Articles | Volume 17, issue 1
https://doi.org/10.5194/os-17-301-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-301-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Diapycnal mixing across the photic zone of the NE Atlantic
Hans van Haren
CORRESPONDING AUTHOR
Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg, the Netherlands
Corina P. D. Brussaard
Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg, the Netherlands
Loes J. A. Gerringa
Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg, the Netherlands
Mathijs H. van Manen
Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg, the Netherlands
Rob Middag
Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg, the Netherlands
Ruud Groenewegen
Royal Netherlands Institute for Sea Research (NIOZ), P.O. Box 59, 1790 AB Den Burg, the Netherlands
Related authors
Hans van Haren
EGUsphere, https://doi.org/10.5194/egusphere-2024-2913, https://doi.org/10.5194/egusphere-2024-2913, 2024
Short summary
Short summary
The extent of mankind’s influence on Earth’s climate warrants ocean-studies. A supposed major heat-transporter is the Atlantic Meridional Overturning Circulation (AMOC). As AMOC is a complex nonlinear dynamical system, mathematical models may predict its potential collapse using single parameters like surface temperature. However, physical processes such as (sub-)mesoscale eddy transport and turbulent mixing by internal wave breaking will alter the estimators, so that the AMOC may not collapse.
Hans van Haren
Biogeosciences, 15, 4387–4403, https://doi.org/10.5194/bg-15-4387-2018, https://doi.org/10.5194/bg-15-4387-2018, 2018
Short summary
Short summary
This paper presents high-resolution temperature observations and turbulence estimates from a hilly abyssal "plain" in Pacific nodule areas. Although turbulence levels are considerably lower than over steep topography, a bottom boundary layer, if existent, varies in height over scales far exceeding that of an Ekman layer. This variation is associated with internal wave motions affecting the near-bottom turbulence and thus probably the associated sediment reworking.
Charlotte Eich, Mathijs van Manen, J. Scott P. McCain, Loay J. Jabre, Willem H. van de Poll, Jinyoung Jung, Sven B. E. H. Pont, Hung-An Tian, Indah Ardiningsih, Gert-Jan Reichart, Erin M. Bertrand, Corina P. D. Brussaard, and Rob Middag
Biogeosciences, 21, 4637–4663, https://doi.org/10.5194/bg-21-4637-2024, https://doi.org/10.5194/bg-21-4637-2024, 2024
Short summary
Short summary
Phytoplankton growth in the Southern Ocean (SO) is often limited by low iron (Fe) concentrations. Sea surface warming impacts Fe availability and can affect phytoplankton growth. We used shipboard Fe clean incubations to test how changes in Fe and temperature affect SO phytoplankton. Their abundances usually increased with Fe addition and temperature increase, with Fe being the major factor. These findings imply potential shifts in ecosystem structure, impacting food webs and elemental cycling.
Hans van Haren
EGUsphere, https://doi.org/10.5194/egusphere-2024-2913, https://doi.org/10.5194/egusphere-2024-2913, 2024
Short summary
Short summary
The extent of mankind’s influence on Earth’s climate warrants ocean-studies. A supposed major heat-transporter is the Atlantic Meridional Overturning Circulation (AMOC). As AMOC is a complex nonlinear dynamical system, mathematical models may predict its potential collapse using single parameters like surface temperature. However, physical processes such as (sub-)mesoscale eddy transport and turbulent mixing by internal wave breaking will alter the estimators, so that the AMOC may not collapse.
Loes J. A. Gerringa, Martha Gledhill, Indah Ardiningsih, Niels Muntjewerf, and Luis M. Laglera
Biogeosciences, 18, 5265–5289, https://doi.org/10.5194/bg-18-5265-2021, https://doi.org/10.5194/bg-18-5265-2021, 2021
Short summary
Short summary
For 3 decades, competitive ligand exchange–adsorptive cathodic stripping voltammetry was used to estimate the Fe-binding capacity of organic matter in seawater. In this paper the performance of the competing ligands is compared through the analysis of a series of model ligands.
The main finding of this paper is that the determined speciation parameters are not independent of the application, making interpretation of Fe speciation data more complex than it was thought before.
Indah Ardiningsih, Kyyas Seyitmuhammedov, Sylvia G. Sander, Claudine H. Stirling, Gert-Jan Reichart, Kevin R. Arrigo, Loes J. A. Gerringa, and Rob Middag
Biogeosciences, 18, 4587–4601, https://doi.org/10.5194/bg-18-4587-2021, https://doi.org/10.5194/bg-18-4587-2021, 2021
Short summary
Short summary
Organic Fe speciation is investigated along a natural gradient of the western Antarctic Peninsula from an ice-covered shelf to the open ocean. The two major fronts in the region affect the distribution of ligands. The excess ligands not bound to dissolved Fe (DFe) comprised up to 80 % of the total ligand concentrations, implying the potential to solubilize additional Fe input. The ligands on the shelf can increase the DFe residence time and fuel local primary production upon ice melt.
Laura F. Korte, Franziska Pausch, Scarlett Trimborn, Corina P. D. Brussaard, Geert-Jan A. Brummer, Michèlle van der Does, Catarina V. Guerreiro, Laura T. Schreuder, Chris I. Munday, and Jan-Berend W. Stuut
Biogeosciences Discuss., https://doi.org/10.5194/bg-2018-484, https://doi.org/10.5194/bg-2018-484, 2018
Revised manuscript not accepted
Short summary
Short summary
This paper shows the differences of nutrient release after dry and wet Saharan dust deposition in the tropical North Atlantic Ocean at 12° N. Incubation experiments were conducted along an east-west transect. Large differences were observed between both deposition types with wet deposition being the dominant source of phosphate, silicate, and iron. Both deposition types suggest that Saharan dust particles might be incorporated into marine snow aggregates and act as ballast mineral.
Sergio Balzano, Julie Lattaud, Laura Villanueva, Sebastiaan W. Rampen, Corina P. D. Brussaard, Judith van Bleijswijk, Nicole Bale, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 15, 5951–5968, https://doi.org/10.5194/bg-15-5951-2018, https://doi.org/10.5194/bg-15-5951-2018, 2018
Short summary
Short summary
We tried to identify the microbes which biosynthesize a class of lipids widespread in seawater, the long chain alkyl diols (LCDs). We could not find any microorganism likely involved in the production of LCDs. The amounts of LCDs found are too high to be produced by living organisms and are likely to be part of the refractory organic matter persisting for long periods in the water column.
Hans van Haren
Biogeosciences, 15, 4387–4403, https://doi.org/10.5194/bg-15-4387-2018, https://doi.org/10.5194/bg-15-4387-2018, 2018
Short summary
Short summary
This paper presents high-resolution temperature observations and turbulence estimates from a hilly abyssal "plain" in Pacific nodule areas. Although turbulence levels are considerably lower than over steep topography, a bottom boundary layer, if existent, varies in height over scales far exceeding that of an Ekman layer. This variation is associated with internal wave motions affecting the near-bottom turbulence and thus probably the associated sediment reworking.
Nicole J. Bale, Tracy A. Villareal, Ellen C. Hopmans, Corina P. D. Brussaard, Marc Besseling, Denise Dorhout, Jaap S. Sinninghe Damsté, and Stefan Schouten
Biogeosciences, 15, 1229–1241, https://doi.org/10.5194/bg-15-1229-2018, https://doi.org/10.5194/bg-15-1229-2018, 2018
Short summary
Short summary
Associations between diatoms and N-fixing cyanobacteria (diatom–diazotroph associations, DDAs) play an important role in the N cycle of the tropical North Atlantic. Heterocysts are the site of N fixation and contain unique glycolipids. We measured these glycolipids in the water column and surface sediment from the tropical North Atlantic. We found a significant correlation between the concentration of glycolipid and of DDAs, strengthening their application as biomarkers.
Katharine J. Crawfurd, Santiago Alvarez-Fernandez, Kristina D. A. Mojica, Ulf Riebesell, and Corina P. D. Brussaard
Biogeosciences, 14, 3831–3849, https://doi.org/10.5194/bg-14-3831-2017, https://doi.org/10.5194/bg-14-3831-2017, 2017
Short summary
Short summary
Carbon dioxide (CO2) is increasing in the atmosphere and oceans. To simulate future conditions we manipulated CO2 concentrations of natural Baltic seawater in 55 m3 bags in situ. We saw increased growth rates and abundances of the smallest-sized eukaryotic phytoplankton and reduced abundances of other phytoplankton with increased CO2. Viral and bacterial abundances were also affected. This would lead to more carbon recycling in the surface water and affect marine food webs and the carbon cycle.
Marco van Hulten, Rob Middag, Jean-Claude Dutay, Hein de Baar, Matthieu Roy-Barman, Marion Gehlen, Alessandro Tagliabue, and Andreas Sterl
Biogeosciences, 14, 1123–1152, https://doi.org/10.5194/bg-14-1123-2017, https://doi.org/10.5194/bg-14-1123-2017, 2017
Short summary
Short summary
We ran a global ocean model to understand manganese (Mn), a biologically essential element. Our model shows that (i) in the deep ocean, dissolved [Mn] is mostly homogeneous ~0.10—0.15 nM. The model reproduces this with a threshold on MnO2 of 25 pM, suggesting a minimal particle concentration is needed before aggregation and removal become efficient.
(ii) The observed distinct hydrothermal signals are produced by assuming both a strong source and a strong removal of Mn near hydrothermal vents.
Thomas Hornick, Lennart T. Bach, Katharine J. Crawfurd, Kristian Spilling, Eric P. Achterberg, Jason N. Woodhouse, Kai G. Schulz, Corina P. D. Brussaard, Ulf Riebesell, and Hans-Peter Grossart
Biogeosciences, 14, 1–15, https://doi.org/10.5194/bg-14-1-2017, https://doi.org/10.5194/bg-14-1-2017, 2017
Kristian Spilling, Kai G. Schulz, Allanah J. Paul, Tim Boxhammer, Eric P. Achterberg, Thomas Hornick, Silke Lischka, Annegret Stuhr, Rafael Bermúdez, Jan Czerny, Kate Crawfurd, Corina P. D. Brussaard, Hans-Peter Grossart, and Ulf Riebesell
Biogeosciences, 13, 6081–6093, https://doi.org/10.5194/bg-13-6081-2016, https://doi.org/10.5194/bg-13-6081-2016, 2016
Short summary
Short summary
We performed an experiment in the Baltic Sea in order to investigate the consequences of the increasing CO2 levels on biological processes in the free water mass. There was more accumulation of organic carbon at high CO2 levels. Surprisingly, this was caused by reduced loss processes (respiration and bacterial production) in a high-CO2 environment, and not by increased photosynthetic fixation of CO2. Our carbon budget can be used to better disentangle the effects of ocean acidification.
Alison L. Webb, Emma Leedham-Elvidge, Claire Hughes, Frances E. Hopkins, Gill Malin, Lennart T. Bach, Kai Schulz, Kate Crawfurd, Corina P. D. Brussaard, Annegret Stuhr, Ulf Riebesell, and Peter S. Liss
Biogeosciences, 13, 4595–4613, https://doi.org/10.5194/bg-13-4595-2016, https://doi.org/10.5194/bg-13-4595-2016, 2016
Short summary
Short summary
This paper presents concentrations of several trace gases produced by the Baltic Sea phytoplankton community during a mesocosm experiment with five different CO2 levels. Average concentrations of dimethylsulphide were lower in the highest CO2 mesocosms over a 6-week period, corresponding to previous mesocosm experiment results. No dimethylsulfoniopropionate was detected due to a methodological issue. Concentrations of iodine- and bromine-containing halocarbons were unaffected by increasing CO2.
Douwe S. Maat, Nicole J. Bale, Ellen C. Hopmans, Jaap S. Sinninghe Damsté, Stefan Schouten, and Corina P. D. Brussaard
Biogeosciences, 13, 1667–1676, https://doi.org/10.5194/bg-13-1667-2016, https://doi.org/10.5194/bg-13-1667-2016, 2016
Short summary
Short summary
This study shows that the phytoplankter Micromonas pusilla alters its lipid composition when the macronutrient phosphate is in low supply. This reduction in phospholipids is directly dependent on the strength of the limitation. Furthermore we show that, when M. pusilla is infected by viruses, lipid remodeling is lower. The study was carried out to investigate how phytoplankton and its viruses are affected by environmental factors and how this affects food web dynamics.
J. Brandsma, T. R. Sutton, J. M. Herniman, J. E. Hunter, T. E. G. Biggs, C. Evans, C. P. D. Brussaard, A. D. Postle, T. J. Jenkins, and G. J. Langley
Biogeosciences Discuss., https://doi.org/10.5194/bg-2016-13, https://doi.org/10.5194/bg-2016-13, 2016
Manuscript not accepted for further review
Short summary
Short summary
Marine phytoplankton fix around 1 billion tonnes of carbon as lipid biomass each year. We present a new method for analysing complex lipid mixtures from phytoplankton biomass using supercritical fluid technology which has better resolution and is several times faster than existing methods. Thus, it enables larger-scale and more in-depth studies of phytoplankton lipid metabolism, the way it is controlled by ecological and environmental processes, and its impact on global biogeochemistry.
D. S. Maat, N. J. Bale, E. C. Hopmans, A.-C. Baudoux, J. S. Sinninghe Damsté, S. Schouten, and C. P. D. Brussaard
Biogeosciences, 11, 185–194, https://doi.org/10.5194/bg-11-185-2014, https://doi.org/10.5194/bg-11-185-2014, 2014
W. H. van de Poll, G. Kulk, K. R. Timmermans, C. P. D. Brussaard, H. J. van der Woerd, M. J. Kehoe, K. D. A. Mojica, R. J. W. Visser, P. D. Rozema, and A. G. J. Buma
Biogeosciences, 10, 4227–4240, https://doi.org/10.5194/bg-10-4227-2013, https://doi.org/10.5194/bg-10-4227-2013, 2013
C. Motegi, T. Tanaka, J. Piontek, C. P. D. Brussaard, J.-P. Gattuso, and M. G. Weinbauer
Biogeosciences, 10, 3285–3296, https://doi.org/10.5194/bg-10-3285-2013, https://doi.org/10.5194/bg-10-3285-2013, 2013
F. E. Hopkins, S. A. Kimmance, J. A. Stephens, R. G. J. Bellerby, C. P. D. Brussaard, J. Czerny, K. G. Schulz, and S. D. Archer
Biogeosciences, 10, 2331–2345, https://doi.org/10.5194/bg-10-2331-2013, https://doi.org/10.5194/bg-10-2331-2013, 2013
C. P. D. Brussaard, A. A. M. Noordeloos, H. Witte, M. C. J. Collenteur, K. Schulz, A. Ludwig, and U. Riebesell
Biogeosciences, 10, 719–731, https://doi.org/10.5194/bg-10-719-2013, https://doi.org/10.5194/bg-10-719-2013, 2013
Cited articles
Achterberg, E. P., Steigenberger, S., Klar, J. K., Browning, T. J., Marsay, C. M., Painter, S. C., Vieira, L. H., Baker, A. R., Hamilton, D. S., Tanhua, T., and Moore, C. M.: Trace element biogeochemistry in the high latitude North Atlantic Ocean: seasonal variations and volcanic inputs,
Global Biogeochem. Cy., https://doi.org/10.1029/2020GB006674, in press, 2020.
Alford, M. H. and Gregg, M. C.:
Near-inertial mixing: Modulation of shear, strain and microstructure at low latitude,
J. Geophys. Res.,
106, 16947–16968, 2001.
Charria, G., Theetten, S., Vandermeirsch, F., Yelekçi, Ö., and Audiffren, N.: Interannual evolution of (sub)mesoscale dynamics in the Bay of Biscay, Ocean Sci., 13, 777–797, https://doi.org/10.5194/os-13-777-2017, 2017.
Cyr, F., Bourgault, D., Galbraith, P. S., and Gosselin, M.:
Turbulent nitrate fluxes inthe Lower St. Lawrence Estuary, Canada,
J. Geophys. Res.,
120, 2308–2330, https://doi.org/10.1002/2014JC010272, 2015.
De Baar, H. J. W., Timmermans, K. R., Laan, P., De Porto, H. H., Ober, S., Blom, J. J., Bakker, M. C., Schilling, J., Sarthou, G., Smit, M. G., and Klunder, M.: Titan: A new facility for ultraclean sampling of trace elements and isotopes in the deep oceans in the international Geotraces program, Mar. Chem., 111, 4–21, 2008.
Denman, K. L. and Gargett, A. E.:
Time and space scales of vertical mixing and advection of phytoplankton in the upper ocean,
Limnol. Oceanogr.,
28, 801–815, 1983.
Dillon, T. M.:
Vertical overturns: A comparison of Thorpe and Ozmidov length scales,
J. Geophys. Res.,
87, 9601–9613, 1982.
Ferron, B., Mercier, H., Speer, K., Gargett, A., and Polzin, K.:
Mixing in the Romanche Fracture Zone,
J. Phys. Oceanogr.,
28, 1929–1945, 1998.
Galbraith, P. S. and Kelley, D. E.:
Identifying overturns in CTD profiles,
J. Atmos. Ocean. Tech.,
13, 688–702, 1996.
Gargett, A. and Garner, T.:
Determining Thorpe scales from ship-lowered CTD density profiles,
J. Atmos. Ocean. Tech.,
25, 1657–1670, 2008.
Gaul, W., Antia, A. N., and Koeve, W.:
Microzooplankton grazing and nitrogen supply of phytoplankton growth in the temperate and subtropical northeast Atlantic,
Mar. Ecol. Prog. Ser.,
189, 93–104, 1999.
Gill, A. E.:
Atmosphere-Ocean Dynamics,
Academic Press, Orlando, Fl, USA, 662 pp., 1982.
Grasshoff, K., Kremling, K., and Ehrhardt, M.:
Methods of seawater analysis,
Verlag Chemie GmbH, Weinheim, 419 pp., 1983.
Gregg, M. C.:
Scaling turbulent dissipation in the thermocline,
J. Geophys. Res.,
94, 9686–9698, 1989.
Gregg, M. C., Sanford, T. B., and Winkel, D. P.:
Reduced mixing from the breaking of internal waves in equatorial waters,
Nature,
422, 513–515, 2003.
Gregg, M. C., D'Asaro, E. A., Riley, J. J., and Kunze, E.:
Mixing efficiency in the ocean,
Annu. Rev. Mar. Sci.,
10, 443–473, 2018.
Henyey, F. S., Wright, J., and Flatte, S. M.:
Energy and action flow through the internal wave field – an eikonal approach,
J. Geophys. Res.,
91, 8487–8495, 1986.
Hernández-Hernández, N., Arístegui, J., Montero, M. F.,
Velasco-Senovilla, E., Baltar, F., Marrero-Díaz, Á., Martínez-Marrero, A., and Rodríguez-Santana, Á.: Drivers of plankton distribution across mesoscale eddies at submesoscale range, Front. Mar. Sci., 7, 667, https://doi.org/10.3389/fmars.2020.00667, 2020.
Hibiya, T., Nagasawa, M., and Niwa, Y.: Latitudinal dependence of diapycnal diffusivity in the thermocline observed using a microstructure profiler,
Geophys. Res. Lett., 34, L24602, https://doi.org/10.1029/2007GL032323, 2007.
Huisman, J., Pham Thi, N. N., Karl, D. M., and Sommeijer, B.:
Reduced mixing generates oscillations and chaos in the oceanic deep chlorophyll maximum,
Nature,
439, 322–325, 2006.
IOC, SCOR, IAPSO:
The international thermodynamic equation of seawater – 2010: Calculation and use of thermodynamic properties,
Intergovernmental Oceanographic Commission, Manuals and Guides No. 56,
UNESCO, Paris, France, 196 pp., 2010.
Johnson, K. S., Gordon, R. M., and Coale, K. H.:
What controls dissolved iron concentrations in the world ocean?,
Mar. Chem.,
57, 137–161, 1997.
Jurado, E., van der Woerd, H. J., and Dijkstra, H. A.:
Microstructure measurements along a quasi-meridional transect in the northeastern Atlantic Ocean,
J. Geophys. Res.,
117, C04016, https://doi.org/10.1029/2011JC007137, 2012.
King, B., Stone, M., Zhang, H. P., Gerkema, T., Marder, M., Scott, R. B., and Swinney, H. L.: Buoyancy frequency profiles and internal semidiurnal tide turning depths in the oceans, J. Geophys. Res., 117, C04008, https://doi.org/10.1029/2011JC007681, 2012.
Klunder, M. B., Laan, P., Middag, R., De Baar, H. J. W., and van Ooijen, J. C.:
Dissolved iron in the Southern Ocean (Atlantic sector),
Deep-Sea Res. Pt. II,
58, 2678–2694, 2011.
Kunze, E., Firing, E., Hummon, J. M., Chereskin, T. K., and Thurnherr, A. M.:
Global abyssal mixing inferred from lowered ADCP shear and CTD strain profiles,
J. Phys. Oceanogr.,
36, 1553–1576, 2006.
Larson, N. and Pedersen, A. M.:
Temperature measurements in flowing water: viscous heating of sensor tips,
Proc. 1st IGHEM Meeting, June 1996, Montreal, PQ, Canada,
available at: https://pscfiles.apl.uw.edu/woodgate/BeringStraitArchive/BeringStraitMooringData/BeringStraitMoorings2007to2009IPY_versionMar10/SeasoftForWavesProcessingSoftware/website/technical_references/viscous.htm (last access: 15 February 2021), 1996.
LeBlond, P. H. and Mysak, L. A.:
Waves in the Ocean,
Elsevier, Amsterdam, NL, 602 pp., 1978.
Lueck, R. G.:
Thermal inertia of conductivity cells: Theory,
J. Atmos. Ocean. Tech.,
7, 741–755, 1990.
Martin, A. P., Lucas, S. C., Painter, S. C., Pidcock, R., Prandke, H., Prandke, H., and Stinchcombe, M. C.: The supply of nutrients due to vertical turbulent mixing: A study at the Porcupine abyssal plain study site in the northeast Atlantic, Deep-Sea Res. Pt. II, 57, 1293–1302, 2010.
Mater, B. D., Venayagamoorthy, S. K., St. Laurent, L., and Moum, J. N.:
Biases in Thorpe-scale estimates of turbulence dissipation. Part I: Assessments from largescale overturns in oceanographic data,
J. Phys. Oceanogr.,
45, 2497–2521, 2015.
Mensah, V., Le Menn, M., and Morel, Y.:
Thermal mass correction for the evaluation of salinity,
J. Atmos. Ocean. Tech.,
26, 665–672, 2009.
Middag, R., de Baar, H. J. W., Laan, P., and Bakker, K.:
Dissolved aluminium and the silicon cycle in the Arctic Ocean,
Mar. Chem.,
115, 176–195, 2009.
Mojica, K. D. A., van de Poll, W. H., Kehoe, M., Huisman, J., Timmermans, K. R., Buma, A. G. J., van der Woerd, H. J., Hahn-Woernle, L., Dijkstra, H. A., and Brussaard, C. P. D.: Phytoplankton community structure in relation to vertical stratification along a north-south gradient in the Northeast Atlantic Ocean, Limnol. Oceanogr., 60, 1498–1521, 2015.
Mojica, K. D. A., Huisman, J., Wilhelm, S. W., and Brussaard, C. P. D.:
Latitudinal variation in virus-induced mortality of phytoplankton across the North Atlantic Ocean,
ISME J.,
10, 500–513, 2016.
Moum, J. N. and Rippeth, T. P.:
Do observations adequately resolve the natural variability of oceanic turbulence?,
J. Marine Syst.,
77, 409–417, 2009.
Murphy, J. and Riley, J. P.:
A modified single solution method for the determination of phosphate in natural waters,
Anal. Chim. Acta,
27, 31–36, 1962.
Oakey, N. S.:
Determination of the rate of dissipation of turbulent energy from simultaneous temperature and velocity shear microstructure measurements,
J. Phys. Oceanogr.,
12, 256–271, 1982.
Osborn, T. R.:
Estimates of the local rate of vertical diffusion from dissipation measurements,
J. Phys. Oceanogr.,
10, 83–89, 1980.
Pearson, B. and Fox-Kemper, B.: Log-normal turbulence dissipation in global ocean models, Phys. Rev. Lett., 120, 094501, https://doi.org/10.1103/PhysRevLett.120.094501, 2018.
Portwood, G. D., de Bruyn Kops, S. M., and Caulfield, C. P.: Asymptotic dynamics of high dynamic range stratified turbulence, Phys. Rev. Lett., 122, 194504, https://doi.org/10.1103/PhysRevLett.122.194504, 2019.
Rijkenberg, M. J. A., Steigenberger, S., Powell, C. F., van Haren, H., Patey, M. D., Baker, A. R., and Achterberg, E. P.: Fluxes and distribution of dissolved iron in the eastern (sub-)tropical North Atlantic Ocean, Global Biogeochem. Cy., 26, GB3004, https://doi.org/10.1029/2011GB004264, 2012.
Rijkenberg, M. J. A., de Baar, H. J. W., Bakker, K., Gerringa, L. J. A., Keijzer, E., Laan, M., Laan, P., Middag, R., Ober, S., van Ooijen, J., Ossebaar, S., van Weerlee, E. M., and Smit, M. G.: “PRISTINE”, a new high volume sampler for ultraclean sampling of trace metals and isotopes, Mar. Chem., 177, 501–509, 2015.
Sarmiento, J. L., Slater, R., Barber, R., Bopp, L., Doney, S. C., Hirst, A. C., Kleypas, J., Matear, R., Mikolajewicz, U., Monfray, P., Soldatov, V., Spall, S. A., and Stouffer, R.: Response of ocean ecosystems to climate warming, Global Biogeochem. Cy., 18, GB3003, https://doi.org/10.1029/2003GB002134, 2004.
Scotti, A.:
Biases in Thorpe-scale estimates of turbulence dissipation. Part II: energetics arguments and turbulence simulations,
J. Phys. Oceanogr.,
45, 2522–2543, 2015.
Sea-Bird:
Fundamentals of the TC duct and pump-controlled flow used on Sea-Bird CTDs,
Proc. Sea-Bird Electronics Appl. note 38,
SBE, Bellevue, WA, USA, 5 pp., 2012.
Smith, W. H. F. and Sandwell, D. T.:
Global seafloor topography from satellite altimetry and ship depth soundings,
Science,
277, 1957–1962, 1997.
Stansfield, K., Garrett, C., and Dewey, R.:
The probability distribution of the Thorpe displacement within overturns in Juan de Fuca Strait,
J. Phys. Oceanogr.,
31, 3421–3434, 2001.
Strickland, J. D. H. and Parsons, T. R.: A practical handbook of seawater analysis, 1st Edn., Bulletin, 167, Fisheries Research Board of Canada, Ottawa, 293 pp., 1968.
Thorpe, S. A.:
Turbulence and mixing in a Scottish loch,
Philos. T. R. Soc. S.-A,
286, 125–181, 1977.
van Haren, H.:
Tidal and near-inertial peak variations around the diurnal critical latitude,
Geophys. Res. Lett.,
32, L23611, https://doi.org/10.1029/2005GL024160, 2005.
van Haren, H.:
Inertial and tidal shear variability above Reykjanes Ridge,
Deep-Sea Res. Pt. I,
54, 856–870, 2007.
van Haren, H. and Gostiaux, L.:
Characterizing turbulent overturns in CTD-data,
Dynam. Atmos. Oceans,
66, 58–76, 2014.
van Haren, H. and Laan, M.:
An in-situ experiment identifying flow effects on temperature measurements using a pumped CTD in weakly stratified waters,
Deep-Sea Res. Pt. I,
111, 11–15, 2016.
van Haren, H., Maas, L., Zimmerman, J. T. F., Ridderinkhof, H., and Malschaert, H.:
Strong inertial currents and marginal internal wave stability in the central North Sea,
Geophys. Res. Lett.,
26, 2993–2996, 1999.
van Haren, H., Brussaard, C., Gerringa, L., van Manen, M., Middag, R., and Groenewegen, R.: Diapycnal nutrient mixing, NIOZ, V1, https://doi.org/10.25850/nioz/7b.b.lb, 2021.
Walter, M., Mertens, C., and Rhein, M.:
Mixing estimates from a large-scale hydrographic survey in the North Atlantic,
Geophys. Res. Let.,
32, L13605, https://doi.org/10.1029/2005GL022471, 2005.
Yamazaki, H. and Lueck, R.:
Why oceanic dissipation rates are not lognormal,
J. Phys. Oceanogr.,
20, 1907–1918, 1990.
Short summary
Changes in ocean temperature may affect vertical density stratification, which may hamper turbulent exchange and thus nutrient availability for phytoplankton growth. To quantify varying physical conditions, we sampled the upper 500 m along 17 ± 5° W between [30, 63]° N in summer. South to north, temperature decreased with stratification while turbulence and nutrient fluxes remained constant, likely due to internal waves breaking and little affected by the physical process of global warming.
Changes in ocean temperature may affect vertical density stratification, which may hamper...