Articles | Volume 18, issue 4
https://doi.org/10.5194/os-18-1203-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-1203-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Compound flooding in convergent estuaries: insights from an analytical model
Department of Civil and Environmental Engineering, Old Dominion
University, Norfolk, VA, USA
Stefan A. Talke
Department of Civil and Environmental Engineering, California
Polytechnic State University, San Luis Obispo, CA, USA
David A. Jay
Department of Civil and Environmental Engineering, Portland State
University, Portland, OR, USA
Related authors
No articles found.
Stefan A. Talke, David A. Jay, and Heida L. Diefenderfer
Hydrol. Earth Syst. Sci., 27, 2807–2826, https://doi.org/10.5194/hess-27-2807-2023, https://doi.org/10.5194/hess-27-2807-2023, 2023
Short summary
Short summary
Archival measurements and a statistical model show that average water temperature in a major US West Coast river has increased by 1.8 °C since 1850, at a rate of 1.1 °C per century. The largest factor driving modeled changes are warming air temperatures (nearly 75 %). The remainder is primarily caused by depth increases and other modifications to the river system. Near-freezing conditions, common historically, no longer occur, and the number of warm water days has significantly increased.
Adam T. Devlin, David A. Jay, Stefan A. Talke, and Jiayi Pan
Ocean Sci., 19, 517–534, https://doi.org/10.5194/os-19-517-2023, https://doi.org/10.5194/os-19-517-2023, 2023
Short summary
Short summary
Volcanic meteotsunamis (VMTs) are global with impacts dependent on local topography. The impacts of a volcanic meteotsunami may occur where the oceanic tsunami is not present. Tsunami warning systems do not consider VMTs which can arrive first and may be several meters for a large volcanic eruption at locations with ideal topographical or bathymetric conditions. Here, we analyzed this event using high-frequency tide gauge data along with deep-water buoys and air pressure gauges worldwide.
Philip M. Orton, Eric W. Sanderson, Stefan A. Talke, Mario Giampieri, and Kytt MacManus
Nat. Hazards Earth Syst. Sci., 20, 2415–2432, https://doi.org/10.5194/nhess-20-2415-2020, https://doi.org/10.5194/nhess-20-2415-2020, 2020
Short summary
Short summary
The geometry of estuaries is often altered through dredging to make room for ships and with extensive landfill over wetlands to enable development. Here, we use historical maps to help create computational models of seawater flow around and into a lagoonal bay of New York City for the 1880s and 2010s. Our results show that these past man-made changes cause higher coastal storm tides and that they result specifically from deeper depths, expanded inlet width, and landfill.
Cited articles
Becker, M. L., Luettich, R. A., and Mallin, M. A.: Hydrodynamic behavior of the Cape Fear River and estuarine system: A synthesis and observational investigation of discharge–salinity intrusion relationships, Estuar. Coast. Shelf Sci., 88, 407–418, 2010.
Bertin, X., Bruneau, N., Breilh, J. F., Fortunato, A. B., and Karpytchev,
M.: Importance of wave age and resonance in storm surges: The case Xynthia,
Bay of Biscay, Ocean Modell., 42, 16–30, https://doi.org/10.1016/j.ocemod.2011.11.001,
2012.
Bilskie, M. V. and Hagen, S. C.: Defining Flood Zone Transitions in
Low-Gradient Coastal Regions, Geophys. Res. Lett., 45, 2761–2770,
2018.
Brandon, C. M., Woodruff, J. D., Donnelly, J. P., and Sullivan, R. M.: How
unique was Hurricane Sandy? Sedimentary reconstructions of extreme flooding
from New York Harbor, Sci. Rep.,
4, 7366,
https://doi.org/10.1038/srep07366, 2014.
Buschman, F. A., Hoitink, A. J. F., Van Der Vegt, M., and Hoekstra, P.:
Subtidal water level variation controlled by river flow and tides, Water
Resour. Res., 45, W10420, https://doi.org/10.1029/2009WR008167, 2009.
Chernetsky A. S., Schuttelaars, H. M., and Talke, S. A.: The effect of tidal
asymmetry and temporal settling lag on sediment trapping in tidal estuaries,
Ocean Dynam., 60, 1219–41, 2010.
Doodson A. T.: Tides and storm surge in a long uniform gulf, Proc.
Roy. Soc. Lond. A, 237, 325–343, 1956.
Dronkers, J. J.: Tidal Computations in Rivers and Coastal Waters,
North-Holland, Amsterdam, Interscience (Wiley), New York, 296–304, 1964.
Ensing, H., de Swart, H. E., and Schuttelaars, H. M.: Sensitivity of tidal motion in
well-mixed estuaries to cross-sectional shape, deepening, and sea level
rise: an analytical study, Ocean Dynam., 65, 933–50,
https://doi.org/10.1007/s10236-015-0844-8, 2015.
Familkhalili, R. and Talke, S. A.: The effect of channel deepening on tides
and storm surge: A case study of Wilmington, NC, Geophys. Res. Lett., 43,
9138–9147, https://doi.org/10.1002/2016GL069494, 2016.
Familkhalili, R., Talke, S. A., and Jay, D. A.: Tide-storm surge
interactions in highly altered estuaries: How channel deepening increases
surge vulnerability, J. Geophys. Res.-Ocean., 125,
e2019JC015286, https://doi.org/10.1029/2019JC015286, 2020.
Friedrichs, C. T. and Aubrey, D. G.: Tidal propagation in strongly
convergent channels, J. Geophys. Res., 99, 3321–3336,
https://doi.org/10.1029/93JC03219, 1994.
Giese, B. S. and Jay, D. A.: Modeling tidal energetics of the Columbia
River estuary, Estuar. Coast. Shelf Sci., 29, 549–571,
https://doi.org/10.1016/02727714(89)90010-3, 1989.
Godin, G.: Modification of rivertides by the discharge, J. Waterway, Port,
Coastal, Ocean Eng., 111, 257–274, 1985.
Godin, G.: Compact approximations to the bottom friction term for the study
of tides propagating in channels, Cont. Shelf Res., 11,
579–589, 1991.
Godin, G.: The propagation of tides up rivers with special considerations on
the upper Saint Lawrence River, Estuar. Coast. Shelf Sci., 48,
307–324, 1999.
Godin, G. and Martinez, A.: Numerical experiments to investigate the effects of
quadratic friction on the propagation of tides in a channel, Cont.
Shelf Res., 14, 723–748, 1994.
Helaire, L. T., Talke, S. A., Jay, D. A., and Chang, H.: Present and Future
Flood Hazard in the Lower Columbia River Estuary: Changing Flood Hazards in
the Portland-Vancouver Metropolitan Area, J. Geophys. Res.-Ocean., 125, e2019JC015928, https://doi.org/10.1029/2019JC015928, 2020.
Helaire, L. T., Talke, S. A., Jay, D. A., and Mahedy, D.: Historical
changes in Lower Columbia River and estuary floods: A numerical study,
J. Geophys. Res.-Ocean., 124, 7926–7946,
https://doi.org/10.1029/2019JC015055, 2019.
Hoitink, A. J. F. and Jay, D. A.: Tidal river dynamics: Implications for
deltas, Rev. Geophys., 54, 240–272, https://doi.org/10.1002/2015RG000507, 2016.
Horsburgh, K. J. and Wilson, C.: Tide-surge interaction and its role in the
distribution of surge residuals in the North Sea, J. Geophys. Res., 112,
C08003, https://doi.org/10.1029/2006JC004033, 2007.
IPCC: Summary for policymakers, in: Climate Change 2014: Impacts, Adaptation, and Vulnerability, Part A: Global and Sectoral Aspects, Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Field, C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir, T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B., Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White, L. L., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1–32, 2014.
Jay, D. A.: Green's law revisited: Tidal long-wave propagation in channels
with strong topography, J. Geophys. Res., 96, 20585,
https://doi.org/10.1029/91JC01633, 1991.
Jay, D. A., Devlin, A., Idier, D., Prococki, E., and Flick, E. R.: 8.07 – Tides and Coastal Geomorphology: The Role of Non-Stationary Processes, in: Treatise on Geomorphology, 2nd Edn., edited by: Shroder, J. F., 161–198, Academic Press, Oxford, https://doi.org/10.1016/B978-0-12-818234-5.00166-8, 2022.
Jay, D. A., Leffler, K., and Degens, S.: Long-term evolution of Columbia
River tides, ASCE Journal of Waterway, Port Coast. Ocean Eng.,
137, 182–191, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000082, 2011.
Johnson, F., White, C. J., van Dijk, A., Ekstrom, M., Evans, J. P., Jakob, D., Kiem, A. S., Leonard, M., Rouillard, A., and Westra, S.: Natural hazards in Australia:
floods, Climatic Change, 139, 21–35,
https://doi.org/10.1007/s10584-016-1689-y, 2016.
Jongman B., Ward P. J., and Aerts J. C. J. H.: Global exposure to river and
coastal flooding: Long term trends and changes, Glob. Environ. Change,
22, 823–35, 2012.
Kästner, K., Hoitink, A. J. F., Torfs, P. J. J. F., Deleersnijder, E.,
and Ningsih, N. S.: Propagation of tides along a river with a sloping bed,
J. Fluid Mech., 872, 39–73,
https://doi.org/10.1017/jfm.2019.331, 2019.
Kukulka, T. and Jay, D. A.: Impacts of Columbia River discharge on salmonid
habitat: 1. A nonstationary fluvial tidal model, J. Geophys.
Res., 10, 3293, https://doi.org/10.1029/2002JC001382, 2003a.
Kukulka, T. and Jay, D. A.: Impacts of Columbia River discharge on salmonid
habitat: 2. Changes in shallow-water habitat, J. Geophys.
Res., 108, 3294, https://doi.org/10.1029/2002JC001829, 2003b.
Lanzoni, S. and Seminara, G.: On tide propagation in convergent estuaries,
J. Geophys. Res., 103, 30793–30812, 1998.
Leffler, K. E. and Jay, D. A.: Enhancing tidal harmonic analysis: Robust (hybrid L1/L2) solutions, Cont. Shelf Res., 29, 78–8, https://doi.org/10.1016/j.csr.2008.04.011, 2009.
Munchow, A. K., Masse, A. K., and Garvine, R. W.: Astronomical and nonlinear
tidal currents in a coupled estuary shelf system, Cont. Shelf Res.,
12, 471–498, 1992.
Nicholls, R. J., Wong, P. P., Burkett, V. R., Codignotto, J. O., Hay, J. E.,
McLean, R. F., Ragoonaden, S., and Woodroffe C. D.: Coastal systems and
low-lying areas, Climate Change 2007: Impacts, Adaptation and Vulnerability,
Contribution of Working Group II to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Parry, M. L., Canziani, O. F.,
Palutikof, J. P., van der Linden, P. J., and Hanson, C. E., Cambridge University
Press, Cambridge, UK, 315–356, ISBN 9780521880107, 2007.
Orton, P., Georgas, N., Blumberg, A., and Pullen, J.: Detailed modeling of
recent severe storm tides in estuaries of the New York City region, J.
Geophys. Res., 117, C09030, https://doi.org/10.1029/2012JC008220, 2012.
Orton, P. M., Hall, T. M., Talke, S. A., Blumberg, A. F., Georgas, N., and
Vinogradov, S.: A validated tropical-extratropical flood hazard assessment
for New York Harbor, J. Geophys. Res.-Ocean., 121, 8904–8929,
doi:https://doi.org/10.1002/2016JC011679, 2016.
Pareja-Roman, L. F., Chant, R. J., and Sommerfield, C. K.: Impact of
historical channel deepening on tidal hydraulics in the Delaware Estuary,
J. Geophys. Res.-Ocean., 125, e2020JC016256, https://doi.org/10.1029/2020JC016256, 2020.
Parker, B. B.: The relative importance of the various nonlinear mechanisms
in a wide range of tidal interactions, in: Tidal Hydrodynamics,
edited by: Parker, B. B., John and Wiley & Sons Inc., 13, 237–268,
ISBN 978-0-471-51498-5, 1991.
Prandle, D. and Rahman, M.: Tidal response in estuaries, J.
Phys. Oceanogr., 10, 1552–1573, 1980.
Ralston, D. K., Talke, S., Geyer, W. R., Al-Zubaidi, H. A. M., and
Sommerfield, C. K.: Bigger tides, less flooding: Effects of dredging on
barotropic dynamics in a highly modified estuary, J. Geophys.
Res.-Ocean., 124, 196–211, https://doi.org/10.1029/2018JC014313, 2019.
Ralston, D. K., Warner, J. C., Geyer, W. R., and Wall, G. R.: Sediment
transport due to extreme events: The Hudson River estuary after tropical
storms Irene and Lee, Geophys. Res. Lett., 40, 5451–5455,
https://doi.org/10.1002/2013GL057906, 2013.
Savenije, H. H. G.: Analytical expression for tidal damping in alluvial
estuaries, J. Hydraul. Eng.-ASCE, 124, 615–618, 1998.
Savenije, H. H. G., Toffolon, M., Haas, J., and Veling, E. J. M.: Analytical
description of tidal dynamics in convergent estuaries, J. Geophys. Res., 113,
C10025, https://doi.org/10.1029/2007JC004408, 2008.
Shen, J. and Gong, W.: Influence of model domain size, wind directions and
Ekman transport on storm surge development inside the Chesapeake Bay: A case
study of extratropical cyclone Ernesto, 2006, J. Mar. Syst.,
75, 198–215, https://doi.org/10.1016/j.jmarsys.2008.09.001, 2009.
Shen, J., Wang, H., Sisson, M., and Gong, W.: Storm tide simulation in the
Chesapeake Bay using an unstructured grid model, Estuar. Coast.
Shelf Sci., 68, 1–16, https://doi.org/10.1016/j.ecss.2005.12.018,
2006.
Talke, S. A. and Jay, D. A.: Changing tides: The role of natural and
anthropogenic factors, Ann. Rev. Mar. Sci., 12, 121–151,
https://doi.org/10.1146/annurev-marine-010419-010727, 2020.
Talke, S. A., Orton, P., and Jay, D. A.: Increasing storm tides in New York
Harbor, 1844–2013, Geophys. Res. Lett., 41, 3149–3155,
https://doi.org/10.1002/2014GL059574, 2014.
Talke, S. A., Familkhalili, R., and Jay, D. A.: The influence of channel
deepening on tides, river discharge effects, and storm surge, J.
Geophys. Res.-Ocean., 126, e2020JC016328,
https://doi.org/10.1029/2020JC016328, 2021.
Toffolon, M. and Savenije, H. H.: Revisiting linearized one-dimensional
tidal propagation, J. Geophys. Res., 116, C07007, https://doi.org/10.1029/2010JC006616,
2011.
van Oldenborgh, G. J., van der Wiel, K., Sebastian, A., Singh, R., Arrighi, J., Otto, F., Haustein, K., Li, S., Vecchi, G., and Cullen, H.: Attribution of extreme rainfall from Hurricane Harvey, August 2017, Environ. Res. Lett., 12, 124009, https://doi.org/10.1088/1748-9326/aa9ef2, 2017.
Wahl, T., Jain, S., Bender, J., Meyers, S. D., and Luther, M. E.: Increasing
risk of compound flooding from storm surge and rainfall for major US cities,
Nat. Clim. Change, 5, 1093–1097, https://doi.org/10.1038/NCLIMATE2736, 2015.
Wang, S. Y. S., Zhao, L., Yoon, J. H., Klotzbach, P., and Gillies, R. R.:
Attribution of climate effects on Hurricane Harvey's extreme rainfall in
Texas, Environ. Res. Lett., 13, 054014,
https://doi.org/10.1088/1748-9326/aabb85, 2018.
Winterwerp J. C., Wang Z. B., van Braeckel, A., van Holland, G.,
and Kösters, F.: Man-induced regime shifts in small estuaries – II: a
comparison of rivers, Ocean Dynam., 63, 1293–306, 2013.
Zheng, F., Westra, S., Leonard, M., and Sisson, S. A.: Modeling dependence
between extreme rainfall and storm surge to estimate coastal flooding risk,
Water Resour. Res., 50, 2050–2071, 2014.
Zscheischler, J., Westra, S., van den Hurk, B.J.J.M., Seneviratne, S.I., Ward, P.J., Pitman, A., AghaKouchak, A., Bresch, D.N., Leonard, M., Wahl, T., and Zhang, X.: Future
climate risk from compound events, Nat. Clim. Change, 8, 469–477,
https://doi.org/10.1038/s41558-018-0156-3, 2018.
Short summary
Storm surges, tides, and high river flows often combine to cause flooding in estuaries, a problem known as compound flooding. In this study, we investigate these factors and how changes to estuary and river geometry influence peak water levels. This study offers an analytical framework for reducing estuary flood risk via a better understanding of how bathymetry, surge timescale, and river discharge affect surge and tidal amplitudes and flood heights and inundation in these systems.
Storm surges, tides, and high river flows often combine to cause flooding in estuaries, a...