Articles | Volume 18, issue 1
https://doi.org/10.5194/os-18-109-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-109-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Components of 21 years (1995–2015) of absolute sea level trends in the Arctic
Carsten Bjerre Ludwigsen
CORRESPONDING AUTHOR
DTU Space, Elektrovej 328, 2800 Kgs. Lyngby, Denmark
Ole Baltazar Andersen
DTU Space, Elektrovej 328, 2800 Kgs. Lyngby, Denmark
Stine Kildegaard Rose
DTU Space, Elektrovej 328, 2800 Kgs. Lyngby, Denmark
Related authors
No articles found.
Yihao Wu, Hongkai Shi, Dongzhen Jia, Ole Baltazar Andersen, Xiufeng He, Zhicai Luo, Yu Li, Shiyuan Chen, Xiaohuan Si, Sisu Diao, Yihuang Shi, and Yanglin Chen
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-443, https://doi.org/10.5194/essd-2024-443, 2024
Preprint under review for ESSD
Short summary
Short summary
We developed a high-quality and cost-effective shallow-water depth model for >120 islands in the South China Sea, using ICESat-2 and Sentinel-2 satellite data. This model accurately maps water depths with an accuracy of ~1 m. Our findings highlight the limitations of existing global bathymetry models in shallow regions. Our model exhibited superior performance in capturing fine-scale bathymetric features with unprecedented spatial resolution, providing essential data for marine applications.
Ole Baltazar Andersen, Stine Kildegaard Rose, Adili Abulaitijiang, Shengjun Zhang, and Sara Fleury
Earth Syst. Sci. Data, 15, 4065–4075, https://doi.org/10.5194/essd-15-4065-2023, https://doi.org/10.5194/essd-15-4065-2023, 2023
Short summary
Short summary
The mean sea surface (MSS) is an important reference for mapping sea-level changes across the global oceans. It is widely used by space agencies in the definition of sea-level anomalies as mapped by satellite altimetry from space. Here a new fully global high-resolution mean sea surface called DTU21MSS is presented, and a suite of evaluations are performed to demonstrate its performance.
Martin Horwath, Benjamin D. Gutknecht, Anny Cazenave, Hindumathi Kulaiappan Palanisamy, Florence Marti, Ben Marzeion, Frank Paul, Raymond Le Bris, Anna E. Hogg, Inès Otosaka, Andrew Shepherd, Petra Döll, Denise Cáceres, Hannes Müller Schmied, Johnny A. Johannessen, Jan Even Øie Nilsen, Roshin P. Raj, René Forsberg, Louise Sandberg Sørensen, Valentina R. Barletta, Sebastian B. Simonsen, Per Knudsen, Ole Baltazar Andersen, Heidi Ranndal, Stine K. Rose, Christopher J. Merchant, Claire R. Macintosh, Karina von Schuckmann, Kristin Novotny, Andreas Groh, Marco Restano, and Jérôme Benveniste
Earth Syst. Sci. Data, 14, 411–447, https://doi.org/10.5194/essd-14-411-2022, https://doi.org/10.5194/essd-14-411-2022, 2022
Short summary
Short summary
Global mean sea-level change observed from 1993 to 2016 (mean rate of 3.05 mm yr−1) matches the combined effect of changes in water density (thermal expansion) and ocean mass. Ocean-mass change has been assessed through the contributions from glaciers, ice sheets, and land water storage or directly from satellite data since 2003. Our budget assessments of linear trends and monthly anomalies utilise new datasets and uncertainty characterisations developed within ESA's Climate Change Initiative.
Michael Kern, Robert Cullen, Bruno Berruti, Jerome Bouffard, Tania Casal, Mark R. Drinkwater, Antonio Gabriele, Arnaud Lecuyot, Michael Ludwig, Rolv Midthassel, Ignacio Navas Traver, Tommaso Parrinello, Gerhard Ressler, Erik Andersson, Cristina Martin-Puig, Ole Andersen, Annett Bartsch, Sinead Farrell, Sara Fleury, Simon Gascoin, Amandine Guillot, Angelika Humbert, Eero Rinne, Andrew Shepherd, Michiel R. van den Broeke, and John Yackel
The Cryosphere, 14, 2235–2251, https://doi.org/10.5194/tc-14-2235-2020, https://doi.org/10.5194/tc-14-2235-2020, 2020
Short summary
Short summary
The Copernicus Polar Ice and Snow Topography Altimeter will provide high-resolution sea ice thickness and land ice elevation measurements and the capability to determine the properties of snow cover on ice to serve operational products and services of direct relevance to the polar regions. This paper describes the mission objectives, identifies the key contributions the CRISTAL mission will make, and presents a concept – as far as it is already defined – for the mission payload.
Graham D. Quartly, Eero Rinne, Marcello Passaro, Ole B. Andersen, Salvatore Dinardo, Sara Fleury, Kevin Guerreiro, Amandine Guillot, Stefan Hendricks, Andrey A. Kurekin, Felix L. Müller, Robert Ricker, Henriette Skourup, and Michel Tsamados
The Cryosphere Discuss., https://doi.org/10.5194/tc-2018-148, https://doi.org/10.5194/tc-2018-148, 2018
Revised manuscript not accepted
Short summary
Short summary
Radar altimetry is a high-precision technique for measuring sea level and sea ice thickness from space, which are important for monitoring ocean circulation, sea level rise and changes in the Arctic ice cover. This paper reviews the processing techniques needed to best extract the information from complicated radar echoes, and considers the likely developments in the coming decade.
Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, Hao Zuo, Johnny A. Johannessen, Martin G. Scharffenberg, Luciana Fenoglio-Marc, M. Joana Fernandes, Ole Baltazar Andersen, Sergei Rudenko, Paolo Cipollini, Graham D. Quartly, Marcello Passaro, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 10, 281–301, https://doi.org/10.5194/essd-10-281-2018, https://doi.org/10.5194/essd-10-281-2018, 2018
Short summary
Short summary
Sea level is one of the best indicators of climate change and has been listed as one of the essential climate variables. Sea level measurements have been provided by satellite altimetry for 25 years, and the Climate Change Initiative (CCI) program of the European Space Agency has given the opportunity to provide a long-term, homogeneous and accurate sea level record. It will help scientists to better understand climate change and its variability.
Graham D. Quartly, Jean-François Legeais, Michaël Ablain, Lionel Zawadzki, M. Joana Fernandes, Sergei Rudenko, Loren Carrère, Pablo Nilo García, Paolo Cipollini, Ole B. Andersen, Jean-Christophe Poisson, Sabrina Mbajon Njiche, Anny Cazenave, and Jérôme Benveniste
Earth Syst. Sci. Data, 9, 557–572, https://doi.org/10.5194/essd-9-557-2017, https://doi.org/10.5194/essd-9-557-2017, 2017
Short summary
Short summary
We have produced an improved monthly record of mean sea level for 1993–2015. It is developed by careful processing of the records from nine satellite altimeter missions, making use of the best available orbits, instrumental corrections and geophysical corrections. This paper details the selection process and the processing method. The data are suitable for investigation of sea level changes at scales from seasonal to long-term sea level rise, including interannual variations due to El Niño.
Eva Boergens, Karina Nielsen, Ole B. Andersen, Denise Dettmering, and Florian Seitz
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2017-217, https://doi.org/10.5194/hess-2017-217, 2017
Revised manuscript not accepted
Short summary
Short summary
The water levels of the Mekong River are observed with the SAR altimeter measurements of CryoSat-2. Even small rivers in the river system with a width of 50 m can be observed due to the higher resolution of the SAR measurements. To identify the rivers regardless of a land-water-mask we employ an unsupervised classification on features derived from the SAR measurements. The river water levels are validated and compared to gauge and Envisat data which shows the good performance of the SAR data.
M. Ablain, A. Cazenave, G. Larnicol, M. Balmaseda, P. Cipollini, Y. Faugère, M. J. Fernandes, O. Henry, J. A. Johannessen, P. Knudsen, O. Andersen, J. Legeais, B. Meyssignac, N. Picot, M. Roca, S. Rudenko, M. G. Scharffenberg, D. Stammer, G. Timms, and J. Benveniste
Ocean Sci., 11, 67–82, https://doi.org/10.5194/os-11-67-2015, https://doi.org/10.5194/os-11-67-2015, 2015
Short summary
Short summary
This paper presents various respective data improvements achieved within the European Space Agency (ESA) Climate Change Initiative (ESA CCI) project on sea level during its first phase (2010-2013), using multi-mission satellite altimetry data over the 1993-2010 time span.
Cited articles
Andersen, O., Knudsen, P., and Stenseng, L.:
A New DTU18 MSS Mean Sea Surface – Improvement from SAR Altimetry,
25 years of progress in radar altimetry symposium, Ponta Delgada, São Miguel Island, Azores Archipelago, Portugal, 24 to 29 September 2018, p. 172, 2018. a
Armitage, T. W. K., Bacon, S., Ridout, A. L., Thomas, S. F., Aksenov, Y., and Wingham, D. J.:
Arctic sea surface height variability and change from satellite radar altimetry and GRACE, 2003–2014,
J. Geophys. Res.-Oceans,
121, 4303–4322, https://doi.org/10.1002/2015JC011579, 2016. a, b, c, d, e, f, g, h, i, j, k, l, m, n, o
Armitage, T. W. K., Bacon, S., and Kwok, R.:
Arctic Sea Level and Surface Circulation Response to the Arctic Oscillation,
Geophys. Res. Lett.,
45, 6576–6584, https://doi.org/10.1029/2018GL078386, 2018. a, b, c
Bamber, J. and Riva, R.: The sea level fingerprint of recent ice mass fluxes, The Cryosphere, 4, 621–627, https://doi.org/10.5194/tc-4-621-2010, 2010. a
Behrendt, A., Sumata, H., Rabe, B., and Schauer, U.: UDASH – Unified Database for Arctic and Subarctic Hydrography, Earth Syst. Sci. Data, 10, 1119–1138, https://doi.org/10.5194/essd-10-1119-2018, 2018. a
Bonin, J. A., Bettadpur, S., and Tapley, B. D.:
High-frequency signal and noise estimates of CSR GRACE RL04,
J. Geodesy,
86, 1–13, https://doi.org/10.1007/s00190-012-0572-5, 2012. a
Box, J. E., Colgan, W. T., Christensen, T. R., Schmidt, N. M., Lund, M., Parmentier, F. J. W., Brown, R., Bhatt, U. S., Euskirchen, E. S., Romanovsky, V. E., Walsh, J. E., Overland, J. E., Wang, M., Corell, R. W., Meier, W. N., Wouters, B., Mernild, S., Mård, J., Pawlak, J., and Olsen, M. S.:
Key indicators of Arctic climate change: 1971–2017,
Environ. Res. Lett.,
14, 045010, https://doi.org/10.1088/1748-9326/aafc1b, 2019. a
Calafat, F. M., Chambers, D. P., and Tsimplis, M. N.:
Mechanisms of decadal sea level variability in the eastern North Atlantic and the Mediterranean Sea,
J. Geophys. Res.-Oceans,
117, C09022, https://doi.org/10.1029/2012JC008285, 2012. a
Caron, L., Ivins, E. R., Larour, E., Adhikari, S., Nilsson, J., and Blewitt, G.:
GIA Model Statistics for GRACE Hydrology, Cryosphere, and Ocean Science,
Geophys. Res. Lett.,
45, 2203–2212, https://doi.org/10.1002/2017GL076644, 2018. a, b, c, d
Chambers, D. P. and Bonin, J. A.: Evaluation of Release-05 GRACE time-variable gravity coefficients over the ocean, Ocean Sci., 8, 859–868, https://doi.org/10.5194/os-8-859-2012, 2012. a
Cheng, Y., Andersen, O., and Knudsen, P.:
An Improved 20-Year Arctic Ocean Altimetric Sea Level Data Record,
Mar. Geod.,
38, 146–162, https://doi.org/10.1080/01490419.2014.954087, 2015. a
Church, J. and White, N.:
Sea-Level Rise from the Late 19th to the Early 21st Century,
Survey. Geophys.,
32, 585–602, https://doi.org/10.1007/s10712-011-9119-1, cited By 737, 2011a. a
Church, J. A. and White, N. J.:
Sea-Level Rise from the Late 19th to the Early 21st Century,
Survey. Geophys.,
32, 585–602, https://doi.org/10.1007/s10712-011-9119-1, 2011b. a
Dangendorf, S., Hay, C., Calafat, F. M., Marcos, M., Piecuch, C. G., Berk, K., and Jensen, J.:
Persistent acceleration in global sea-level rise since the 1960s,
Nat. Clim. Change,
9, 705–710, https://doi.org/10.1038/s41558-019-0531-8, 2019. a
Forget, G., Campin, J.-M., Heimbach, P., Hill, C. N., Ponte, R. M., and Wunsch, C.: ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation, Geosci. Model Dev., 8, 3071–3104, https://doi.org/10.5194/gmd-8-3071-2015, 2015. a, b
Frederikse, T., Riva, R. E. M., and King, M. A.:
Ocean Bottom Deformation Due To Present-Day Mass Redistribution and Its Impact on Sea Level Observations,
Geophys. Res. Lett.,
44, 12306–12314, https://doi.org/10.1002/2017GL075419, 2017. a
Frederikse, T., Landerer, F. W., and Caron, L.: The imprints of contemporary mass redistribution on local sea level and vertical land motion observations, Solid Earth, 10, 1971–1987, https://doi.org/10.5194/se-10-1971-2019, 2019. a
Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D., Humphrey, V. W., Dangendorf, S., Hogarth, P., Zanna, L., Cheng, L., and Wu, Y. H.:
The causes of sea-level rise since 1900,
Nature,
584, 393–397, https://doi.org/10.1038/s41586-020-2591-3, 2020. a
Giles, K. A., Laxon, S. W., Ridout, A. L., Wingham, D. J., and Bacon, S.:
Western Arctic Ocean freshwater storage increased by wind-driven spin-up of the Beaufort Gyre,
Nat. Geosci.,
5, 194–197, https://doi.org/10.1038/ngeo1379, 2012. a, b, c
Gill, A. and Niller, P.:
The theory of the seasonal variability in the ocean,
Deep Sea Research and Oceanographic Abstracts,
20, 141–177, https://doi.org/10.1016/0011-7471(73)90049-1, 1973. a
Gregory, J. M., Griffies, S. M., Hughes, C. W., Lowe, J. A., Church, J. A., Fukimori, I., Gomez, N., Kopp, R. E., Landerer, F., Cozannet, G. L., Ponte, R. M., Stammer, D., Tamisiea, M. E., and van de Wal, R. S. W.:
Concepts and Terminology for Sea Level: Mean, Variability and Change, Both Local and Global,
Survey. Geophys.,
40, 1251–1289, https://doi.org/10.1007/s10712-019-09525-z, 2019. a, b
Henry, O., Prandi, P., Llovel, W., Cazenave, A., Jevrejeva, S., Stammer, D., Meyssignac, B., and Koldunov, N.:
Tide gauge-based sea level variations since 1950 along the Norwegian and Russian coasts of the Arctic Ocean: Contribution of the steric and mass components,
J. Geophys. Res.-Oceans,
117, C06023, https://doi.org/10.1029/2011JC007706, 2012. a, b, c, d, e, f, g
Holgate, S. J., Matthews, A., Woodworth, P. L., Rickards, L. J., Tamisiea, M. E., Bradshaw, E., Foden, P. R., Gordon, K. M., Jevrejeva, S., and Pugh, J.:
New Data Systems and Products at the Permanent Service for Mean Sea Level,
J. Coastal Res.,
29, 493–504, https://doi.org/10.2112/JCOASTRES-D-12-00175.1, 2012. a, b
Khan, S. A., Sasgen, I., Bevis, M., van Dam, T., Bamber, J. L., Wahr, J., Willis, M., Kjær, K. H., Wouters, B., Helm, V., Csatho, B., Fleming, K., Bjørk, A. A., Aschwanden, A., Knudsen, P., and Munneke, P. K.:
Geodetic measurements reveal similarities between post–Last Glacial Maximum and present-day mass loss from the Greenland ice sheet,
Science Advances,
2, https://doi.org/10.1126/sciadv.1600931, 2016. a
King, M. A., Keshin, M., Whitehouse, P. L., Thomas, I. D., Milne, G., and Riva, R. E. M.:
Regional biases in absolute sea-level estimates from tide gauge data due to residual unmodeled vertical land movement,
Geophys. Res. Lett.,
39, L14604, https://doi.org/10.1029/2012GL052348, 2012. a
Kustowski, B., Dziewoński, A. M., and Ekström, G.:
Nonlinear Crustal Corrections for Normal-Mode Seismograms,
B. Seismol. Soc. Am.,
97, 1756–1762, https://doi.org/10.1785/0120070041, 2007. a, b
Laxon, S., Peacock, H., and Smith, D.:
High interannual variability of sea ice thickness in the Arctic region,
Nature,
425, 947–950, https://doi.org/10.1038/nature02050, 2003. a
Limkilde Svendsen, P., Andersen, O. B., and Aasbjerg Nielsen, A.:
Stable reconstruction of Arctic sea level for the 1950–2010 period,
J. Geophys. Res.-Oceans,
121, 5697–5710, https://doi.org/10.1002/2016JC011685, 2016. a
Loomis, B. D., Luthcke, S. B., and Sabaka, T. J.:
Regularization and error characterization of GRACE mascons,
J. Geodesy,
93, 1381–1398, https://doi.org/10.1007/s00190-019-01252-y, 2019. a
Ludwigsen, C. A. and Andersen, O. B., Arctic steric sea level change, Technical University of Denmark, available at: ftp://ftp.space.dtu.dk/pub/DTU19/STERIC/, last access: 15 September 2020. a
Ludwigsen, C. A., Andersen, O. B., and Khan, S. A.: Arctic Vertical Land Motion (5×5 km) (Version 1), Technical University of Denmark, https://doi.org/10.11583/DTU.12554489.v1, 2020b. a, b, c, d
Luthcke, S. B., Sabaka, T., Loomis, B., Arendt, A., McCarthy, J., and Camp, J.:
Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solution,
J. Glaciol.,
59, 613–631, https://doi.org/10.3189/2013JoG12J147, 2013. a, b
Marzeion, B., Jarosch, A. H., and Hofer, M.: Past and future sea-level change from the surface mass balance of glaciers, The Cryosphere, 6, 1295–1322, https://doi.org/10.5194/tc-6-1295-2012, 2012. a
Melkonian, A. K., Willis, M. J., Pritchard, M. E., and Stewart, A. J.:
Recent changes in glacier velocities and thinning at Novaya Zemlya,
Remote Sens. Environ.,
174, 244–257, https://doi.org/10.1016/j.rse.2015.11.001, 2016. a
Mitrovica, J. X., Gomez, N., Morrow, E., Hay, C., Latychev, K., and Tamisiea, M. E.:
On the robustness of predictions of sea level fingerprints,
Geophys. J. Int.,
187, 729–742, https://doi.org/10.1111/j.1365-246X.2011.05090.x, 2011. a
Morison, J., Kwok, R., Peralta-Ferriz, C., Alkire, M., Rigor, I., Andersen, R., and Steele, M.:
Changing Arctic Ocean freshwater pathways,
Nature,
481, 66–70, https://doi.org/10.1038/nature10705, 2012. a, b
Mu, D., Xu, T., and Xu, G.:
Improved Arctic Ocean Mass Variability Inferred from Time-Variable Gravity with Constraints and Dual Leakage Correction,
Mar. Geod.,
43, 269–284, https://doi.org/10.1080/01490419.2020.1711832, 2020. a
Naeije, M., Schrama, E., and Scharroo, R.: The Radar Altimeter Database System project RADS, Igarss 2000: Ieee 2000 International Geoscience and Remote Sensing Symposium, Vol. I–Vi, Proceedings, 487–490, https://doi.org/10.1109/IGARSS.2000.861605, 2000. a
Peacock, N. R. and Laxon, S. W.:
Sea surface height determination in the Arctic Ocean from ERS altimetry,
J. Geophys. Res.-Oceans,
109, C07001 1–14, https://doi.org/10.1029/2001JC001026, 2004. a
Peltier, W.:
Closure of the budget of global sea level rise over the GRACE era: the importance and magnitudes of the required corrections for global glacial isostatic adjustment,
Quaternary Sci. Rev.,
28, 1658–1674, https://doi.org/10.1016/j.quascirev.2009.04.004, Quaternary Ice Sheet-Ocean Interactions and Landscape Responses, 2009. a
Peralta-Ferriz, C. and Morison, J.:
Understanding the annual cycle of the Arctic Ocean bottom pressure,
Geophys. Res. Lett.,
37, L10603, https://doi.org/10.1029/2010GL042827, 2010. a
Prandi, P., Ablain, M., Cazenave, A., and Picot, N.:
A New Estimation of Mean Sea Level in the Arctic Ocean from Satellite Altimetry,
Mar. Geod.,
35, 61–81, https://doi.org/10.1080/01490419.2012.718222, 2012. a
Proshutinsky, A., Ashik, I. M., Dvorkin, E. N., Häkkinen, S., Krishfield, R. A., and Peltier, W. R.:
Secular sea level change in the Russian sector of the Arctic Ocean,
J. Geophys. Res.-Oceans,
109, C03042, https://doi.org/10.1029/2003JC002007, 2004. a, b
Proshutinsky, A., Krishfield, R., Timmermans, M.-L., Toole, J., Carmack, E., McLaughlin, F., Williams, W. J., Zimmermann, S., Itoh, M., and Shimada, K.:
Beaufort Gyre freshwater reservoir: State and variability from observations,
J. Geophys. Res.-Oceans,
114, C00A10, https://doi.org/10.1029/2008JC005104, 2009. a
Proshutinsky, A., Dukhovskoy, D., Timmermans, M. L., Krishfield, R., and Bamber, J. L.:
Arctic circulation regimes,
Philos. T. R. Soc. A,
373, 20140160, https://doi.org/10.1098/rsta.2014.0160, 2015. a
Proshutinsky, A., Krishfield, R., Toole, J. M., Timmermans, M.-L., Williams, W., Zimmermann, S., Yamamoto-Kawai, M., Armitage, T. W. K., Dukhovskoy, D., Golubeva, E., Manucharyan, G. E., Platov, G., Watanabe, E., Kikuchi, T., Nishino, S., Itoh, M., Kang, S.-H., Cho, K.-H., Tateyama, K., and Zhao, J.:
Analysis of the Beaufort Gyre Freshwater Content in 2003–2018,
J. Geophys. Res.-Oceans,
124, 9658–9689, https://doi.org/10.1029/2019JC015281, 2019. a
Pugh, D. and Woodworth, P.:
Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes,
Cambridge University Press, Cambridge, England, https://doi.org/10.1017/CBO9781139235778, 2014. a
Raj, R. P., Andersen, O. B., Johannessen, J. A., Gutknecht, B. D., Chatterjee, S., Rose, S. K., Bonaduce, A., Horwath, M., Ranndal, H., Richter, K., Palanisamy, H., Ludwigsen, C. A., Bertino, L., Nilsen, J. E. O., Knudsen, P., Hogg, A., Cazenave, A., and Benveniste, J.:
Arctic Sea level Budget Assessment During the GRACE/Argo Time Period,
Remote Sens.-Basel,
12, 2837, https://doi.org/10.3390/rs12172837, 2020. a, b, c, d, e, f, g, h, i, j
Rajner, M.:
Detection of ice mass variation using gnss measurements at Svalbard,
J. Geodyn.,
121, 20–25, https://doi.org/10.1016/j.jog.2018.06.001, 2018. a
Ricker, R., Hendricks, S., and Beckers, J. F.:
The impact of geophysical corrections on sea-ice freeboard retrieved from satellite altimetry,
Remote Sens.-Basel,
8, 317, https://doi.org/10.3390/rs8040317, 2016. a
Roquet, F., Madec, G., McDougall, T. J., and Barker, P. M.:
Accurate polynomial expressions for the density and specific volume of seawater using the TEOS-10 standard,
Ocean Model.,
90, 29–43, https://doi.org/10.1016/j.ocemod.2015.04.002, 2015. a
Royston, S., Dutt Vishwakarma, B., Westaway, R., Rougier, J., Sha, Z., and Bamber, J.:
Can We Resolve the Basin-Scale Sea Level Trend Budget From GRACE Ocean Mass?,
J. Geophys. Res.-Oceans,
125, e2019JC015535, https://doi.org/10.1029/2019JC015535, 2020. a
Santamaría-Gómez, A., Gravelle, M., Dangendorf, S., Marcos, M., Spada, G., and Wöppelmann, G.:
Uncertainty of the 20th century sea-level rise due to vertical land motion errors,
Earth Planet. Sc. Lett.,
473, 24–32, https://doi.org/10.1016/j.epsl.2017.05.038, 2017. a
Save, H., Bettadpur, S., and Tapley, B. D.:
High-resolution CSR GRACE RL05 mascons,
J. Geophys. Res.-Sol. Ea.,
121, 7547–7569, https://doi.org/10.1002/2016JB013007, 2016. a
Schröder, L., Horwath, M., Dietrich, R., Helm, V., van den Broeke, M. R., and Ligtenberg, S. R. M.: Four decades of Antarctic surface elevation changes from multi-mission satellite altimetry, The Cryosphere, 13, 427–449, https://doi.org/10.5194/tc-13-427-2019, 2019. a
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., Whitehouse, P. L., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne, T., Scambos, T., Schlegel, N., A, G., Agosta, C., Ahlstrøm, A., Babonis, G., Barletta, V., Blazquez, A., Bonin, J., Csatho, B., Cullather, R., Felikson, D., Fettweis, X., Forsberg, R., Gallee, H., Gardner, A., Gilbert, L., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm, V., Horvath, A., Horwath, M., Khan, S., K. Kjeldsen, K., Konrad, H., Langen, P., Lecavalier, B., Loomis, B., Luthcke, S., McMillan, M., Melini, D., Mernild, S., Mohajerani, Y., Moore, P., Mouginot, J., Moyano, G., Muir, A., Nagler, T., Nield, G., Nilsson, J., Noel, B., Otosaka, I., E. Pattle, M., Peltier, W. R., Pie, N., Rietbroek, R., Rott, H., Sandberg-Sørensen, L., Sasgen, I., Save, H., Scheuchl, B., Schrama, E., Schröder, L., Seo, K.-W., Simonsen, S., Slater, T., Spada, G., Sutterley, T., Talpe, M., Tarasov, L., van de Berg, W. J., van der Wal, W., van Wessem, M., Dutt Vishwakarma, B., Wiese, D., and Wouters, B. (The IMBIE Team):
Mass balance of the Antarctic Ice Sheet from 1992 to 2017,
Nature,
558, 219–222, https://doi.org/10.1038/s41586-018-0179-y, 2018. a
Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne, T., Scambos, T., Schlegel, N., Geruo, A., Agosta, C., Ahlstrøm, A., Babonis, G., Barletta, V. R., Bjørk, A. A., Blazquez, A., Bonin, J., Colgan, W., Csatho, B., Cullather, R., Engdahl, M. E., Felikson, D., Fettweis, X., Forsberg, R., Hogg, A. E., Gallee, H., Gardner, A., Gilbert, L., Gourmelen, N., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm, V., Horvath, A., Horwath, M., Khan, S., Kjeldsen, K. K., Konrad, H., Langen, P. L., Lecavalier, B., Loomis, B., Luthcke, S., McMillan, M., Melini, D., Mernild, S., Mohajerani, Y., Moore, P., Mottram, R., Mouginot, J., Moyano, G., Muir, A., Nagler, T., Nield, G., Nilsson, J., Noël, B., Otosaka, I., Pattle, M. E., Peltier, W. R., Pie, N., Rietbroek, R., Rott, H., Sørensen, L. S., Sasgen, I., Save, H., Scheuchl, B., Schrama, E., Schröder, L., Seo, K.-W., Simonsen, S. B., Slater, T., Spada, G., Sutterley, T., Talpe, M., Tarasov, L., Jan van de Berg, W., van der Wal, W., van Wessem, M., Vishwakarma, B. D., Wiese, D., Wilton, D., Wagner, T., Wouters, B., and Wuite, J. (The IMBIE Team):
Mass balance of the Greenland Ice Sheet from 1992 to 2018,
Nature,
579, 233–239, https://doi.org/10.1038/s41586-019-1855-2, 2020. a
Smith, G. C., Allard, R., Babin, M., Bertino, L., Chevallier, M., Corlett, G., Crout, J., Davidson, F., Delille, B., Gille, S. T., Hebert, D., Hyder, P., Intrieri, J., Lagunas, J., Larnicol, G., Kaminski, T., Kater, B., Kauker, F., Marec, C., Mazloff, M., Metzger, E. J., Mordy, C., O’Carroll, A., Olsen, S. M., Phelps, M., Posey, P., Prandi, P., Rehm, E., Reid, P., Rigor, I., Sandven, S., Shupe, M., Swart, S., Smedstad, O. M., Solomon, A., Storto, A., Thibaut, P., Toole, J., Wood, K., Xie, J., Yang, Q., and the WWRP PPP Steering Group: Polar Ocean Observations: A Critical Gap in the Observing System and Its Effect on Environmental Predictions From Hours to a Season, Front. Mar. Sci., 6, 429, https://doi.org/10.3389/fmars.2019.00429, 2019. a
Spada, G.:
Glacial Isostatic Adjustment and Contemporary Sea Level Rise: An Overview,
Survey. Geophys.,
38, 153–185, https://doi.org/10.1007/s10712-016-9379-x, 2017. a, b, c, d
Stammer, D.:
Steric and wind-induced changes in TOPEX/POSEIDON large-scale sea surface topography observations,
J. Geophys. Res.-Oceans,
102, 20987–21009, https://doi.org/10.1029/97JC01475, 1997. a
Stammer, D., Ray, R. D., Andersen, O. B., Arbic, B. K., Bosch, W., Carrère, L., Cheng, Y., Chinn, D. S., Dushaw, B. D., Egbert, G. D., Erofeeva, S. Y., Fok, H. S., Green, J. A. M., Griffiths, S., King, M. A., Lapin, V., Lemoine, F. G., Luthcke, S. B., Lyard, F., Morison, J., Müller, M., Padman, L., Richman, J. G., Shriver, J. F., Shum, C. K., Taguchi, E., and Yi, Y.:
Accuracy assessment of global barotropic ocean tide models,
Rev. Geophys.,
52, 243–282, https://doi.org/10.1002/2014rg000450, 2014. a
Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C.:
The gravity recovery and climate experiment: Mission overview and early results,
Geophys. Res. Lett.,
31, L09607, https://doi.org/10.1029/2004GL019920, 2004.
a
van Dam, T., Collilieux, X., Wuite, J., Altamimi, Z., and Ray, J.:
Nontidal ocean loading: amplitudes and potential effects in GPS height time series,
J. Geodesy,
86, 1043–1057, https://doi.org/10.1007/s00190-012-0564-5, 2012. a
Volkov, D. L. and Landerer, F. W.:
Nonseasonal fluctuations of the Arctic Ocean mass observed by the GRACE satellites,
J. Geophys. Res.-Oceans,
118, 6451–6460, https://doi.org/10.1002/2013JC009341, 2013. a, b
Wang, H., Xiang, L., Jia, L., Jiang, L., Wang, Z., Hu, B., and Gao, P.:
Load Love numbers and Green's functions for elastic Earth models PREM, iasp91, ak135, and modified models with refined crustal structure from Crust 2.0,
Comput.Geosci.,
49, 190–199, https://doi.org/10.1016/j.cageo.2012.06.022, 2012. a, b
Watkins, M. M., Wiese, D. N., Yuan, D.-N., Boening, C., and Landerer, F. W.:
Improved methods for observing Earth's time variable mass distribution with GRACE using spherical cap mascons,
J. Geophys. Res.-Sol. Ea.,
120, 2648–2671, https://doi.org/10.1002/2014JB011547, 2015. a
WCRP Global Sea Level Budget Group: Global sea-level budget 1993–present, Earth Syst. Sci. Data, 10, 1551–1590, https://doi.org/10.5194/essd-10-1551-2018, 2018. a, b
Wiese, D. N., Yuan, D. N., Boening, C., and Landerer, Felix W.and Watkins, M. M.:
JPL GRACE and GRACE-FO Mascon Ocean, Ice, and Hydrology Equivalent Water Height Coastal Resolution Improvement (CRI) Filtered Release 06 Version 02, PO.DAAC, CA, USA,
https://doi.org/10.5067/TEMSC-3JC62, 2019. a
Wöppelmann, G. and Marcos, M.:
Vertical land motion as a key to understanding sea level change and variability,
Rev. Geophys.,
54, 64–92, https://doi.org/10.1002/2015RG000502, 2016. a
Zemp, M., Huss, M., Thibert, E., Eckert, N., McNabb, R., Huber, J., Barandun, M., Machguth, H., Nussbaumer, S. U., Gärtner-Roer, I., Thomson, L., Paul, F., Maussion, F., Kutuzov, S., and Cogley, J. G.:
Global glacier mass changes and their contributions to sea-level rise from 1961 to 2016,
Nature,
568, 382–386, https://doi.org/10.1038/s41586-019-1071-0, 2019. a
Short summary
This study uses a novel satellite-independent approach to quantify the components of Arctic sea level change. The 21-year time series allows studying climate-related changes in Arctic sea level. The decomposition shows that fresh water is governing sea level change, while Arctic land ice loss contributes to a small Arctic sea level rise. The reconstruction yields good agreement with sea level observations from altimetry, despite both datasets being challenged by the harsh environment.
This study uses a novel satellite-independent approach to quantify the components of Arctic sea...