Articles | Volume 18, issue 4
https://doi.org/10.5194/os-18-1055-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-18-1055-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Deep through-flow in the Bight Fracture Zone
Univ Brest, CNRS, Ifremer, IRD, Laboratoire d'Océanographie
Physique et Spatiale (LOPS), IUEM, 29280, Plouzané, France
present address: National Centre for Atmospheric Science, Department
of Meteorology, University of Reading, Reading, UK
Virginie Thierry
Univ Brest, CNRS, Ifremer, IRD, Laboratoire d'Océanographie
Physique et Spatiale (LOPS), IUEM, 29280, Plouzané, France
Herlé Mercier
Univ Brest, CNRS, Ifremer, IRD, Laboratoire d'Océanographie
Physique et Spatiale (LOPS), IUEM, 29280, Plouzané, France
Related authors
No articles found.
Nicolas Kolodziejczyk, Esther Portela, Virginie Thierry, and Annaig Prigent
Earth Syst. Sci. Data, 16, 5191–5206, https://doi.org/10.5194/essd-16-5191-2024, https://doi.org/10.5194/essd-16-5191-2024, 2024
Short summary
Short summary
Oceanic dissolved oxygen (DO) is fundamental for ocean biogeochemical cycles and marine life. To ease the computation of the ocean oxygen budget from in situ DO data, mapping of data on a regular 3D grid is useful. Here, we present a new DO gridded product from the Argo database. We compare it with existing DO mapping from a historical dataset. We suggest that the ocean has generally been losing oxygen since the 1980s, but large interannual and regional variabilities should be considered.
Herlé Mercier, Damien Desbruyères, Pascale Lherminier, Antón Velo, Lidia Carracedo, Marcos Fontela, and Fiz F. Pérez
Ocean Sci., 20, 779–797, https://doi.org/10.5194/os-20-779-2024, https://doi.org/10.5194/os-20-779-2024, 2024
Short summary
Short summary
We study the Atlantic Meridional Overturning Circulation (AMOC) measured between Greenland and Portugal between 1993–2021. We identify changes in AMOC limb volume and velocity as two major drivers of AMOC variability at subpolar latitudes. Volume variations dominate on the seasonal timescale, while velocity variations are more important on the decadal timescale. This decomposition proves useful for understanding the origin of the differences between AMOC time series from different analyses.
Yavor Kostov, Marie-José Messias, Herlé Mercier, David P. Marshall, and Helen L. Johnson
Ocean Sci., 20, 521–547, https://doi.org/10.5194/os-20-521-2024, https://doi.org/10.5194/os-20-521-2024, 2024
Short summary
Short summary
We examine factors affecting variability in the volume of Labrador Sea Water (LSW), a water mass that is important for the uptake and storage of heat and carbon in the Atlantic Ocean. We find that LSW accumulated in the Labrador Sea exhibits a lagged response to remote conditions: surface wind stress, heat flux, and freshwater flux anomalies, especially along the pathways of the North Atlantic Current branches. We use our results to reconstruct and attribute historical changes in LSW volume.
Gilles Reverdin, Claire Waelbroeck, Catherine Pierre, Camille Akhoudas, Giovanni Aloisi, Marion Benetti, Bernard Bourlès, Magnus Danielsen, Jérôme Demange, Denis Diverrès, Jean-Claude Gascard, Marie-Noëlle Houssais, Hervé Le Goff, Pascale Lherminier, Claire Lo Monaco, Herlé Mercier, Nicolas Metzl, Simon Morisset, Aïcha Naamar, Thierry Reynaud, Jean-Baptiste Sallée, Virginie Thierry, Susan E. Hartman, Edward W. Mawji, Solveig Olafsdottir, Torsten Kanzow, Anton Velo, Antje Voelker, Igor Yashayaev, F. Alexander Haumann, Melanie J. Leng, Carol Arrowsmith, and Michael Meredith
Earth Syst. Sci. Data, 14, 2721–2735, https://doi.org/10.5194/essd-14-2721-2022, https://doi.org/10.5194/essd-14-2721-2022, 2022
Short summary
Short summary
The CISE-LOCEAN seawater stable isotope dataset has close to 8000 data entries. The δ18O and δD isotopic data measured at LOCEAN have uncertainties of at most 0.05 ‰ and 0.25 ‰, respectively. Some data were adjusted to correct for evaporation. The internal consistency indicates that the data can be used to investigate time and space variability to within 0.03 ‰ and 0.15 ‰ in δ18O–δD17; comparisons with data analyzed in other institutions suggest larger differences with other datasets.
Patricia Zunino, Herlé Mercier, and Virginie Thierry
Ocean Sci., 16, 99–113, https://doi.org/10.5194/os-16-99-2020, https://doi.org/10.5194/os-16-99-2020, 2020
Short summary
Short summary
The region south of Cape Farewell (SCF) is recognized as a deep convection site. Convection deeper than 1300 m occurred SCF in 2015 and persisted during three additional winters. Extreme air–sea buoyancy fluxes caused the 2015 event. For the following winters, air–sea fluxes were close to the climatological average, but local cooling above 800 m and the advection below 1200 m of a fresh anomaly from the Labrador Sea decreased stratification and allowed for the persistence of deep convection.
Damien G. Desbruyères, Herlé Mercier, Guillaume Maze, and Nathalie Daniault
Ocean Sci., 15, 809–817, https://doi.org/10.5194/os-15-809-2019, https://doi.org/10.5194/os-15-809-2019, 2019
Short summary
Short summary
In the North Atlantic, ocean currents transport warm waters northward in the upper water column, and cold waters southwards at depth. This circulation is here reconstructed from surface data and thermodynamics theory. Its driving role in recent temperature changes (1993–2017) in the North Atlantic is evidenced, and predictions of near-future variability (5 years) are provided and discussed.
Géraldine Sarthou, Pascale Lherminier, Eric P. Achterberg, Fernando Alonso-Pérez, Eva Bucciarelli, Julia Boutorh, Vincent Bouvier, Edward A. Boyle, Pierre Branellec, Lidia I. Carracedo, Nuria Casacuberta, Maxi Castrillejo, Marie Cheize, Leonardo Contreira Pereira, Daniel Cossa, Nathalie Daniault, Emmanuel De Saint-Léger, Frank Dehairs, Feifei Deng, Floriane Desprez de Gésincourt, Jérémy Devesa, Lorna Foliot, Debany Fonseca-Batista, Morgane Gallinari, Maribel I. García-Ibáñez, Arthur Gourain, Emilie Grossteffan, Michel Hamon, Lars Eric Heimbürger, Gideon M. Henderson, Catherine Jeandel, Catherine Kermabon, François Lacan, Philippe Le Bot, Manon Le Goff, Emilie Le Roy, Alison Lefèbvre, Stéphane Leizour, Nolwenn Lemaitre, Pere Masqué, Olivier Ménage, Jan-Lukas Menzel Barraqueta, Herlé Mercier, Fabien Perault, Fiz F. Pérez, Hélène F. Planquette, Frédéric Planchon, Arnout Roukaerts, Virginie Sanial, Raphaëlle Sauzède, Catherine Schmechtig, Rachel U. Shelley, Gillian Stewart, Jill N. Sutton, Yi Tang, Nadine Tisnérat-Laborde, Manon Tonnard, Paul Tréguer, Pieter van Beek, Cheryl M. Zurbrick, and Patricia Zunino
Biogeosciences, 15, 7097–7109, https://doi.org/10.5194/bg-15-7097-2018, https://doi.org/10.5194/bg-15-7097-2018, 2018
Short summary
Short summary
The GEOVIDE cruise (GEOTRACES Section GA01) was conducted in the North Atlantic Ocean and Labrador Sea in May–June 2014. In this special issue, results from GEOVIDE, including physical oceanography and trace element and isotope cyclings, are presented among 17 articles. Here, the scientific context, project objectives, and scientific strategy of GEOVIDE are provided, along with an overview of the main results from the articles published in the special issue.
Virginie Racapé, Patricia Zunino, Herlé Mercier, Pascale Lherminier, Laurent Bopp, Fiz F. Pérèz, and Marion Gehlen
Biogeosciences, 15, 4661–4682, https://doi.org/10.5194/bg-15-4661-2018, https://doi.org/10.5194/bg-15-4661-2018, 2018
Short summary
Short summary
This study of a model–data comparison investigates the relationship between transport, air–sea flux and storage rate of Cant in the North Atlantic Subpolar Ocean over the past 53 years. It reveals the key role played by Central Water for storing Cant in the subtropical region and for supplying Cant into the deep ocean. The Cant transfer to the deep ocean occurred mainly north of the OVIDE section, and just a small fraction was exported to the subtropical gyre within the lower MOC.
Maribel I. García-Ibáñez, Fiz F. Pérez, Pascale Lherminier, Patricia Zunino, Herlé Mercier, and Paul Tréguer
Biogeosciences, 15, 2075–2090, https://doi.org/10.5194/bg-15-2075-2018, https://doi.org/10.5194/bg-15-2075-2018, 2018
Patricia Zunino, Pascale Lherminier, Herlé Mercier, Nathalie Daniault, Maribel I. García-Ibáñez, and Fiz F. Pérez
Biogeosciences, 14, 5323–5342, https://doi.org/10.5194/bg-14-5323-2017, https://doi.org/10.5194/bg-14-5323-2017, 2017
Short summary
Short summary
The heat content in the subpolar North Atlantic is in a new phase of long-term decrease from the mid-2000s, which intensified in 2013–2014. We focus on the pronounced heat content drop. In summer 2014, the MOC intensity was higher than the mean (2002–2012) and the heat transport was also relatively high. We show that the air–sea heat flux is responsible for most of the intense cooling. Concurrently, we observed freshwater content increase mainly explained by the air–sea freshwater flux.
Maribel I. García-Ibáñez, Patricia Zunino, Friederike Fröb, Lidia I. Carracedo, Aida F. Ríos, Herlé Mercier, Are Olsen, and Fiz F. Pérez
Biogeosciences, 13, 3701–3715, https://doi.org/10.5194/bg-13-3701-2016, https://doi.org/10.5194/bg-13-3701-2016, 2016
Short summary
Short summary
We assessed the progressive acidification (pH decrease) of the North Atlantic waters from direct observations between 1991 and 2015. The greatest pH decreases were observed in surface and intermediate waters. We conclude that the observed pH decreases are a consequence of the oceanic uptake of anthropogenic CO2. In addition we find that they have been partially offset by alkalinity increases.
P. Zunino, M. I. Garcia-Ibañez, P. Lherminier, H. Mercier, A. F. Rios, and F. F. Pérez
Biogeosciences, 11, 2375–2389, https://doi.org/10.5194/bg-11-2375-2014, https://doi.org/10.5194/bg-11-2375-2014, 2014
Cited articles
Argo: Argo float data and metadata from Global Data Assembly Centre (Argo GDAC), SEANOE [data set], https://doi.org/10.17882/42182, 2022.
Bower, A. and Furey, H.: Iceland-Scotland Overflow Water transport
variability through the Charlie-Gibbs Fracture Zone and the impact of the
North Atlantic Current, J. Geophys. Res.-Ocean., 122, 6989–7012,
https://doi.org/10.1002/2017JC012698, 2017.
Bower, A. and von Appen, W.-J.: Interannual Variability in the Pathways of
the North Atlantic Current over the Mid-Atlantic Ridge and the Impact of
Topography, J. Phys. Oceanogr., 38, 104–120, https://doi.org/10.1175/2007JPO3686.1, 2008.
Bower, A., Le Cann, B., Rossby, T., Zenk, W., Gould, J., Speer, K.,
Richardson, P. L., Prater, M. D., and Zhang, H. M.: Directly measured
mid-depth circulation in the northeastern North Atlantic Ocean, Nature,
419, 603–607, https://doi.org/10.1038/nature01078, 2002.
Branellec, P. and Lherminier, P.: BOCATS 2016. CTD-O2 data report, Int. Rep., LOPS/17-06,
https://doi.org/10.13155/59190, 2017.
Branellec, P. and Thierry, V.: RREX 2015, CTD-02 Data report,
ODE/LOPS/16-26, https://doi.org/10.13155/47156, 2016.
Branellec, P. and Thierry, V.: RREX 2017. CTD-O2 Data report, Rap. Int., LOPS/18-04,
https://doi.org/10.13155/58074, 2018.
Branellec, P., Lherminier, P., Reynaud, T., and Le Bihan, C.: OVIDE 2018,
CTD-O2 Data report, ODE/LOPS/19-01, https://doi.org/10.13155/86588, 2019.
Cabanes, C., Thierry, V., and Lagadec, C.: Improvement of bias detection in
Argo float conductivity sensors and its application in the North Atlantic,
Deep-Sea Res. Pt. I, 114, 128–136, https://doi.org/10.1016/j.dsr.2016.05.007, 2016.
Daniault, N., Mercier, H., Lherminier, P., Sarafanov, A., Falina, A.,
Zunino, P., Pérez, F. F., Ríos, A. F., Ferron, B., Huck, T.,
Thierry, V., and Gladyshev, S.: The northern North Atlantic Ocean mean
circulation in the early 21st century, Prog. Oceanogr., 146, 142–158,.
https://doi.org/10.1016/j.pocean.2016.06.007, 2016.
de Jong, M. F., de Steur, L., Fried, N., Bol, R., and Kritsotalakis, S.:
Year-Round Measurements of the Irminger Current: Variability of a Two-Core
Current System Observed in 2014–2016, J. Geophys. Res.-Ocean., 125, 10,
https://doi.org/10.1029/2020JC016193, 2020.
De Lavergne, C., Madec, G., Roquet, F., Holmes, R. M., and McDougall, T.
J.: Abyssal ocean overturning shaped by seafloor distribution, Nature,
551, 181–186, https://doi.org/10.1038/nature24472, 2017.
Devana, M. S., Johns, W. E., Houk, A., and Zou, S.: Rapid Freshening of
Iceland Scotland Overflow Water Driven By Entrainment of a Major Upper Ocean
Salinity Anomaly, Geophys. Res. Lett., 48, 1–11, https://doi.org/10.1029/2021gl094396, 2021.
Ferron, B., Mercier, H., Speer, K., Gargett, A., and Polzin, K.: Mixing in
the Romanche Fracture Zone, J. Phys. Oceanogr., 28, 1929–1945,
https://doi.org/10.1175/1520-0485(1998)028<1929:MITRFZ>2.0.CO;2, 1998.
Ferron, B., Kokoszka, F., Mercier, H., Lherminier, P., Huck, T., Rios, A.,
and Thierry, V.: Variability of the Turbulent Kinetic Energy Dissipation
along the A25 Greenland–Portugal Transect Repeated from 2002 to 2012,
J. Phys. Oceanogr., 46, 1989–2003, https://doi.org/10.1175/JPO-D-15-0186.1, 2016.
Fischer, J., Karstensen, J., Oltmanns, M., and Schmidtko, S.: Mean
circulation and EKE distribution in the Labrador Sea Water level of the
subpolar North Atlantic, Ocean Sci., 14, 1167–1183,
https://doi.org/10.5194/os-14-1167-2018, 2018.
Fox, A. D., Biastoch, A., Cunningham, S. A., Fraser, N., Handmann, P., Holliday, N. P., Johnson, C., Martin, T., Oltmanns, M., Rath, W., Rühs, S., Sanchez-Franks, A., and Schmidt, C.: Exceptional freshening and cooling in the eastern subpolar North Atlantic caused by reduced Labrador Sea surface heat loss, Ocean Sci. Discuss. [preprint], https://doi.org/10.5194/os-2022-18, in review, 2022.
Frey, D. I., Morozov, E. G., Fomin, V. V., Diansky, N. A., and Tarakanov,
R. Y.: Regional Modeling of Antarctic Bottom Water Flows in the Key Passages
of the Atlantic, J. Geophys. Res.-Ocean., 124, 8414–8428, https://doi.org/10.1029/2019JC015315,
2019.
Hansen, B. and Østerhus, S.: North Atlantic–Nordic Seas exchanges,
Prog. Oceanogr., 45, 109–208, https://doi.org/10.1016/S0079-6611(99)00052-X, 2000.
Holliday, N. P., Meyer, A., Bacon, S., Alderson, S. G., and de Cuevas, B.:
Retroflection of part of the east Greenland current at Cape Farewell,
Geophys. Res. Lett., 34, 1–5, https://doi.org/10.1029/2006GL029085, 2007.
Holliday, N. P., Bersch, M., Berx, B., Chafik, L., Cunningham, S.,
Florindo-López, C., Hátún, H., Johns, W., Josey, S. A., Larsen,
K. M. H., Mulet, S., Oltmanns, M., Reverdin, G., Rossby, T., Thierry, V.,
Valdimarsson, H., and Yashayaev, I.: Ocean circulation causes the largest
freshening event for 120 years in eastern subpolar North Atlantic, Nat. Commun.,
11, 585, https://doi.org/10.1038/s41467-020-14474-y, 2020.
Johns, W. E., Devana, M., Houk, A., and Zou, S.: Moored Observations of the
Iceland-Scotland Overflow Plume Along the Eastern Flank of the Reykjanes
Ridge, J. Geophys. Res.-Ocean., 126, 1–26, https://doi.org/10.1029/2021JC017524, 2021.
Kanzow, T. and Zenk, W.: Structure and transport of the Iceland Scotland
Overflow plume along the Reykjanes Ridge in the Iceland Basin, Deep-Sea Res. Pt. I, 86, 82–93,
https://doi.org/10.1016/j.dsr.2013.11.003, 2014.
Koman, G., Johns, W. E., and Houk, A.: Transport and Evolution of the East
Reykjanes Ridge Current, J. Geophys. Res.-Ocean., 125, 10, https://doi.org/10.1029/2020JC016377, 2020.
Lavender, K. L., Brechner Owens, W., and Davis, R. E.: The mid-depth
circulation of the subpolar North Atlantic Ocean as measured by subsurface
floats, Deep-Sea Res. Pt. I, 52, 767–785, https://doi.org/10.1016/j.dsr.2004.12.007, 2005.
Le Reste, S., Dutreuil, V., André, X., Thierry, V., Renaut, C., Le
Traon, P. Y., and Maze, G.: “Deep-Arvor”: A new profiling float to extend
the argo observations down to 4000 m depth, J. Atmos. Ocean. Technol., 33, 1039–1055,
https://doi.org/10.1175/JTECH-D-15-0214.1, 2016.
Le Traon, P.-Y., D'Ortenzio, F., Babin, M., Leymarie, E., Marec, C.,
Pouliquen, S., Thierry, V., Cabanes, C., Claustre, H., Desbruyères, D.,
Lacour, L., Lagunas, J.-L., Maze, G., Mercier, H., Penkerc'h, C., Poffa, N.,
Poteau, A., Prieur, L., Racapé, V., Randelhoff, A., Rehm, E., Schmechtig, C. M., Taillandier, V., Wagener, T., and Xing, X.: Preparing
the New Phase of Argo: Scientific Achievements of the NAOS Project,
Front. Mar. Sci., 7, 577408, https://doi.org/10.3389/fmars.2020.577408, 2020.
Lherminier, P., Mercier, H., Gourcuff, C., Alvarez, M., Bacon, S., and
Kermabon, C.: Transports across the 2002 Greenland-Portugal Ovide section
and comparison with 1997, J. Geophys. Res.-Ocean., 112, C07003,
https://doi.org/10.1029/2006JC003716, 2007.
Lherminier, P., Perez, F. F., Branellec, P., Mercier, H., Velo, A., Messias, M., Castrillejo, M., Reverdin, G., Fontela, M., and Baurand, F.: GO-SHIP A25 – OVIDE 2018 Cruise data, SEANOE [data set], https://doi.org/10.17882/87394, 2022.
Mercier, H. and Morin, P.: Hydrography of the Romanche and Chain Fracture
Zones, J. Geophys. Res.-Ocean., 102, 10373–10389, https://doi.org/10.1029/97JC00229, 1997.
Mercier, H., Speer, K. G., and Honnorez, J.: Flow pathways of bottom water
through the Romanche and chain fracture zones, Deep-Sea Res. Pt. I, 41, 1457–1477,
https://doi.org/10.1016/0967-0637(94)90055-8, 1994.
Pacini, A., Pickart, R. S., Bahr, F., Torres, D. J., Ramsey, A. L., Holte,
J., Karstensen, J., Oltmanns, M., Straneo, F., Le Bras, I. A., Moore, G. W.
K., and Femke de Jong, M.: Mean conditions and seasonality of the west
Greenland boundary current system near cape farewell, J. Phys. Oceanogr., 50, 2849–2871,
https://doi.org/10.1175/JPO-D-20-0086.1, 2020.
Pérez, F. F., García-Ibáñez, M. I., Fontela, M., Lherminier, P., Branellec, P., Zunino, P., Alonso Pérez, F., de la Paz, M., and Padín, X. A.: Carbon Dioxide, Hydrographic, and Chemical Data Obtained During the R/V Sarmiento de Gamboa Cruise in the North Atlantic Ocean on CLIVAR Repeat Hydrography Section OVIDE-2016-BOCATS (June 17–July 31, 2016), DigitalCSIC [data set], https://digital.csic. es/handle/10261/154341 (last access: 8 July 2022), 2017.
Petit, T., Mercier, H., and Thierry, V.: First direct estimates of volume
and water mass transports across the Reykjanes Ridge, J. Geophys. Res.-Ocean., 123, 6703–6719,
https://doi.org/10.1029/2018JC013999, 2018.
Petit, T., Mercier, H., and Thierry, V.: New Insight Into the Formation and
Evolution of the East Reykjanes Ridge Current and Irminger Current, J. Geophys. Res.-Ocean.,
124, 9171–9189, https://doi.org/10.1029/2019JC015546, 2019.
Racapé, V., Thierry, V., Mercier, H., and Cabanes, C.: ISOW Spreading
and Mixing as Revealed by Deep-Argo Floats Launched in the Charlie-Gibbs
Fracture Zone, J. Geophys. Res.-Ocean., 124, 6787–6808, https://doi.org/10.1029/2019JC015040,
2019.
Sarafanov, A., Falina, A., Mercier, H., Sokov, A., Lherminier, P., Gourcuff,
C., Gladyshev, S., Gaillard, F., and Daniault, N.: Mean full-depth summer
circulation and transports at the northern periphery of the Atlantic Ocean
in the 2000s, J. Geophys. Res.-Ocean., 117, C01014, https://doi.org/10.1029/2011JC007572, 2012.
Saunders, P. M.: The flux of overflow water through the Charlie-Gibbs
Fracture Zone, J. Geophys. Res., 99, 12343, https://doi.org/10.1029/94JC00527, 1994.
Thierry, V., Mercier, H., Petit, T., Branellec, P., Balem, K., and Lherminier, P.: Reykjanes Ridge Experiment (RREX) dataset, SEANOE [data set], https://doi.org/10.17882/55445, 2018.
Våge, K., Pickart, R. S., Sarafanov, A., Knutsen, Ø., Mercier, H.,
Lherminier, P., van Aken, H. M., Meincke, J., Quadfasel, D., and Bacon, S.:
The Irminger Gyre: Circulation, convection, and interannual variability,
Deep-Sea Res. Pt. I, 58, 590–614, https://doi.org/10.1016/j.dsr.2011.03.001, 2011.
Wong, A., Keeley, R., Carval, T., and the Argo Data Management Team: Argo Quality Control Manual for CTD and Trajectory Data, Version 3.6,
https://doi.org/10.13155/33951, 2021.
Xu, X., Schmitz, W. J., Hurlburt, H. E., Hogan, P. J., and Chassignet, E.
P.: Transport of Nordic Seas overflow water into and within the Irminger
Sea: An eddy-resolving simulation and observations, J. Geophys. Res.-Ocean., 115, C12048,
https://doi.org/10.1029/2010JC006351, 2010.
Zou, S., Lozier, S., Zenk, W., Bower, A., and Johns, W.: Observed and
modeled pathways of the Iceland Scotland Overflow Water in the eastern North
Atlantic, Prog. Oceanogr., 159, 211–222,
https://doi.org/10.1016/j.pocean.2017.10.003, 2017.
Zou, S., Bower, A., Furey, H., Susan Lozier, M., and Xu, X.: Redrawing the
Iceland-Scotland Overflow Water pathways in the North Atlantic, Nat. Commun., 11, 1890,
https://doi.org/10.1038/s41467-020-15513-4, 2020.
Short summary
The Iceland–Scotland Overflow Water is a dense water carried within the lower limb of the Atlantic Meridional Overturning Circulation. From a combination of ship-based and Deep-Argo data gathered between 2015 and 2018, our study analyzes the pathways and evolution of its properties as it flows through a main fracture of the Reykjanes Ridge, the Bight Fracture Zone (BFZ). We show that 0.8 ± 0.2 Sv of ISOW flows through the BFZ and is mainly homogenized within the rift valley of the ridge.
The Iceland–Scotland Overflow Water is a dense water carried within the lower limb of the...