Articles | Volume 18, issue 5
https://doi.org/10.5194/os-18-1275-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-1275-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Variability of surface gravity wave field over a realistic cyclonic eddy
Gwendal Marechal
CORRESPONDING AUTHOR
Univ. Brest, CNRS, Ifremer, IRD, Laboratoire d’Océanographie Physique et Spatiale, Brest, France
Charly de Marez
California Institute of Technology, Pasadena, California, USA
Related authors
Guillaume Dodet, Jean-François Piolle, Yves Quilfen, Saleh Abdalla, Mickaël Accensi, Fabrice Ardhuin, Ellis Ash, Jean-Raymond Bidlot, Christine Gommenginger, Gwendal Marechal, Marcello Passaro, Graham Quartly, Justin Stopa, Ben Timmermans, Ian Young, Paolo Cipollini, and Craig Donlon
Earth Syst. Sci. Data, 12, 1929–1951, https://doi.org/10.5194/essd-12-1929-2020, https://doi.org/10.5194/essd-12-1929-2020, 2020
Short summary
Short summary
Sea state data are of major importance for climate studies, marine engineering, safety at sea and coastal management. However, long-term sea state datasets are sparse and not always consistent. The CCI is a program of the European Space Agency, whose objective is to realize the full potential of global Earth Observation archives in order to contribute to the ECV database. This paper presents the implementation of the first release of the Sea State CCI dataset.
Guillaume Dodet, Jean-François Piolle, Yves Quilfen, Saleh Abdalla, Mickaël Accensi, Fabrice Ardhuin, Ellis Ash, Jean-Raymond Bidlot, Christine Gommenginger, Gwendal Marechal, Marcello Passaro, Graham Quartly, Justin Stopa, Ben Timmermans, Ian Young, Paolo Cipollini, and Craig Donlon
Earth Syst. Sci. Data, 12, 1929–1951, https://doi.org/10.5194/essd-12-1929-2020, https://doi.org/10.5194/essd-12-1929-2020, 2020
Short summary
Short summary
Sea state data are of major importance for climate studies, marine engineering, safety at sea and coastal management. However, long-term sea state datasets are sparse and not always consistent. The CCI is a program of the European Space Agency, whose objective is to realize the full potential of global Earth Observation archives in order to contribute to the ECV database. This paper presents the implementation of the first release of the Sea State CCI dataset.
Cited articles
Ardhuin, F., Aksenov, Y., Benetazzo, A., Bertino, L., Brandt, P., Caubet, E., Chapron, B., Collard, F., Cravatte, S., Delouis, J.-M., Dias, F., Dibarboure, G., Gaultier, L., Johannessen, J., Korosov, A., Manucharyan, G., Menemenlis, D., Menendez, M., Monnier, G., Mouche, A., Nouguier, F., Nurser, G., Rampal, P., Reniers, A., Rodriguez, E., Stopa, J., Tison, C., Ubelmann, C., van Sebille, E., and Xie, J.: Measuring currents, ice drift, and waves from space: the Sea surface KInematics Multiscale monitoring (SKIM) concept, Ocean Sci., 14, 337–354, https://doi.org/10.5194/os-14-337-2018, 2018. a, b
Ballarotta, M., Ubelmann, C., Pujol, M.-I., Taburet, G., Fournier, F., Legeais, J.-F., Faugère, Y., Delepoulle, A., Chelton, D., Dibarboure, G., and Picot, N.: On the resolutions of ocean altimetry maps, Ocean Sci., 15, 1091–1109, https://doi.org/10.5194/os-15-1091-2019, 2019. a
Bretherton, F. P. and Garrett, C. J. R.: Wavetrains in inhomogeneous moving
media, Philos. T. Roy. Soc. A, 302, 529–554, 1968. a
Bruch, W., Piazzola, J., Branger, H., van Eijk, A. M., Luneau, C., Bourras, D.,
and Tedeschi, G.: Sea-Spray-Generation Dependence on Wind and Wave
Combinations: A Laboratory Study, Bound.-Lay. Meteorol., 180, 1–29,
2021. a
Cavaleri, L., Fox-Kemper, B., and Hemer, M.: Wind Waves in the Coupled Climate
System, B. Am. Meteorol. Soc., 78, 1651–1661, 2012. a
Chelton, D. B., deSzoeke, R. A., Schlax, M. G., El Naggar, K., and Siwertz, N.:
Geographical Variability of the First Baroclinic Rossby Radius of
Deformation, J. Phys. Ocean., 28, 433–460,
https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2, 1998. a
Chelton, D. B., Schlax, M. G., Samelson, R. M., and de Szoeke, R. A.: Global
observations of large oceanic eddies, Geophys. Res. Lett., 34,
https://doi.org/10.1029/2007GL030812, 2007. a
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of
nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216,
https://doi.org/10.1016/j.pocean.2011.01.002, 2011. a, b
de Marez, C., L'Hégaret, P., Morvan, M., and Carton, X.: On the 3D
structure of eddies in the Arabian Sea, Deep Sea Res. Pt. I, 150, 103057,
https://doi.org/10.1016/j.dsr.2019.06.003, 2019a. a, b, c, d
de Marez, C., Morvan, M., and Carton, X.: Data for: On the 3D structure of eddies in the Arabian Sea, [data set] https://doi.org/10.17632/bwkctkk5bn.1, 2019b. a
de Marez, C., Carton, X., Corréard, S., L'Hégaret, P., and Morvan, M.:
Observations of a deep submesoscale cyclonic vortex in the Arabian Sea,
Geophys. Res. Lett., 47, e2020GL087881, https://doi.org/10.1029/2020GL087881, 2020a. a
Dodet, G., Piolle, J.-F., Quilfen, Y., Abdalla, S., Accensi, M., Ardhuin, F., Ash, E., Bidlot, J.-R., Gommenginger, C., Marechal, G., Passaro, M., Quartly, G., Stopa, J., Timmermans, B., Young, I., Cipollini, P., and Donlon, C.: The Sea State CCI dataset v1: towards a sea state climate data record based on satellite observations, Earth Syst. Sci. Data, 12, 1929–1951, https://doi.org/10.5194/essd-12-1929-2020, 2020. a
Dugan, J., Piotrowski, C., and Williams, J.: Water depth and surface current
retrievals from airborne optical measurements of surface gravity wave
dispersion, J. Geophys. Res.-Oceans, 106, 16903–16915,
2001. a
Frenger, I., Gruber, N., Knutti, R., and Münnich, M.: Imprint of Southern
Ocean eddies on winds, clouds and rainfall, Nat. Geosci., 6, 608–612,
2013. a
Gommenginger, C., Srokosz, M., Challenor, P., and Cotton, P.: Measuring ocean
wave period with satellite altimeters: A simple empirical model, Geophys.
Res. Lett., 30, https://doi.org/10.1029/2003GL017743, 2003. a
Gommenginger, C., Chapron, B., Hogg, A., Buckingham, C., Fox-Kemper, B., Eriksson, L., Soulat, F., Ubelmann, C., Ocampo-Torres, F.,
Buongiorno Nardelli, B., Griffin, D., Lopez-Dekker, P., Knudsen, P., Andersen, O., Stenseng, L., Stapleton, N., Perrie, W., Violante-Carvalho, N., Schulz-Stellenfleth, J., Woolf, D., Isern-Fontanet, J., Ardhuin, F., Klein, P., Mouche, A., Pascual, A., Capet, X., Hauser, D.,
Stoffelen, A., Morrow, R., Aouf, L., Breivik, , Fu, L.-L., Johannessen, J., Aksenov, Y., Bricheno, L., Hirschi, J., Martin, A., Martin, A.,
Nurser, G., Polton, J., Wolf, J., Johnsen, H., Soloviev, A., Jacobs, G., Collard, F., Groom, S., Kudryavtsev, V., Wilkin, J., Navarro, V.,
Babanin, A., Martin, M., Siddorn, J., Saulter, A., Rippeth, T., Emery, B., Maximenko, N., Romeiser, R., Graber, H., Alvera Azcarate, A.,
Hughes, C., Vandemark, D., da Silva, J., Van Leeuwen, P., Naveira-Garabato, A., Gemmrich, J., Mahadevan, A., Marquez, J., Munro, Y., Doody, S., and Burbidge, G.: SEASTAR: a mission to study ocean submesoscale dynamics and small-scale atmosphere-ocean processes
in coastal, shelf and polar seas, Front. Mar. Sci., 6, 457, https://doi.org/10.3389/fmars.2019.00457, 2019. a, b
Gula, J., Molemaker, M., and McWilliams, J.: Topographic vorticity generation,
submesoscale instability and vortex street formation in the Gulf Stream,
Geophys. Res. Lett., 42, 4054–4062, 2015a. a
Gula, J., Molemaker, M. J., and Mcwilliams, J. C.: Gulf Stream Dynamics along
the Southeastern U.S. Seaboard, J. Phys. Oceanogr., 45, 690–715,
2015b. a
Hasselmann, K.: On the non-linear energy transfer in a gravity-wave spectrum,
Part 1. General theory, J. Fluid Mech., 12, 481–500, 1962. a
Hauser, D., Tourain, C., Hermozo, L., Alraddawi, D., Aouf, L., Chapron, B., Dalphinet, A., Delaye, L., Dalila, M., Dormy, E., Gouillon, F.,
Gressani, V., Grouazel, A., Guitton, G., Husson, R., Mironov, A., Mouche, A., Ollivier, A., Oruba, L., Piras, F., Rodriguez Suquet, R, S. P.,
Tison, C., and Ngan, T.: New observations from the SWIM radar on-board CFOSAT: Instrument validation and ocean wave measurement
assessment, IEEE T. Geosci. Remote Sens., 59, 5–26, 2020. a
Hua, B. L., Ménesguen, C., Le Gentil, S., Schopp, R., Marsset, B., and
Aiki, H.: Layering and turbulence surrounding an anticyclonic oceanic vortex:
In situ observations and quasi-geostrophic numerical simulations, J. Fluid Mech., 731, 418–442, 2013. a
Huang, N. E., Chen, D. T., Tung, C.-C., and Smith, J. R.: Interactions between
steady won-uniform currents and gravity waves with applications for current
measurements, J. Phys. Ocean., 2, 420–431, 1972. a
Hypolite, D., Romero, L., McWilliams, J. C., and Dauhajre, D. P.: Surface
gravity wave effects on submesoscale currents in the open ocean, J. Phys. Ocean., 51, 3365–3383, 2021. a
Irvine, D. E. and Tilley, D. G.: Ocean wave directional spectra and
wave-current interaction in the Agulhas from the shuttle imaging radar-B
synthetic aperture radar, J. Geophys. Res., 93, 15389–15401, 1988. a
Kenyon, K. E.: Wave refraction in Ocean Current, Deep-Sea Res., 18, https://doi.org/10.1175/JPO2844.1, 1971. a, b, c, d
Komen, G., Hasselmann, S., and Hasselmann, K.: On the existence of a fully
developed wind-sea spectrum, J. Phys. Ocean., 14,
1271–1285, 1984. a
Kudryavtsev, V., Yurovskaya, M., Chapron, B., Collard, F., and Donlon, C.: Sun
glitter Imagery of Surface Waves, Part 2: Waves Transformation on Ocean
Currents, J. Geophys. Res., 122, 1384–1399, https://doi.org/10.1002/2016JC012426, 2017. a, b, c
Le Vu, B., Stegner, A., and Arsouze, T.: Angular Momentum Eddy
Detection and Tracking Algorithm (AMEDA) and Its Application to
Coastal Eddy Formation, J. Atmos. Ocean. Tech.,
35, 739–762, https://doi.org/10.1175/JTECH-D-17-0010.1, 2018. a
Lévy, M., Franks, P. J. S., and Smith, K. S.: The role of submesoscale
currents in structuring marine ecosystems, Nat. Commun., 9, 4758,
https://doi.org/10.1038/s41467-018-07059-3, 2018. a
Marechal, G. and de Marez, C.: “OS_2022_WAVES_EDDY”, Mendeley Data, V1, [data set] https://doi.org/10.17632/df849pph9r.1, 2022. a
McWilliams, J. C.: Submesoscale currents in the ocean, P. Roy. Soc. A-Math. Phy., 427, 20160117,
https://doi.org/10.1098/rspa.2016.0117, 2016. a
Mei, C. C.: Applied dynamics of ocean surface waves, World Scientific,
Singapore, second edn., 740 pp., 1989. a
Monahan, E. C., Spiel, D. E., and Davidson, K. L.: A model of marine aerosol
generation via whitecaps and wave disruption, Oceanic whitecaps,
Springer, 167–174, 1986. a
Morrow, R., Fu, L.-L., Ardhuin, F., Benkiran, M., Chapron, B., Cosme, E.,
D?Ovidio, F., Farrar, J. T., Gille, S. T., Lapeyre, G., Traon, P.-Y. L.,
Pascual, A., Ponte, A., Qiu, B., Rascle, N., Ubelmann, C., Wang, J., and
Zaron, E. D.: Global observations of fine-scale ocean surface topography with
the Surface Water and Ocean Topography (SWOT) Mission, Front. Mar. Sci., 6, 232,
https://doi.org/10.3389/fmars.2019.00232, 2019. a
Quilfen, Y. and Chapron, B.: Ocean Surface Wave-Current Signatures From
Satellite Altimeter Measurements, Geophys. Res. Lett., 216, 253–261,
https://doi.org/10.1029/2018GL081029, 2019. a
Quilfen, Y., Yurovskaya, M., Chapron, B., and Ardhuin, F.: Storm waves
sharpening in the Agulhas current: satellite observations and modeling,
Remote Sens. Environ., 216, 561–571, https://doi.org/10.1016/j.rse.2018.07.020, 2018. a
Rapp, R. J. and Melville, W. K.: Laboratory measurements of deep-water breaking
waves, Philos. T. Roy. Soc. A, 331, 735–800, 1990. a
Rascle, N., Chapron, B., Ponte, A., Ardhuin, F., and Klein, P.: Surface
roughness imaging of currents shows divergence and strain in the wind
direction, J. Phys. Ocean., 44, 2153–2163, 2014. a
Rio, M.-H., Mulet, S., and Picot, N.: Beyond GOCE for the ocean circulation
estimate: Synergetic use of altimetry, gravimetry, and in situ data provides
new insight into geostrophic and Ekman currents, Geophys. Res. Lett., 41,
8918–8925, https://doi.org/10.1002/2014GL061773, 2014. a
Rocha, C. B., Chereskin, T. K., and Gille, S. T.: Mesoscale to Submesoscale
Wavenumber Spectra in Drake Passage, J. Phys. Oceanogr., 46, 601–620,
https://doi.org/10.1175/JPO-D-15-0087.1, 2016. a
Romero, L., Lenain, L., and Melville, W. K.: Observations of Surface
Wave–Current Interaction, J. Phys. Oceanogr., 47, 615–632,
https://doi.org/10.1175/JPO-D-16-0108.1, 2017. a, b, c
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling
system (ROMS): a split-explicit, free-surface,
topography-following-coordinate oceanic model, Ocean Modell., 9, 347–404,
https://doi.org/10.1016/j.ocemod.2004.08.002, 2005.
a
Shchepetkin, A. F. and McWilliams, J. C.: Accurate Boussinesq oceanic
modeling with a practical, “Stiffened” Equation of State, Ocean
Modell., 38, 41–70, https://doi.org/10.1016/j.ocemod.2011.01.010, 2011. a
Sheres, D., Kenyon, K. E., Bernstein, R. L., and Beardsley, R. C.: Large
horizontal surface velocity shears in the ocean obtained from images of
refracting swell and in situ moored current data, J. Geophys. Res.-Oceans, 90, 4943–4950, 1985. a
Smit, P. B. and Janssen, T. T.: Swell propagation through submesoscale
turbulence, J. Phys. Ocean., 49, 2615–2630, 2019. a
Song, J.-B. and Banner, M. L.: On determining the onset and strength of
breaking for deep water waves, Part I: Unforced irrotational wave groups,
J. Phys. Ocean., 32, 2541–2558, 2002. a
Tedesco, P., Gula, J., Ménesguen, C., Penven, P., and Krug, M.: Generation
of submesoscale frontal eddies in the Agulhas Current, J. Geophys. Res.-Oceans, 124, 7606–7625, 2019. a
Tran, N., Vandemark, D., Labroue, S., Feng, H., Chapron, B., Tolman, H. L.,
Lambin, J., and Picot, N.: The sea state bias in altimeter sea level
estimates determined by combining wave model and satellite data, J. Geophys.
Res., 115, C03020, https://doi.org/10.1029/2009JC005534, 2010. a, b, c
Villas Bôas, A. B. and Young, W. R.: Integrated observations and modeling
of winds, currents, and waves: requirements and challenges for the next
decade, J. Fluid Mech., 890, 425 pp., https://doi.org/10.1017/jfm.2020.116, 2020. a, b
Villas Bôas, A. B., Ardhuin, F., Gommenginger, C., Rodriguez, E., Gille,
S. T., Cornuelle, B. D., Mazloff, M. R., Bourassa, M., Subramanian, A., van
Sebille, E., Li, Q., Fox-Kemper, B., Ayet, A., Mouche, A., Merrifield, S. T.,
Terrill, E. J., Rio, M. H., Brandt, P., Farrar, J. T., Fewings, M., Chapron,
B., Shutler, J. D., and Tsamados, M.: Integrated observations and modeling of
winds, currents, and waves: requirements and challenges for the next decade, Front. Mar. Sci.,
6, 425, https://doi.org/10.3389/fmars.2019.00425, 2019. a, b
Wineteer, A., Torres, H. S., and Rodriguez, E.: On the surface current
measurement capabilities of spaceborne Doppler scatterometry, Geophys. Res. Lett., 47, e2020GL090116, https://doi.org/10.1029/2020GL090116, 2020. a, b
Yurovskaya, M., Kudryavtsev, V., Chapron, B., and Collard, F.: Ocean surface
current retrieval from space: The Sentinel-2 multispectral capabilities,
Remote Sens. Environ., 234, 111468, https://doi.org/10.1016/j.ocemod.2020.101662, 2019. a
Short summary
The surface ocean is turbulent from several hundred to a few kilometres. The more the current field is turbulent, the more traveling waves over the underlying current that are scattered. In this paper we focus on an isolated eddy where spontaneous instabilities have occurred, resulting in the emergence of smaller structures. Thanks to the wave scattering we have been able to retrieve the underlying surface current gradients normally not retrievable with traditional current measurements.
The surface ocean is turbulent from several hundred to a few kilometres. The more the current...