Articles | Volume 17, issue 2
Technical note
11 Mar 2021
Technical note |  | 11 Mar 2021

Technical note: A sensitivity analysis from 1 to 40 GHz for observing the Arctic Ocean with the Copernicus Imaging Microwave Radiometer

Lise Kilic, Catherine Prigent, Carlos Jimenez, and Craig Donlon

Related authors

Estimating the snow depth, the snow–ice interface temperature, and the effective temperature of Arctic sea ice using Advanced Microwave Scanning Radiometer 2 and ice mass balance buoy data
Lise Kilic, Rasmus Tage Tonboe, Catherine Prigent, and Georg Heygster
The Cryosphere, 13, 1283–1296,,, 2019
Short summary

Cited articles

Bernard, R., Hallikainen, M., Kerr, Y., Kuenzi, K., Maetzler, C., Pampaloni, P., Duchossois, G., Menard, Y., and Rast, M.: MIMR: Multifrequency Passive Microwave Radiometer, Tech. rep., European Space Agency, European Space Research and Technology Center, ESTEC, Noordwijk, Netherlands, 1990. a
Dinnat, E., de Amici, G., Le Vine, D., and Piepmeier, J.: Next generation spaceborne instrument for monitoring ocean salinity with application to the coastal zone and cryosphere, in: Ocean Salinity Science Team and Salinity Continuity Processing Meeting, Santa Rosa, California USA, 27–29 August 2018, 2018. a
Donlon, C. and CIMR Mission Advisory Group: Copernicus Imaging Microwave Radiometer (CIMR) Mission Requirements Document version 4, Tech. Rep. ESA-EOPSM-CIMR-MRD-3236, ESA, Noordwijk, the Netherlands, 2020. a, b, c
Gabarro, C., Turiel, A., Elosegui, P., Pla-Resina, J. A., and Portabella, M.: New methodology to estimate Arctic sea ice concentration from SMOS combining brightness temperature differences in a maximum-likelihood estimator, The Cryosphere, 11, 1987–2002,, 2017. a
Imaoka, K., Kachi, M., Fujii, H., Murakami, H., Hori, M., Ono, A., Igarashi, T., Nakagawa, K., Oki, T., Honda, Y., and Shimoda, H.: Global Change Observation Mission (GCOM) for monitoring carbon, water cycles, and climate change, Proceedings of the IEEE, 98, 717–734, 2010. a, b, c
Short summary
The Copernicus Imaging Microwave Radiometer (CIMR) is one of the high-priority satellite missions of the Copernicus program within the European Space Agency. It is designed to respond to the European Union Arctic policy. Its channels, incidence angle, precisions, and spatial resolutions have been selected to observe the Arctic Ocean with the recommendations expressed by the user communities. In this note, we present the sensitivity analysis that has led to the choice of the CIMR channels.