: Water, heat, and salt transports through Nares Strait,
Ellesmere Island, J. Fish. Res. Board Can., 33, 2286–2295, 1976.
Samelson, R. M., Agnew, T., Melling, H., and Münchow, A.: Evidence for
atmospheric control of sea-ice motion through Nares Strait, Geophys. Res. Lett., 33, L02506, https://doi.org/10.1029/2005GL025016, 2006.
Samelson, R. M. and Barbour, P. L.: Low-level jets, orographic effects, and
extreme events in Nares Strait: a model-based mesoscale climatology, Month. Weather Rev., 136, 4746–4759, 2008.
Schledermann, P.: Preliminary results of archaeological investigations in
the Bache Peninsula Region, Ellesmere Island, N.W.T., Arctic, 31, NO. 4, 459–474,
1978.
Schledermann, P.: Polynyas and Prehistoric Settlement Patterns, Arctic,
33, 292–302, 1980.
Scholz, P., Sidorenko, D., Gurses, O., Danilov, S., Koldunov, N., Wang, Q., Sein, D., Smolentseva, M., Rakowsky, N., and Jung, T.: Assessment of the Finite-volumE Sea ice-Ocean Model (FESOM2.0) – Part 1: Description of selected key model elements and comparison to its predecessor version, Geosci. Model Dev., 12, 4875–4899, https://doi.org/10.5194/gmd-12-4875-2019, 2019.
Shokr, M. E., Wang, Z., and Liu, T.: Sea ice drift and arch evolution in the Robeson Channel using the daily coverage of Sentinel-1 SAR data for the 2016–2017 freezing season, The Cryosphere, 14, 3611–3627, https://doi.org/10.5194/tc-14-3611-2020, 2020.
Shroyer, E. L., Samelson, R. M., Padman, L., and Münchow, A.: Modeled
ocean circulation in Nares Strait and its dependence on landfastice cover,
J. Geophys. Res.-Oceans, 120, 7934–7959,
https://doi.org/10.1002/2015JC011091, 2015.
Shroyer, E., Padman, L., Samelson, R., Münchow, A., and Steals, L.:
Seasonal control of Petermann Gletscher ice-shelf melt by the ocean's
response to sea-ice cover in Nares Strait, J. Glaciol., 63, 324–330,
https://doi.org/10.1017/jog.2016.140, 2017.
Smith, S. D., Muench, R. D., and Pease, C. H.: Polynyas and leads: An
overview of physical processes and environment, J. Geophys. Res., 95, 9461–9479, https://doi.org/10.1029/JC095iC06p09461.
Tamura, T. and Ohshima, K. I.: Mapping of sea ice production in the Arctic
coastal polynyas, J. Geophys. Res., 116, C07030,
https://doi.org/10.1029/2010JC006586, 2011.
Tedesco, M. and Jeyaratnam, J.: AMSR-E/AMSR2 Unified L3 Global Daily 25 km
EASE-Grid Snow Water Equivalent, Version 1, Snow depth, Boulder, Colorado
USA, NASA National Snow and Ice Data Center Distributed Active Archive
Center, https://doi.org/10.5067/8AE2ILXB5SM6, 2019.
Topham, D. R., Perkin, R. G., Smith, S. D., Anderson, R. J., and den Hartog, G.:
An investigation of a polynya in the Canadian Archipelago, 1, Introduction
and oceanography, J. Geophys. Res., 88, 2888–2899, 1983.
Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G., and
Yamazaki, D.: JRA-55 based surface dataset for driving ocean–sea-ice models
(JRA55-do), Ocean Modell., 130, 79–139, https://doi.org/10.1016/j.ocemod.2018.07.002, 2018.
Vibe, C.: The Marine Mammals and the Marine Fauna in the Thule district
(Northwest Greenland) with Observations on Ice Conditions in 1939–41: Den
Danske Thule og Ellesmere Land Ekspedition 1939–41, Meddelelser om
Grønland, 150, Copenhagen: C. A. Reitzel, 1950.
Vincent, R. F. and Marsden, R. F.: An analysis of the dissolution of ice in
Nares Strait using AVHRR Imagery, Atmos. Ocean, 39, 209–222,
https://doi.org/10.1080/07055900.2001.9649677, 2001.
Vincent R. F.: A Study of the North Water Polynya ice arch using four decades
of satellite data, Sci. Rep., 9, 20278, https://doi.org/10.1038/s41598-019-56780-6,
2019.
Volkov, D. L., Landerer, F. W., and Kirillov, S. A.: The genesis of sea level
variability in the Barents Sea, Cont. Shelf Res., 66, 92–104,
https://doi.org/10.1016/j.csr.2013.07.007, 2013.
Wang, Q., Danilov, S., Jung, T., Kaleschke, L., and Wernecke, A.: Sea ice
leads in the Arctic Ocean: Model assessment, interannual variability and
trends, Geophys. Res. Lett., 43, 7019–7027,
https://doi.org/10.1002/2016GL068696, 2016.
Wang, Q., Koldunov, N. V., Danilov, S., Sidorenko, D., Wekerle, C., Scholz,
P., Bashmachnikov, I. L., and Jung, T.: Eddy kinetic energy in the Arctic Ocean from a global simulation
with a 1-km Arctic, Geophys. Res. Lett., 47, e2020GL088550.
https://doi.org/10.1029/2020GL088550, 2020.
Warren, S. G., Rigor, I. G., Untersteiner, N., Radionov, V. F., Bryazgin, N.
N., and Alexandrov, Y. I.: Snow depth on Arctic Sea ice, J. Climate,
12, 1814–1828, 1999.
West, B., O'Connor, D., Parno, M., Krackow, M., and Polashenski, C.: Bonded
discrete element simulations of sea ice with non-local failure: Applications
to Nares Strait, https://doi.org/10.1002/essoar.10507028.1, 2021.
Woods, A. W.: Melting and dissolving, J. Fluid Mech., 239, 429–448, 1992.
Short summary
The sea ice bridge usually forms during winter in Nares Strait and prevents ice drifting south. However, this bridge has recently become unstable, and in this study we investigate the role of oceanic heat flux in this decline. Using satellite data, we identify areas where sea ice is relatively thin and further attribute those areas to the heat fluxes from the warm subsurface water masses. We also discuss the potential role of such an impact on ice bridge instability and earlier ice break up.
The sea ice bridge usually forms during winter in Nares Strait and prevents ice drifting south....