Articles | Volume 17, issue 1
https://doi.org/10.5194/os-17-301-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-301-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Diapycnal mixing across the photic zone of the NE Atlantic
Hans van Haren
CORRESPONDING AUTHOR
Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg, the Netherlands
Corina P. D. Brussaard
Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg, the Netherlands
Loes J. A. Gerringa
Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg, the Netherlands
Mathijs H. van Manen
Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg, the Netherlands
Rob Middag
Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg, the Netherlands
Ruud Groenewegen
Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg, the Netherlands
Related authors
Niek Kusters, Sjoerd Groeskamp, Bieito Fernandez Castro, and Hans van Haren
EGUsphere, https://doi.org/10.5194/egusphere-2025-3165, https://doi.org/10.5194/egusphere-2025-3165, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This study compares both microstructure shear and thermistor data, and finds very weak dissipations rates down to O(10-12) W kg-1. The direct microstructure observations are compared to a finescale parameterization and Thorpe sorting method, for which we find good comparison. Insights into the relative roles between isoneutral and dianeutral mixing are obtained by using the triple decomposition framework.
Hans van Haren and Henk de Haas
Ocean Sci., 21, 1125–1140, https://doi.org/10.5194/os-21-1125-2025, https://doi.org/10.5194/os-21-1125-2025, 2025
Short summary
Short summary
Turbulent water motions are important for the exchange of momentum, heat, nutrients, and suspended matter in the deep sea. The shape of the marine topography influences most water turbulence via breaking internal waves at critically sloping seafloors. In this paper, the concept of critical slopes is revisited from a global internal wave turbulence viewpoint using seafloor topography and moored temperature sensor data. The potential robustness of the seafloor–internal wave interaction is discussed.
Hans van Haren
Ocean Sci., 21, 555–565, https://doi.org/10.5194/os-21-555-2025, https://doi.org/10.5194/os-21-555-2025, 2025
Short summary
Short summary
Ocean circulations include small-scale processes like transport through sub-mesoscale eddies and turbulence by internal wave breaking. Knowledge is lacking on the interaction between the different processes. In deep, weakly stratified waters, continuous spectral slopes are observed that extend from sub-mesoscales across the internal wave band to the turbulence range. Such correspondence is suggested as being a potential feedback mechanism stabilizing large-scale ocean circulations.
Niek Kusters, Sjoerd Groeskamp, Bieito Fernandez Castro, and Hans van Haren
EGUsphere, https://doi.org/10.5194/egusphere-2025-3165, https://doi.org/10.5194/egusphere-2025-3165, 2025
This preprint is open for discussion and under review for Ocean Science (OS).
Short summary
Short summary
This study compares both microstructure shear and thermistor data, and finds very weak dissipations rates down to O(10-12) W kg-1. The direct microstructure observations are compared to a finescale parameterization and Thorpe sorting method, for which we find good comparison. Insights into the relative roles between isoneutral and dianeutral mixing are obtained by using the triple decomposition framework.
Hans van Haren and Henk de Haas
Ocean Sci., 21, 1125–1140, https://doi.org/10.5194/os-21-1125-2025, https://doi.org/10.5194/os-21-1125-2025, 2025
Short summary
Short summary
Turbulent water motions are important for the exchange of momentum, heat, nutrients, and suspended matter in the deep sea. The shape of the marine topography influences most water turbulence via breaking internal waves at critically sloping seafloors. In this paper, the concept of critical slopes is revisited from a global internal wave turbulence viewpoint using seafloor topography and moored temperature sensor data. The potential robustness of the seafloor–internal wave interaction is discussed.
Hans van Haren
Ocean Sci., 21, 555–565, https://doi.org/10.5194/os-21-555-2025, https://doi.org/10.5194/os-21-555-2025, 2025
Short summary
Short summary
Ocean circulations include small-scale processes like transport through sub-mesoscale eddies and turbulence by internal wave breaking. Knowledge is lacking on the interaction between the different processes. In deep, weakly stratified waters, continuous spectral slopes are observed that extend from sub-mesoscales across the internal wave band to the turbulence range. Such correspondence is suggested as being a potential feedback mechanism stabilizing large-scale ocean circulations.
Charlotte Eich, Mathijs van Manen, J. Scott P. McCain, Loay J. Jabre, Willem H. van de Poll, Jinyoung Jung, Sven B. E. H. Pont, Hung-An Tian, Indah Ardiningsih, Gert-Jan Reichart, Erin M. Bertrand, Corina P. D. Brussaard, and Rob Middag
Biogeosciences, 21, 4637–4663, https://doi.org/10.5194/bg-21-4637-2024, https://doi.org/10.5194/bg-21-4637-2024, 2024
Short summary
Short summary
Phytoplankton growth in the Southern Ocean (SO) is often limited by low iron (Fe) concentrations. Sea surface warming impacts Fe availability and can affect phytoplankton growth. We used shipboard Fe clean incubations to test how changes in Fe and temperature affect SO phytoplankton. Their abundances usually increased with Fe addition and temperature increase, with Fe being the major factor. These findings imply potential shifts in ecosystem structure, impacting food webs and elemental cycling.
Loes J. A. Gerringa, Martha Gledhill, Indah Ardiningsih, Niels Muntjewerf, and Luis M. Laglera
Biogeosciences, 18, 5265–5289, https://doi.org/10.5194/bg-18-5265-2021, https://doi.org/10.5194/bg-18-5265-2021, 2021
Short summary
Short summary
For 3 decades, competitive ligand exchange–adsorptive cathodic stripping voltammetry was used to estimate the Fe-binding capacity of organic matter in seawater. In this paper the performance of the competing ligands is compared through the analysis of a series of model ligands.
The main finding of this paper is that the determined speciation parameters are not independent of the application, making interpretation of Fe speciation data more complex than it was thought before.
Indah Ardiningsih, Kyyas Seyitmuhammedov, Sylvia G. Sander, Claudine H. Stirling, Gert-Jan Reichart, Kevin R. Arrigo, Loes J. A. Gerringa, and Rob Middag
Biogeosciences, 18, 4587–4601, https://doi.org/10.5194/bg-18-4587-2021, https://doi.org/10.5194/bg-18-4587-2021, 2021
Short summary
Short summary
Organic Fe speciation is investigated along a natural gradient of the western Antarctic Peninsula from an ice-covered shelf to the open ocean. The two major fronts in the region affect the distribution of ligands. The excess ligands not bound to dissolved Fe (DFe) comprised up to 80 % of the total ligand concentrations, implying the potential to solubilize additional Fe input. The ligands on the shelf can increase the DFe residence time and fuel local primary production upon ice melt.
Cited articles
Achterberg, E. P., Steigenberger, S., Klar, J. K., Browning, T. J., Marsay, C. M., Painter, S. C., Vieira, L. H., Baker, A. R., Hamilton, D. S., Tanhua, T., and Moore, C. M.: Trace element biogeochemistry in the high latitude North Atlantic Ocean: seasonal variations and volcanic inputs,
Global Biogeochem. Cy., https://doi.org/10.1029/2020GB006674, in press, 2020.
Alford, M. H. and Gregg, M. C.:
Near-inertial mixing: Modulation of shear, strain and microstructure at low latitude,
J. Geophys. Res.,
106, 16947–16968, 2001.
Charria, G., Theetten, S., Vandermeirsch, F., Yelekçi, Ö., and Audiffren, N.: Interannual evolution of (sub)mesoscale dynamics in the Bay of Biscay, Ocean Sci., 13, 777–797, https://doi.org/10.5194/os-13-777-2017, 2017.
Cyr, F., Bourgault, D., Galbraith, P. S., and Gosselin, M.:
Turbulent nitrate fluxes inthe Lower St. Lawrence Estuary, Canada,
J. Geophys. Res.,
120, 2308–2330, https://doi.org/10.1002/2014JC010272, 2015.
De Baar, H. J. W., Timmermans, K. R., Laan, P., De Porto, H. H., Ober, S., Blom, J. J., Bakker, M. C., Schilling, J., Sarthou, G., Smit, M. G., and Klunder, M.: Titan: A new facility for ultraclean sampling of trace elements and isotopes in the deep oceans in the international Geotraces program, Mar. Chem., 111, 4–21, 2008.
Denman, K. L. and Gargett, A. E.:
Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean,
Limnol. Oceanogr.,
28, 801–815, 1983.
Dillon, T. M.:
Vertical overturns: A comparison of Thorpe and Ozmidov length scales,
J. Geophys. Res.,
87, 9601–9613, 1982.
Ferron, B., Mercier, H., Speer, K., Gargett, A., and Polzin, K.:
Mixing in the Romanche Fracture Zone,
J. Phys. Oceanogr.,
28, 1929–1945, 1998.
Galbraith, P. S. and Kelley, D. E.:
Identifying overturns in CTD profiles,
J. Atmos. Ocean. Tech.,
13, 688–702, 1996.
Gargett, A. and Garner, T.:
Determining Thorpe scales from ship-lowered CTD density profiles,
J. Atmos. Ocean. Tech.,
25, 1657–1670, 2008.
Gaul, W., Antia, A. N., and Koeve, W.:
Microzooplankton grazing and nitrogen supply of phytoplankton growth in the temperate and subtropical northeast Atlantic,
Mar. Ecol. Prog. Ser.,
189, 93–104, 1999.
Gill, A. E.:
Atmosphere-Ocean Dynamics,
Academic Press, Orlando, Fl, USA, 662 pp., 1982.
Grasshoff, K., Kremling, K., and Ehrhardt, M.:
Methods of seawater analysis,
Verlag Chemie GmbH, Weinheim, 419 pp., 1983.
Gregg, M. C.:
Scaling turbulent dissipation in the thermocline,
J. Geophys. Res.,
94, 9686–9698, 1989.
Gregg, M. C., Sanford, T. B., and Winkel, D. P.:
Reduced mixing from the breaking of internal waves in equatorial waters,
Nature,
422, 513–515, 2003.
Gregg, M. C., D'Asaro, E. A., Riley, J. J., and Kunze, E.:
Mixing efficiency in the ocean,
Annu. Rev. Mar. Sci.,
10, 443–473, 2018.
Henyey, F. S., Wright, J., and Flatte, S. M.:
Energy and action flow through the internal wave field – an eikonal approach,
J. Geophys. Res.,
91, 8487–8495, 1986.
Hernández-Hernández, N., Arístegui, J., Montero, M. F.,
Velasco-Senovilla, E., Baltar, F., Marrero-Díaz, Á., Martínez-Marrero, A., and Rodríguez-Santana, Á.: Drivers of plankton distribution across mesoscale eddies at submesoscale range, Front. Mar. Sci., 7, 667, https://doi.org/10.3389/fmars.2020.00667, 2020.
Hibiya, T., Nagasawa, M., and Niwa, Y.: Latitudinal dependence of diapycnal diffusivity in the thermocline observed using a microstructure profiler,
Geophys. Res. Lett., 34, L24602, https://doi.org/10.1029/2007GL032323, 2007.
Huisman, J., Pham Thi, N. N., Karl, D. M., and Sommeijer, B.:
Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum,
Nature,
439, 322–325, 2006.
IOC, SCOR, IAPSO:
The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties,
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO, Paris, France, 196 pp., 2010.
Johnson, K. S., Gordon, R. M., and Coale, K. H.:
What controls dissolved iron concentrations in the world ocean?,
Mar. Chem.,
57, 137–161, 1997.
Jurado, E., van der Woerd, H. J., and Dijkstra, H. A.:
Microstructure measurements along a quasi-meridional transect in the northeastern Atlantic Ocean,
J. Geophys. Res.,
117, C04016, https://doi.org/10.1029/2011JC007137, 2012.
King, B., Stone, M., Zhang, H. P., Gerkema, T., Marder, M., Scott, R. B., and Swinney, H. L.: Buoyancy frequency profiles and internal semidiurnal tide turning depths in the oceans, J. Geophys. Res., 117, C04008, https://doi.org/10.1029/2011JC007681, 2012.
Klunder, M. B., Laan, P., Middag, R., De Baar, H. J. W., and van Ooijen, J. C.:
Dissolved iron in the Southern Ocean (Atlantic sector),
Deep-Sea Res. Pt. II,
58, 2678–2694, 2011.
Kunze, E., Firing, E., Hummon, J. M., Chereskin, T. K., and Thurnherr, A. M.:
Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles,
J. Phys. Oceanogr.,
36, 1553–1576, 2006.
Larson, N. and Pedersen, A. M.:
Temperature measurements in flowing water: viscous heating of sensor tips,
Proc. 1st IGHEM Meeting, June 1996, Montreal, PQ, Canada,
available at: https://pscfiles.apl.uw.edu/woodgate/BeringStraitArchive/BeringStraitMooringData/BeringStraitMoorings2007to2009IPY_versionMar10/SeasoftForWavesProcessingSoftware/website/technical_references/viscous.htm (last access: 15 February 2021), 1996.
LeBlond, P. H. and Mysak, L. A.:
Waves in the Ocean,
Elsevier, Amsterdam, NL, 602 pp., 1978.
Lueck, R. G.:
Thermal inertia of conductivity cells: Theory,
J. Atmos. Ocean. Tech.,
7, 741–755, 1990.
Martin, A. P., Lucas, S. C., Painter, S. C., Pidcock, R., Prandke, H., Prandke, H., and Stinchcombe, M. C.: The supply of nutrients due to vertical turbulent mixing: A study at the Porcupine abyssal plain study site in the northeast Atlantic, Deep-Sea Res. Pt. II, 57, 1293–1302, 2010.
Mater, B. D., Venayagamoorthy, S. K., St. Laurent, L., and Moum, J. N.:
Biases in Thorpe-scale estimates of turbulence dissipation. Part I: Assessments from largescale overturns in oceanographic data,
J. Phys. Oceanogr.,
45, 2497–2521, 2015.
Mensah, V., Le Menn, M., and Morel, Y.:
Thermal mass correction for the evaluation of salinity,
J. Atmos. Ocean. Tech.,
26, 665–672, 2009.
Middag, R., de Baar, H. J. W., Laan, P., and Bakker, K.:
Dissolved aluminium and the silicon cycle in the Arctic Ocean,
Mar. Chem.,
115, 176–195, 2009.
Mojica, K. D. A., van de Poll, W. H., Kehoe, M., Huisman, J., Timmermans, K. R., Buma, A. G. J., van der Woerd, H. J., Hahn-Woernle, L., Dijkstra, H. A., and Brussaard, C. P. D.: Phytoplankton community structure in relation to vertical stratification along a north-south gradient in the Northeast Atlantic Ocean, Limnol. Oceanogr., 60, 1498–1521, 2015.
Mojica, K. D. A., Huisman, J., Wilhelm, S. W., and Brussaard, C. P. D.:
Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean,
ISME J.,
10, 500–513, 2016.
Moum, J. N. and Rippeth, T. P.:
Do observations adequately resolve the natural variability of oceanic turbulence?,
J. Marine Syst.,
77, 409–417, 2009.
Murphy, J. and Riley, J. P.:
A modified single solution method for the determination of phosphate in natural waters,
Anal. Chim. Acta,
27, 31–36, 1962.
Oakey, N. S.:
Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements,
J. Phys. Oceanogr.,
12, 256–271, 1982.
Osborn, T. R.:
Estimates of the local rate of vertical diffusion from dissipation measurements,
J. Phys. Oceanogr.,
10, 83–89, 1980.
Pearson, B. and Fox-Kemper, B.: Log-normal turbulence dissipation in global ocean models, Phys. Rev. Lett., 120, 094501, https://doi.org/10.1103/PhysRevLett.120.094501, 2018.
Portwood, G. D., de Bruyn Kops, S. M., and Caulfield, C. P.: Asymptotic dynamics of high dynamic range stratified turbulence, Phys. Rev. Lett., 122, 194504, https://doi.org/10.1103/PhysRevLett.122.194504, 2019.
Rijkenberg, M. J. A., Steigenberger, S., Powell, C. F., van Haren, H., Patey, M. D., Baker, A. R., and Achterberg, E. P.: Fluxes and distribution of dissolved iron in the eastern (sub-)tropical North Atlantic Ocean, Global Biogeochem. Cy., 26, GB3004, https://doi.org/10.1029/2011GB004264, 2012.
Rijkenberg, M. J. A., de Baar, H. J. W., Bakker, K., Gerringa, L. J. A., Keijzer, E., Laan, M., Laan, P., Middag, R., Ober, S., van Ooijen, J., Ossebaar, S., van Weerlee, E. M., and Smit, M. G.: “PRISTINE”, a new high volume sampler for ultraclean sampling of trace metals and isotopes, Mar. Chem., 177, 501–509, 2015.
Sarmiento, J. L., Slater, R., Barber, R., Bopp, L., Doney, S. C., Hirst, A. C., Kleypas, J., Matear, R., Mikolajewicz, U., Monfray, P., Soldatov, V., Spall, S. A., and Stouffer, R.: Response of ocean ecosystems to climate warming, Global Biogeochem. Cy., 18, GB3003, https://doi.org/10.1029/2003GB002134, 2004.
Scotti, A.:
Biases in Thorpe-scale estimates of turbulence dissipation. Part II: energetics arguments and turbulence simulations,
J. Phys. Oceanogr.,
45, 2522–2543, 2015.
Sea-Bird:
Fundamentals of the TC duct and pump-controlled flow used on Sea-Bird CTDs,
Proc. Sea-Bird Electronics Appl. note 38,
SBE, Bellevue, WA, USA, 5 pp., 2012.
Smith, W. H. F. and Sandwell, D. T.:
Global seafloor topography from satellite altimetry and ship depth soundings,
Science,
277, 1957–1962, 1997.
Stansfield, K., Garrett, C., and Dewey, R.:
The probability distribution of the Thorpe displacement within overturns in Juan de Fuca Strait,
J. Phys. Oceanogr.,
31, 3421–3434, 2001.
Strickland, J. D. H. and Parsons, T. R.: A practical handbook of seawater analysis, 1st Edn., Bulletin, 167, Fisheries Research Board of Canada, Ottawa, 293 pp., 1968.
Thorpe, S. A.:
Turbulence and mixing in a Scottish loch,
Philos. T. R. Soc. S.-A,
286, 125–181, 1977.
van Haren, H.:
Tidal and near-inertial peak variations around the diurnal critical latitude,
Geophys. Res. Lett.,
32, L23611, https://doi.org/10.1029/2005GL024160, 2005.
van Haren, H.:
Inertial and tidal shear variability above Reykjanes Ridge,
Deep-Sea Res. Pt. I,
54, 856–870, 2007.
van Haren, H. and Gostiaux, L.:
Characterizing turbulent overturns in CTD-data,
Dynam. Atmos. Oceans,
66, 58–76, 2014.
van Haren, H. and Laan, M.:
An in-situ experiment identifying flow effects on temperature measurements using a pumped CTD in weakly stratified waters,
Deep-Sea Res. Pt. I,
111, 11–15, 2016.
van Haren, H., Maas, L., Zimmerman, J. T. F., Ridderinkhof, H., and Malschaert, H.:
Strong inertial currents and marginal internal wave stability in the central North Sea,
Geophys. Res. Lett.,
26, 2993–2996, 1999.
van Haren, H., Brussaard, C., Gerringa, L., van Manen, M., Middag, R., and Groenewegen, R.: Diapycnal nutrient mixing, NIOZ, V1, https://doi.org/10.25850/nioz/7b.b.lb, 2021.
Walter, M., Mertens, C., and Rhein, M.:
Mixing estimates from a large-scale hydrographic survey in the North Atlantic,
Geophys. Res. Let.,
32, L13605, https://doi.org/10.1029/2005GL022471, 2005.
Yamazaki, H. and Lueck, R.:
Why oceanic dissipation rates are not lognormal,
J. Phys. Oceanogr.,
20, 1907–1918, 1990.
Short summary
Changes in ocean temperature may affect vertical density stratification, which may hamper turbulent exchange and thus nutrient availability for phytoplankton growth. To quantify varying physical conditions, we sampled the upper 500 m along 17 ± 5° W between [30, 63]° N in summer. South to north, temperature decreased with stratification while turbulence and nutrient fluxes remained constant, likely due to internal waves breaking and little affected by the physical process of global warming.
Changes in ocean temperature may affect vertical density stratification, which may hamper...