Articles | Volume 17, issue 1
https://doi.org/10.5194/os-17-35-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-35-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The zone of influence: matching sea level variability from coastal altimetry and tide gauges for vertical land motion estimation
Deutsches Geodätisches Forschungsinstitut der Technischen Universität München, Arcisstraße 21, 80333 Munich, Germany
Marcello Passaro
Deutsches Geodätisches Forschungsinstitut der Technischen Universität München, Arcisstraße 21, 80333 Munich, Germany
Denise Dettmering
Deutsches Geodätisches Forschungsinstitut der Technischen Universität München, Arcisstraße 21, 80333 Munich, Germany
Christian Schwatke
Deutsches Geodätisches Forschungsinstitut der Technischen Universität München, Arcisstraße 21, 80333 Munich, Germany
Laura Sánchez
Deutsches Geodätisches Forschungsinstitut der Technischen Universität München, Arcisstraße 21, 80333 Munich, Germany
Florian Seitz
Deutsches Geodätisches Forschungsinstitut der Technischen Universität München, Arcisstraße 21, 80333 Munich, Germany
Related authors
Simon Treu, Sanne Muis, Sönke Dangendorf, Thomas Wahl, Julius Oelsmann, Stefanie Heinicke, Katja Frieler, and Matthias Mengel
Earth Syst. Sci. Data, 16, 1121–1136, https://doi.org/10.5194/essd-16-1121-2024, https://doi.org/10.5194/essd-16-1121-2024, 2024
Short summary
Short summary
This article describes a reconstruction of monthly coastal water levels from 1900–2015 and hourly data from 1979–2015, both with and without long-term sea level rise. The dataset is based on a combination of three datasets that are focused on different aspects of coastal water levels. Comparison with tide gauge records shows that this combination brings reconstructions closer to the observations compared to the individual datasets.
Denise Dettmering, Felix L. Müller, Julius Oelsmann, Marcello Passaro, Christian Schwatke, Marco Restano, Jérôme Benveniste, and Florian Seitz
Earth Syst. Sci. Data, 13, 3733–3753, https://doi.org/10.5194/essd-13-3733-2021, https://doi.org/10.5194/essd-13-3733-2021, 2021
Short summary
Short summary
In this study, a new gridded altimetry-based regional sea level dataset for the North Sea is presented, named North SEAL. It is based on long-term multi-mission cross-calibrated altimetry data consistently preprocessed with coastal dedicated algorithms. On a 6–8 km wide triangular mesh, North SEAL provides time series of monthly sea level anomalies as well as sea level trends and amplitudes of the mean annual sea level cycle for the period 1995–2019 for various applications.
Felix L. Müller, Florian Seitz, and Denise Dettmering
EGUsphere, https://doi.org/10.5194/egusphere-2025-3046, https://doi.org/10.5194/egusphere-2025-3046, 2025
This preprint is open for discussion and under review for The Cryosphere (TC).
Short summary
Short summary
This study evaluates SWOT’s wide-swath sea surface height observations across the Arctic by comparing them with ICESat-2 altimetry and Sentinel-1 SAR imagery. Using data from over 550 crossovers between March 2023 and April 2024, the analysis shows good agreement, with mean absolute water differences of around 5 cm, but also larger discrepancies during winter and early melt. These results illustrate both the potential but also arising problem areas of swath altimetry in the polar regions.
Marcello Passaro
EGUsphere, https://doi.org/10.5194/egusphere-2025-809, https://doi.org/10.5194/egusphere-2025-809, 2025
Short summary
Short summary
This paper evaluates the capability of satellite altimetry to monitor coastally trapped waves in light of the latest advancements in daily gridded sea level data, including new interpolation schemes, an increased number of missions in orbit, and the incorporation of wide-swath altimetry measurements. The eastern Australian coast serves as a testbed, with validation provided by tide gauges and model data.
Eva Boergens, Andreas Güntner, Mike Sips, Christian Schwatke, and Henryk Dobslaw
Hydrol. Earth Syst. Sci., 28, 4733–4754, https://doi.org/10.5194/hess-28-4733-2024, https://doi.org/10.5194/hess-28-4733-2024, 2024
Short summary
Short summary
The satellites GRACE and GRACE-FO observe continental terrestrial water storage (TWS) changes. With over 20 years of data, we can look into long-term variations in the East Africa Rift region. We focus on analysing the interannual TWS variations compared to meteorological data and observations of the water storage compartments. We found strong influences of natural precipitation variability and human actions over Lake Victoria's water level.
Jérôme Benveniste, Salvatore Dinardo, Luciana Fenoglio-Marc, Christopher Buchhaupt, Michele Scagliola, Marcello Passaro, Karina Nielsen, Marco Restano, Américo Ambrózio, Giovanni Sabatino, Carla Orrù, and Beniamino Abis
Proc. IAHS, 385, 457–463, https://doi.org/10.5194/piahs-385-457-2024, https://doi.org/10.5194/piahs-385-457-2024, 2024
Short summary
Short summary
This paper presents the RDSAR, SAR/SARin & FF-SAR altimetry processors available in the ESA Altimetry Virtual Lab (AVL) hosted on the EarthConsole® platform. An overview on processors and features as well as preliminary analyses using AVL output data are reported to demonstrate the quality of the ESA Altimetry Virtual Lab altimetry services in providing innovative solutions to the radar altimetry community. https://earthconsole.eu//
Simon Treu, Sanne Muis, Sönke Dangendorf, Thomas Wahl, Julius Oelsmann, Stefanie Heinicke, Katja Frieler, and Matthias Mengel
Earth Syst. Sci. Data, 16, 1121–1136, https://doi.org/10.5194/essd-16-1121-2024, https://doi.org/10.5194/essd-16-1121-2024, 2024
Short summary
Short summary
This article describes a reconstruction of monthly coastal water levels from 1900–2015 and hourly data from 1979–2015, both with and without long-term sea level rise. The dataset is based on a combination of three datasets that are focused on different aspects of coastal water levels. Comparison with tide gauge records shows that this combination brings reconstructions closer to the observations compared to the individual datasets.
Felix L. Müller, Stephan Paul, Stefan Hendricks, and Denise Dettmering
The Cryosphere, 17, 809–825, https://doi.org/10.5194/tc-17-809-2023, https://doi.org/10.5194/tc-17-809-2023, 2023
Short summary
Short summary
Thinning sea ice has significant impacts on the energy exchange between the atmosphere and the ocean. In this study we present visual and quantitative comparisons of thin-ice detections obtained from classified Cryosat-2 radar reflections and thin-ice-thickness estimates derived from MODIS thermal-infrared imagery. In addition to good comparability, the results of the study indicate the potential for a deeper understanding of sea ice in the polar seas and improved processing of altimeter data.
Michael G. Hart-Davis, Gaia Piccioni, Denise Dettmering, Christian Schwatke, Marcello Passaro, and Florian Seitz
Earth Syst. Sci. Data, 13, 3869–3884, https://doi.org/10.5194/essd-13-3869-2021, https://doi.org/10.5194/essd-13-3869-2021, 2021
Short summary
Short summary
Ocean tides are an extremely important process for a variety of oceanographic applications, particularly in understanding coastal sea-level rise. Tidal signals influence satellite altimetry estimations of the sea surface, which has resulted in the development of ocean tide models to account for such signals. The EOT20 ocean tide model has been developed at DGFI-TUM using residual analysis of satellite altimetry, with the focus on improving the estimation of ocean tides in the coastal region.
Denise Dettmering, Felix L. Müller, Julius Oelsmann, Marcello Passaro, Christian Schwatke, Marco Restano, Jérôme Benveniste, and Florian Seitz
Earth Syst. Sci. Data, 13, 3733–3753, https://doi.org/10.5194/essd-13-3733-2021, https://doi.org/10.5194/essd-13-3733-2021, 2021
Short summary
Short summary
In this study, a new gridded altimetry-based regional sea level dataset for the North Sea is presented, named North SEAL. It is based on long-term multi-mission cross-calibrated altimetry data consistently preprocessed with coastal dedicated algorithms. On a 6–8 km wide triangular mesh, North SEAL provides time series of monthly sea level anomalies as well as sea level trends and amplitudes of the mean annual sea level cycle for the period 1995–2019 for various applications.
Simon Deggim, Annette Eicker, Lennart Schawohl, Helena Gerdener, Kerstin Schulze, Olga Engels, Jürgen Kusche, Anita T. Saraswati, Tonie van Dam, Laura Ellenbeck, Denise Dettmering, Christian Schwatke, Stefan Mayr, Igor Klein, and Laurent Longuevergne
Earth Syst. Sci. Data, 13, 2227–2244, https://doi.org/10.5194/essd-13-2227-2021, https://doi.org/10.5194/essd-13-2227-2021, 2021
Short summary
Short summary
GRACE provides us with global changes of terrestrial water storage. However, the data have a low spatial resolution, and localized storage changes in lakes/reservoirs or mass change due to earthquakes causes leakage effects. The correction product RECOG RL01 presented in this paper accounts for these effects. Its application allows for improving calibration/assimilation of GRACE into hydrological models and better drought detection in earthquake-affected areas.
Yvan Gouzenes, Fabien Léger, Anny Cazenave, Florence Birol, Pascal Bonnefond, Marcello Passaro, Fernando Nino, Rafael Almar, Olivier Laurain, Christian Schwatke, Jean-François Legeais, and Jérôme Benveniste
Ocean Sci., 16, 1165–1182, https://doi.org/10.5194/os-16-1165-2020, https://doi.org/10.5194/os-16-1165-2020, 2020
Short summary
Short summary
This study provides for the first time estimates of sea level anomalies very close to the coastline based on high-resolution retracked altimetry data, as well as corresponding sea level trends, over a 14-year time span. This new information has so far not been provided by standard altimetry data.
Guillaume Dodet, Jean-François Piolle, Yves Quilfen, Saleh Abdalla, Mickaël Accensi, Fabrice Ardhuin, Ellis Ash, Jean-Raymond Bidlot, Christine Gommenginger, Gwendal Marechal, Marcello Passaro, Graham Quartly, Justin Stopa, Ben Timmermans, Ian Young, Paolo Cipollini, and Craig Donlon
Earth Syst. Sci. Data, 12, 1929–1951, https://doi.org/10.5194/essd-12-1929-2020, https://doi.org/10.5194/essd-12-1929-2020, 2020
Short summary
Short summary
Sea state data are of major importance for climate studies, marine engineering, safety at sea and coastal management. However, long-term sea state datasets are sparse and not always consistent. The CCI is a program of the European Space Agency, whose objective is to realize the full potential of global Earth Observation archives in order to contribute to the ECV database. This paper presents the implementation of the first release of the Sea State CCI dataset.
Cited articles
Ablain, M., Cazenave, A., Valladeau, G., and Guinehut, S.: A new assessment of the error budget of global mean sea level rate estimated by satellite altimetry over 1993–2008, Ocean Sci., 5, 193–201, https://doi.org/10.5194/os-5-193-2009, 2009. a
Agnew, D. C.:
The time-domain behavior of power-law noises,
Geophys. Res. Lett.,
19, 333–336, https://doi.org/10.1029/91GL02832, 1992. a
Andersen, O. B., Nielsen, K., Knudsen, P., Hughes, C. W., Fenoglio-Marc, L., Gravelle, M., Kern, M., and Polo, S. P.:
Improving the Coastal Mean Dynamic Topography by Geodetic Combination of Tide Gauge and Satellite Altimetry,
Mar. Geod.,
41, 517–545, https://doi.org/10.1080/01490419.2018.1530320, 2018. a
Ballu, V., Gravelle, M., Wöppelmann, G., de Viron, O., Rebischung, P., Becker, M., and Sakic, P.:
Vertical land motion in the Southwest and Central Pacific from available GNSS solutions and implications for relative sea levels,
Geophys. J. Int.,
218, 1537–1551, https://doi.org/10.1093/gji/ggz247, 2019. a
Bloßfeld, M., Angermann, D., and Seitz, M.:
DGFI-TUM Analysis and Scale Investigations of the Latest Terrestrial Reference Frame Realizations,
in: International Symposium on Advancing Geodesy in a Changing World,
edited by: Freymueller, J. T. and Sánchez, L.,
Springer International Publishing, Cham, 3–9, 2019. a
Bos, M. S., Fernandes, R. M. S., Williams, S. D. P., and Bastos, L.:
Fast Error Analysis of Continuous GNSS Observations with Missing Data.J.
Geod., 87, 351–360, https://doi.org/10.1007/s00190-012-0605-0, 2013. a
Bosch, W. and Savcenko, R.:
Satellite altimetry: Multi-mission cross calibration,
in: Dynamic Planet, International Association of Geodesy Symposia, edited by: Tregoning P. and Rizos C., Vol. 130, Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-540-49350-1_8, 2007. a
Bosch, W., Dettmering, D., and Schwatke, C.: Multi-Mission Cross-Calibration of Satellite Altimeters: Constructing a Long-Term Data Record for Global and Regional Sea Level Change Studies, Remote Sens., 6, 2255–2281, 2014. a
Bouin, M. N. and Wöppelmann, G.:
Land motion estimates from GPS at tide gauges: a geophysical evaluation,
Geophys. J. Int.,
180, 193–209, https://doi.org/10.1111/j.1365-246X.2009.04411.x, 2010. a
Brooks, B. A., Merrifield, M. A., Foster, J., Werner, C. L., Gomez, F., Bevis, M., and Gill, S.:
Space geodetic determination of spatial variability in relative sea level change, Los Angeles basin,
Geophys. Res. Lett.,
34, L01611, https://doi.org/10.1029/2006GL028171, 2007. a
Calafat, F. M., Wahl, T., Lindsten, F., Williams, J., and Frajka-Williams, E.:
Coherent modulation of the sea-level annual cycle in the United States by Atlantic Rossby waves,
Nat. Commun.,
9, 2571, https://doi.org/10.1038/s41467-018-04898-y, 2018. a, b
Carrere, L., Faugère, Y., and Ablain, M.: Major improvement of altimetry sea level estimations using pressure-derived corrections based on ERA-Interim atmospheric reanalysis, Ocean Sci., 12, 825–842, https://doi.org/10.5194/os-12-825-2016, 2016. a, b
Carrère, L. and Lyard, F.:
Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing – comparisons with observations,
Geophys. Res. Lett.,
30, 1275, https://doi.org/10.1029/2002GL016473, 2003. a, b, c, d
Carson, M., Köhl, A., Stammer, D., Slangen, A., Katsman, C., Wal, R., Church, J., and White, N.:
Coastal Sea Level Changes, Observed and Projected during the 20th and 21st Century,
Climatic Change,
134, 269–281, https://doi.org/10.1007/s10584-015-1520-1, 2016. a
Cazenave, A., Dominh, K., Ponchaut, F., Soudarin, L., Cretaux, J. F., and Le Provost, C.:
Sea level changes from Topex-Poseidon altimetry and tide gauges, and vertical crustal motions from DORIS,
Geophys. Res. Lett., 26, 2077–2080, https://doi.org/10.1029/1999GL900472, 1999. a
Cazenave, A., Palanisamy, H., and Ablain, M.:
Contemporary sea level changes from satellite altimetry: What have we learned? What are the new challenges?,
Adv. Space Res.,
62, 1639–1653, https://doi.org/10.1016/j.asr.2018.07.017, 2018. a
Church, J. and White, N.:
Sea-Level Rise from the Late 19th to the Early 21st Century,
Surv. Geophys.,
32, 585–602, https://doi.org/10.1007/s10712-011-9119-1, 2011. a
Church, J. A., Clark, P., Cazenave, A., Gregory, J., Jevrejeva, S., Levermann, A., Merrifield, M., Milne, G., Nerem, R., Nunn, P., Payne, A., Pfeffer, W., Stammer, D., and Unnikrishnan, A.:
2013: Sea level change,
in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 1137–1216, https://doi.org/10.1017/CB09781107415315.026, 2013. a
Cipollini, P., Calafat, F. M., Jevrejeva, S., Melet, A., and Prandi, P.:
Monitoring Sea Level in the Coastal Zone with Satellite Altimetry and Tide Gauges,
Surv. Geophys., 38, 33–57, https://doi.org/10.1007/s10712-016-9392-0, 2017. a, b
Cleveland, W. S. and Devlin, S. J.:
Locally Weighted Regression: An Approach to Regression Analysis by Local Fitting,
J. Am. Stat. Assoc.,
83, 596–610,
available at: http://www.jstor.org/stable/2289282 (last access: 10 December 2020), 1988. a
Collilieux, X. and Woppelmann, G.:
Global sea-level rise and its relation to the terrestrial reference frame,
J. Geodesy,
85, 9–22, https://doi.org/10.1007/s00190-010-0412-4, 2009. a
Couhert, A., Cerri, L., Legeais, J.-F., Michaël, A., Zelensky, N., Haines, B., Lemoine, F., Bertiger, W., Desai, S., and Otten, M.:
Towards the 1 mm/y stability of the radial orbit error at regional scales,
Adv. Space Res.,
55, https://doi.org/10.1016/j.asr.2014.06.041, 2015. a
Dangendorf, S., Marcos, M., Wöppelmann, G., Conrad, C. P., Frederikse, T., and Riva, R.:
Reassessment of 20th century global mean sea level rise,
P. Natl. Acad. Sci. USA,
114, 5946–5951, https://doi.org/10.1073/pnas.1616007114, 2017. a
Dettmering D., Schwatke C. (2019) Multi-Mission Cross-Calibration of Satellite Altimeters. In: Mertikas S., Pail R. (eds) Fiducial Reference Measurements for Altimetry. International Association of Geodesy Symposia, vol 150. Springer, Cham, https://doi.org/10.1007/1345_2019_58, 2019. a
Ducet, N., Le Traon, P. Y., and Reverdin, G.:
Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2,
J. Geophys. Res.-Oceans,
105, 19477–19498, https://doi.org/10.1029/2000JC900063, 2000. a
Fenoglio, L., Schöne, T., Illigner, J., Becker, M., Manurung, P., and Khafid:
Sea Level Change and Vertical Motion from Satellite Altimetry, Tide Gauges and GPS in the Indonesian Region,
Mar. Geod.,
35, https://doi.org/10.1080/01490419.2012.718682, 2012. a
Fernandes, M. J., Lázaro, C., Ablain, M., and Pires, N.:
Remote Sensing of Environment Improved wet path delays for all ESA and reference altimetric missions,
Remote Sens. Environ.,
169, 50–74, https://doi.org/10.1016/j.rse.2015.07.023, 2015. a, b
Frederikse, T., Landerer, F. W., and Caron, L.: The imprints of contemporary mass redistribution on local sea level and vertical land motion observations, Solid Earth, 10, 1971–1987, https://doi.org/10.5194/se-10-1971-2019, 2019. a
Hamlington, B. D., Thompson, P., Hammond, W. C., Blewitt, G., and Ray, R. D.:
Assessing the impact of vertical land motion on twentieth century global mean sea level estimates,
J. Geophys. Res.-Oceans, 121, 4980–4993 https://doi.org/10.1002/2016JC011747, 2016. a
Hawkins, R., Husson, L., Choblet, G., Bodin, T., and Pfeffer, J.:
Virtual Tide Gauges for Predicting Relative Sea Level Rise,
J. Geophys. Res.-Sol. Ea.,
124, 13367–13391, https://doi.org/10.1029/2019JB017943, 2019. a
Hay, C. C., Morrow, E., Kopp, R. E., and Mitrovica, J. X.:
Probabilistic reanalysis of twentieth-century sea-level rise,
Nature,
517, 481–484, https://doi.org/10.1038/nature14093, 1990. a
Holgate, S. J., Matthews, A., Woodworth, P. L., Rickards, L. J., Tamisiea, M. E., Bradshaw, E., Foden, P. R., Gordon, K. M., Jevrejeva, S., and Pugh, J.:
New Data Systems and Products at the Permanent Service for Mean Sea Level,
J. Coastal Res.,
493–504, https://doi.org/10.2112/JCOASTRES-D-12-00175.1, 2013. a, b
Hughes, C. and Meredith, M.:
Coherent sea-level fluctuations along the global continental slope,
Philos. T. R. Soc. A,
364, 885–901, https://doi.org/10.1098/rsta.2006.1744, 2006. a, b
Hughes, C. W., Fukumori, I., Griffies, S. M., and Huthnance, J. M.:
Sea Level and the Role of Coastal Trapped Waves in Mediating the Influence of the Open Ocean on the Coast,
Surv. Geophys.,
40, 1467–1492, https://doi.org/10.1007/s10712-019-09535-x, 2019. a
Idžanović, M., Gerlach, C., Breili, K., and Andersen, O.:
An Attempt to Observe Vertical Land Motion along the Norwegian Coast by CryoSat-2 and Tide Gauges,
Remote Sens.-Basel,
11, 744, https://doi.org/10.3390/rs11070744, 2019. a
Jevrejeva, S., Moore, J. C., Grinsted, A., Matthews, A. P., and Spada, G.:
Trends and acceleration in global and regional sea levels since 1807,
Global Planet. Change, 113, 11–22, https://doi.org/10.1016/j.gloplacha.2013.12.004, 2014. a
King, M. A., Keshin, M., Whitehouse, P. L., Thomas, I. D., Milne, G., and Riva, R. E. M.:
Regional biases in absolute sea-level estimates from tide gauge data due to residual unmodeled vertical land movement,
Geophys. Res. Lett.,
39, L14604, https://doi.org/10.1029/2012GL052348, 2012. a
Kolker, A. S., Allison, M. A., and Hameed, S.:
An evaluation of subsidence rates and sea-level variability in the northern Gulf of Mexico,
Geophys. Res. Lett., 38, L21404, https://doi.org/10.1029/2011GL049458, 2011. a
Kuo, C. Y., Shum, C. K., Braun, A., and Mitrovica, J. X.:
Vertical crustal motion determined by satellite altimetry and tide gauge data in Fennoscandia,
Geophys. Res. Lett., 31, L01608, https://doi.org/10.1029/2003GL019106, 2004. a
Kurapov, A., Erofeeva, S., and Myers, E.:
Coastal sea level variability in the US West Coast Ocean Forecast System (WCOFS),
Ocean Dynam., 67, 23–36, https://doi.org/10.1007/s10236-016-1013-4, 2016. a
Landskron, D. and Böhm, J.:
Refined discrete and empirical horizontal gradients in VLBI analysis,
J. Geodesy,
92, 1387–1399, https://doi.org/10.1007/s00190-018-1127-1, 2018. a
Mazzotti, S., Jones, C., and Thomson, R. E.:
Relative and absolute sea level rise in western Canada and northwestern United States from a combined tide gauge-GPS analysis,
J. Geophys. Res.-Oceans,
113, C11019, https://doi.org/10.1029/2008JC004835, 2008. a
Moritz, H.:
Geodetic Reference System 1980,
J. Geodesy,
74, 128–133, https://doi.org/10.1007/s001900050278, 2000. a
Nerem, R. S. and Mitchum, G. T.:
Estimates of vertical crustal motion derived from differences of TOPEX/POSEIDON and tide gauge sea level measurements,
Geophys. Res. Lett., 29, 1934, https://doi.org/10.1029/2002gl015037, 2003. a
Passaro, M., Cipollini, P., Vignudelli, S., Quartly, G. D., and Snaith, H. M.:
ALES: A multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry,
Remote Sens. Environ.,
145, 173–189, https://doi.org/10.1016/j.rse.2014.02.008, 2014. a, b, c, d
Passaro, M., Cipollini, P., and Benveniste, J.:
Annual sea level variability of the coastal ocean: The Baltic Sea-North Sea transition zone,
J. Geophys. Res.-Oceans,
120, 3061–3078, https://doi.org/10.1002/2014JC010510, 2015. a, b
Passaro, M., Müller, F. L., and Dettmering, D.:
Lead detection using Cryosat-2 delay-doppler processing and Sentinel-1 SAR images,
Adv. Space Res.,
62, 1610–1625, https://doi.org/10.1016/j.asr.2017.07.011, 2018. a
Peltier, W.:
GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE,
Annu. Rev. Earth Pl. Sc.,
32, 111–149, https://doi.org/10.1146/annurev.earth.32.082503.144359, 2004. a
Petit, G. and Luzum, B.:
IERS Conventions,
Verlag des Bundesamts für Kartographie und Geodäsie, Frankfurt, Germany, 2010. a
Pfeffer, J. and Allemand, P.:
The key role of vertical land motions in coastal sea level variations: A global synthesis of multisatellite altimetry, tide gauge data and GPS measurements,
Earth Planet. Sc. Lett.,
439, 39–47, https://doi.org/10.1016/j.epsl.2016.01.027, 2016. a
Pfeffer, J., Spada, G., Mémin, A., Boy, J.-P., and Allemand, P.:
Decoding the origins of vertical land motions observed today at coasts,
Geophys. J. Int.,
210, 148–165, https://doi.org/10.1093/gji/ggx142, 2017. a
Piccioni, G., Dettmering, D., Passaro, M., Schwatke, C., Bosch, W., and Seitz, F.:
Coastal Improvements for Tide Models: The Impact of ALES Retracker,
Remote Sens.-Basel,
10, 700, https://doi.org/10.3390/rs10050700, 2018. a
Piccioni, G., Dettmering, D., Schwatke, C., Passaro, M., and Seitz, F.:
Design and regional assessment of an empirical tidal model based on FES2014 and coastal altimetry,
Adv. Space Res., https://doi.org/10.1016/j.asr.2019.08.030, 2019. a
Poitevin, C., Wöppelmann, G., Raucoules, D., Cozannet, G. L., Marcos, M., and Testut, L.:
Vertical land motion and relative sea level changes along the coastline of Brest (France) from combined space-borne geodetic methods,
Remote Sens. Environ.,
222, 275–285, https://doi.org/10.1016/j.rse.2018.12.035, 2019. a
Ponte, R. M.:
Low-Frequency Sea Level Variability and the Inverted Barometer Effect,
J. Atmos. Ocean. Tech.,
23, 619–629, https://doi.org/10.1175/JTECH1864.1, 2006. a
Pugh, D. and Woodworth, P.:
Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes,
Cambridge University Press, Cambridge, https://doi.org/10.1017/CBO9781139235778, 2014. a
Riva, R. E. M., Frederikse, T., King, M. A., Marzeion, B., and van den Broeke, M. R.: Brief communication: The global signature of post-1900 land ice wastage on vertical land motion, The Cryosphere, 11, 1327–1332, https://doi.org/10.5194/tc-11-1327-2017, 2017. a
Sanli, D. and Blewitt, G.:
Geocentric sea level trend using GPS and > 100-year tide gauge record on a postglacial rebound nodal line,
J. Geophys. Res.,
106, 713–720, https://doi.org/10.1029/2000JB900348, 2001. a
Santamaría-Gómez, A., Bouin, M.-N., Collilieux, X., and Wöppelmann, G.: Correlated errors in GPS position time series: Implications for velocity estimates,
J. Geophys. Res.-Sol. Ea.,
116, B01405, https://doi.org/10.1029/2010JB007701, 2011. a
Santamaría-Gómez, A., Gravelle, M., Collilieux, X., Guichard, M., Míguez, B. M., Tiphaneau, P., and Wöppelmann, G.: Mitigating the effects of vertical land motion in tide gauge records using a state-of-the-art GPS velocity field,
Global Planet. Change,
98–99, 6–17, https://doi.org/10.1016/j.gloplacha.2012.07.007, 2012. a, b, c, d
Santamaría-Gómez, A., Gravelle, M., and Wöppelmann, G.:
Long-term vertical land motion from double-differenced tide gauge and satellite altimetry data,
J. Geodesy,
88, 207–222, https://doi.org/10.1007/s00190-013-0677-5, 2014. a
Santamaría-Gómez, A., Gravelle, M., and Wöppelmann, G.:
GPS Solution ULR6,
SONEL Data Center, https://doi.org/10.26166/sonel_ulr6a, 2016. a
Santamaría-Gómez, A., Gravelle, M., Dangendorf, S., Marcos, M., Spada, G., and Wöppelmann, G.:
Uncertainty of the 20th century sea-level rise due to vertical land motion errors,
Earth Planet. Sc. Lett.,
473, 24–32, https://doi.org/10.1016/j.epsl.2017.05.038, 2017. a, b
Saraceno, M., Strub, P. T., and Kosro, P. M.:
Estimates of sea surface height and near-surface alongshore coastal currents from combinations of altimeters and tide gauges,
J. Geophys. Res.-Oceans, 113, C11013, https://doi.org/10.1029/2008JC004756, 2008. a
Sánchez, L. and Bosch, W.:
The role of the TIGA project in the unification of classical height systems,
in: Geodetic Reference Frames, IAG Symposia 134,
edited by: Drewes H.,
Springer, https://doi.org/10.1007/978-3-642-00860-3_44, 285–290, 2009. a
Scharroo, R. and Smith, W. H. F.:
A global positioning system–based climatology for the total electron content in the ionosphere,
J. Geophys. Res.-Space,
115, https://doi.org/10.1029/2009JA014719, 2010. a
Scharroo, R., Leuliette, E., Lillibridge, J., Byrne, D., Naeije, M., and Mitchum, G.:
RADS: Consistent multi-mission products,
in: Proceedings of Symposium on 20 Years of Progress in Radar Altimetry, 24–29 September 2012, Venice, 20, 59–60, 2012. a
Slangen, A. B. A., Carson, M., Katsman, C. A., van de Wal, R. S. W., Köhl, A., Vermeersen, L. L. A., and Stammer, D.:
Projecting twenty-first century regional sea-level changes,
Climatic Change,
124, 317–332, https://doi.org/10.1007/s10584-014-1080-9, 2014. a
Snay, R., Cline, M., Dillinger, W., Foote, R., Hilla, S., Kass, W., Ray, J., Rohde, J., Sella, G., and Soler, T.:
Using global positioning system-derived crustal velocities to estimate rates of absolute sea level change from North American tide gauge records,
J. Geophys. Res.-Sol. Ea.,
112, https://doi.org/10.1029/2006JB004606, 2007. a
Stammer, D. and Böning, C. W.:
Mesoscale Variability in the Atlantic Ocean from Geosat Altimetry and WOCE High-Resolution Numerical Modeling,
J. Phys. Oceanogr.,
22, 732–752, https://doi.org/10.1175/1520-0485(1992)022<0732:MVITAO>2.0.CO;2, 1992. a
Stammer, D., Cazenave, A., Ponte, R. M., and Tamisiea, M. E.:
Causes for Contemporary Regional Sea Level Changes,
Annu. Rev. Mar. Sci.,
5, 21–46, https://doi.org/10.1146/annurev-marine-121211-172406, pMID: 22809188, 2013. a
Veit, E. and Conrad, C. P.:
The impact of groundwater depletion on spatial variations in sea level change during the past century,
Geophys. Res. Lett.,
43, 3351–3359, https://doi.org/10.1002/2016GL068118, 2016. a
Wada, Y., van Beek, L. P. H., Sperna Weiland, F. C., Chao, B. F., Wu, Y.-H., and Bierkens, M. F. P.:
Past and future contribution of global groundwater depletion to sea-level rise,
Geophys. Res. Lett.,
39, L09402, https://doi.org/10.1029/2012GL051230, 2012.
a
Watson, C., White, N., Church, J., King, M., Burgette, R., and Legresy, B.:
Unabated global mean sea-level rise over the satellite altimter era,
Nat. Clim. Change,
5, https://doi.org/10.1038/nclimate2635, 2015. a, b, c
Woodworth, P. L., Hunter, J. R., Marcos, M., Caldwell, P., Menéndez, M., and Haigh, I.:
Towards a global higher-frequency sea level dataset,
Geosci. Data J., 3, 50–59, https://doi.org/10.1002/gdj3.42, 2016. a, b, c
Woodworth, P. L., Melet, A., Marcos, M., Ray, R. D., Wöppelmann, G., Sasaki, Y. N., Cirano, M., Hibbert, A., Huthnance, J. M., Monserrat, S., and Merrifield, M. A.:
Forcing factors affecting sea level changes at the coast,
Surv. Geophys.,
40, 1351–1397,
available at: http://nora.nerc.ac.uk/id/eprint/523283/ (last access: 10 December 2020), 2019. a, b
Wöppelmann, G., Martin Miguez, B., Bouin, M.-N., and Altamimi, Z.:
Geocentric sea-level trend estimates from GPS analyses at relevant tide gauges world-wide,
Global Planet. Change,
57, 396–406, https://doi.org/10.1016/j.gloplacha.2007.02.002, 2007. a
Wöppelmann, G., Gravelle, M., Guichard, M., and Prouteau, E.:
Fourth Progress Report on the GNSS at Tide Gauge Activities: SONEL Data Holdings & Tools to access the data,
presented at the XVIth GLOSS group of experts meeting, hosted by the Korean Hydrographic and Oceanographic Agency, Busan (Republic of Korea), 11–13 April 2019,
available at: https://www.sonel.org/IMG/pdf/ge16_gnssattg_activities_sonel_report_v2.pdf, 2019. a
Short summary
Vertical land motion (VLM) significantly contributes to relative sea level change. Here, we improve the accuracy and precision of VLM estimates, which are based on the difference of altimetry tide gauge observations. Advanced coastal altimetry and an improved coupling procedure of along-track altimetry data and high-frequency tide gauge observations are key factors for a greater comparability of altimetry and tide gauges in the coastal zone and thus for more reliable VLM estimates.
Vertical land motion (VLM) significantly contributes to relative sea level change. Here, we...