Articles | Volume 17, issue 1
https://doi.org/10.5194/os-17-249-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-249-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
High-resolution distributions of O2 / Ar on the northern slope of the South China Sea and estimates of net community production
Chuan Qin
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of
Education/Institute for Advanced Ocean Study, Ocean University of China, 238
Songling Road, 266100 Qingdao, P.R. China
Laboratory for Marine Ecology and Environmental Science, Qingdao National
Laboratory for Marine Science and Technology, 266237 Qingdao, P.R. China
Guiling Zhang
CORRESPONDING AUTHOR
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of
Education/Institute for Advanced Ocean Study, Ocean University of China, 238
Songling Road, 266100 Qingdao, P.R. China
Laboratory for Marine Ecology and Environmental Science, Qingdao National
Laboratory for Marine Science and Technology, 266237 Qingdao, P.R. China
Wenjing Zheng
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of
Education/Institute for Advanced Ocean Study, Ocean University of China, 238
Songling Road, 266100 Qingdao, P.R. China
Yu Han
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of
Education/Institute for Advanced Ocean Study, Ocean University of China, 238
Songling Road, 266100 Qingdao, P.R. China
College of Marine Science and Technology, Hainan Tropical Ocean University, 572022 Sanya, P.R. China
Sumei Liu
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of
Education/Institute for Advanced Ocean Study, Ocean University of China, 238
Songling Road, 266100 Qingdao, P.R. China
Laboratory for Marine Ecology and Environmental Science, Qingdao National
Laboratory for Marine Science and Technology, 266237 Qingdao, P.R. China
Related authors
No articles found.
Jian Wang, Lei Xue, Qianyao Ma, Feng Xu, Gaobin Xu, Shibo Yan, Jiawei Zhang, Jianlong Li, Honghai Zhang, Guiling Zhang, and Zhaohui Chen
Atmos. Chem. Phys., 24, 8721–8736, https://doi.org/10.5194/acp-24-8721-2024, https://doi.org/10.5194/acp-24-8721-2024, 2024
Short summary
Short summary
This study investigated the distribution and sources of non-methane hydrocarbons (NMHCs) in the lower atmosphere over the marginal seas of China. NMHCs, a subset of volatile organic compounds (VOCs), play a crucial role in atmospheric chemistry. Derived from systematic atmospheric sampling in coastal cities and marginal sea regions, this study offers valuable insights into the interaction between land and sea in shaping offshore atmospheric NMHCs.
Paul J. Tréguer, Jill N. Sutton, Mark Brzezinski, Matthew A. Charette, Timothy Devries, Stephanie Dutkiewicz, Claudia Ehlert, Jon Hawkings, Aude Leynaert, Su Mei Liu, Natalia Llopis Monferrer, María López-Acosta, Manuel Maldonado, Shaily Rahman, Lihua Ran, and Olivier Rouxel
Biogeosciences, 18, 1269–1289, https://doi.org/10.5194/bg-18-1269-2021, https://doi.org/10.5194/bg-18-1269-2021, 2021
Short summary
Short summary
Silicon is the second most abundant element of the Earth's crust. In this review, we show that silicon inputs and outputs, to and from the world ocean, are 57 % and 37 % higher, respectively, than previous estimates. These changes are significant, modifying factors such as the geochemical residence time of silicon, which is now about 8000 years and 2 times faster than previously assumed. We also update the total biogenic silica pelagic production and provide an estimate for sponge production.
Ke Zhang, Lijun Han, Sumei Liu, and Lingyan Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-985, https://doi.org/10.5194/acp-2018-985, 2018
Preprint withdrawn
Short summary
Short summary
We did high time-resolution nutrient dissolution experiments used aerosols collected on atmospheric mass transport path over the East Asian to West Pacific at Qianliyan island. We obtained the rapid dissolution of inorganic N species and slow dissolution of inorganic P and Si, depicted nutrient dissolution curves by math Equations and explained dissolution patterns by linkages with aerosol inorganic components and their dissolution properties.
Samuel T. Wilson, Hermann W. Bange, Damian L. Arévalo-Martínez, Jonathan Barnes, Alberto V. Borges, Ian Brown, John L. Bullister, Macarena Burgos, David W. Capelle, Michael Casso, Mercedes de la Paz, Laura Farías, Lindsay Fenwick, Sara Ferrón, Gerardo Garcia, Michael Glockzin, David M. Karl, Annette Kock, Sarah Laperriere, Cliff S. Law, Cara C. Manning, Andrew Marriner, Jukka-Pekka Myllykangas, John W. Pohlman, Andrew P. Rees, Alyson E. Santoro, Philippe D. Tortell, Robert C. Upstill-Goddard, David P. Wisegarver, Gui-Ling Zhang, and Gregor Rehder
Biogeosciences, 15, 5891–5907, https://doi.org/10.5194/bg-15-5891-2018, https://doi.org/10.5194/bg-15-5891-2018, 2018
Short summary
Short summary
To determine the variability between independent measurements of dissolved methane and nitrous oxide, seawater samples were analyzed by multiple laboratories. The results revealed the influences of the different parts of the analytical process, from the initial sample collection to the calculation of the final concentrations. Recommendations are made to improve dissolved methane and nitrous oxide measurements to help preclude future analytical discrepancies between laboratories.
M.-S. Sun, G.-L. Zhang, X.-P. Cao, X.-Y. Mao, J. Li, and W.-W. Ye
Biogeosciences Discuss., https://doi.org/10.5194/bgd-12-7017-2015, https://doi.org/10.5194/bgd-12-7017-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
Obvious seasonal variations of the distribution and emission of methane in the ECS and YS were reported based on data collected during five cruises in 2011. A box model was used to calculate the methane budget in the ECS, identify the main sources and sinks of dissolved methane in this area, and estimate the contribution of different sources to total methane quantitatively. It indicated that the most important source of methane in the ECS was in situ production in the water column.
R. H. Li, S. M. Liu, Y. W. Li, G. L. Zhang, J. L. Ren, and J. Zhang
Biogeosciences, 11, 481–506, https://doi.org/10.5194/bg-11-481-2014, https://doi.org/10.5194/bg-11-481-2014, 2014
G. D. Song, S. M. Liu, H. Marchant, M. M. M. Kuypers, and G. Lavik
Biogeosciences, 10, 6851–6864, https://doi.org/10.5194/bg-10-6851-2013, https://doi.org/10.5194/bg-10-6851-2013, 2013
Cited articles
Bi, Q., Du, J., Wu, Y., Zhou, J., and Zhang, J.: Particulate organic carbon
export flux by 234Th∕238U disequilibrium in the continental slope of the East China Sea, Acta Oceanol. Sin., 32, 67–73,
https://doi.org/10.1007/s13131-013-0303-7, 2013.
Cai, P., Zhao, D., Wang, L., Huang, B., and Dai, M.: Role of particle stock
and phytoplankton community structure in regulating particulate organic
carbon export in a large marginal sea, J. Geophys. Res.-Oceans, 120,
2063–2095, https://doi.org/10.1002/2014JC010432, 2015.
Cai, W.: Estuarine and Coastal Ocean Carbon Paradox: CO2 Sinks or Sites
of Terrestrial Carbon Incineration?, Ann. Rev. Mar. Sci., 3, 123–145,
https://doi.org/10.1146/annurev-marine-120709-142723, 2011.
Cassar, N., DiFiore, P. J., Barnett, B. A., Bender, M. L., Bowie, A. R., Tilbrook, B., Petrou, K., Westwood, K. J., Wright, S. W., and Lefevre, D.: The influence of iron and light on net community production in the Subantarctic and Polar Frontal Zones, Biogeosciences, 8, 227–237, https://doi.org/10.5194/bg-8-227-2011, 2011.
Cassar, N., Nevison, C. D., and Manizza, M.: Correcting oceanic
O2∕Ar-net community production estimates for vertical mixing using
N2O observations, Geophys. Res. Lett., 41, 8961–8970,
https://doi.org/10.1002/2014GL062040, 2014.
Chen, J., Zheng, L., Wiesner, M. G., Chen, R., Zheng, Y., and Wong, H.:
Estimations of primary production and export production in the South China
Sea based on sediment trap experiments, Chinese Sci. Bull., 43, 583–586,
https://doi.org/10.1007/BF02883645, 1998.
Chen, W., Cai, P., Dai, M., and Wei, J.: 234Th∕238U disequilibrium and particulate organic carbon export in the northern South China Sea, J. Oceanogr., 64, 417–428, https://doi.org/10.1007/s10872-008-0035-z, 2008.
Chen, Y. and Tang, D.: Eddy-feature phytoplankton bloom induced by a
tropical cyclone in the South China Sea, Int. J. Remote Sens., 33,
7444–7457, https://doi.org/10.1080/01431161.2012.685976, 2012.
Chen, Z., Yang, C., Xu, D., and Xu, M.: Observed hydrographical features and
circulation with influences of cyclonic-anticyclonic eddy-pair in the
northern slope of the South China Sea during June 2015 (in Chinese), J. Mar.
Sci., 34, 10–19, https://doi.org/10.3969/j.issn.1001-909X.2016.04.002, 2016.
Cheng, G., Sun, J., Zu, T., Chen, J., and Wang, D.: Analysis of water masses
in the northern South China Sea in summer 2011 (in Chinese), J. Trop.
Oceanogr., 33, 10–16, https://doi.org/10.3969/j.issn.1009-5470.2014.03.002, 2014.
Chou, W., Lee Chen, Y., Sheu, D., Shih, Y., Han, C., Cho, C., Tseng, C., and
Yang, Y.: Estimated net community production during the summertime at the
SEATS time-series study site, northern South China Sea: Implications for
nitrogen fixation, Geophys. Res. Lett., 33, L22610, https://doi.org/10.1029/2005GL025365,
2006.
Clark, D. R., Rees, A. P., and Joint, I.: Ammonium regeneration and
nitrification rates in the oligotrophic Atlantic Ocean: Implications for new
production estimates, Limnol. Oceanogr., 53, 52–62,
https://doi.org/10.4319/lo.2008.53.1.0052, 2008.
Craig, H. and Hayward, T.: Oxygen Supersaturation in the Ocean: Biological
Versus Physical Contributions, Science, 235, 199–202,
https://doi.org/10.1126/science.235.4785.199, 1987.
Dugdale, R. C. and Goering, J. J.: Uptake of New and Regenerated Forms of
Nitrogen in Primary Productivity, Limnol. Oceanogr., 12, 196–206,
https://doi.org/10.4319/lo.1967.12.2.0196, 1967.
Emerson, S., Quay, P., Stump, C., Wilbur, D., and Knox, M.: O2, Ar,
N2, and 222Rn in surface waters of the subarctic Ocean: Net
biological O2 production, Global Biogeochem. Cy., 5, 49–69,
https://doi.org/10.1029/90GB02656, 1991.
Eveleth, R., Cassar, N., Sherrell, R. M., Ducklow, H., Meredith, M. P.,
Venables, H. J., Lin, Y., and Li, Z.: Ice melt influence on summertime net
community production along the Western Antarctic Peninsula, Deep Sea Res.
Pt. II., 139, 89–102, https://doi.org/10.1016/j.dsr2.2016.07.016, 2017.
Fan, L., Su, Y., and Li, F.: Analysis on water mases in the Northern South
China Sea, Acta Oceanol. Sin., 10, 136–145, 1988 (in Chinese).
Feng, S., Li, F., and Li, S.: An introduction to marine science,
Higher Education Press, Beijing, China., 1999 (in Chinese).
Giesbrecht, K. E., Hamme, R. C., and Emerson, S. R.: Biological productivity
along Line P in the subarctic northeast Pacific: In situ versus
incubation-based methods, Global Biogeochem. Cy., 26, GB3028,
https://doi.org/10.1029/2012GB004349, 2012.
Grande, K. D., Williams, P. J. L. B., Marra, J., Purdie, D. A., Heinemann,
K., Eppley, R. W., and Bender, M. L.: Primary production in the North Pacific
gyre: a comparison of rates determined by the 14C, O2
concentration and 18O methods, Deep Sea Res. Pt. A, 36, 1621–1634, https://doi.org/10.1016/0198-0149(89)90063-0, 1989.
Guéguen, C. and Tortell, P. D.: High-resolution measurement of Southern
Ocean CO2 and O2∕Ar by membrane inlet mass spectrometry, Mar.
Chem., 108, 184–194, https://doi.org/10.1016/j.marchem.2007.11.007, 2008.
Hahm, D., Rhee, T. S., Kim, H. C., Park, J., Kim, Y. N., Shin, H. C., and
Lee, S.: Spatial and temporal variation of net community production and its
regulating factors in the Amundsen Sea, Antarctica, J. Geophys. Res.-Oceans,
119, 2815–2826, https://doi.org/10.1002/2013JC009762, 2014.
Hamme, R. C., Cassar, N., Lance, V. P., Vaillancourt, R. D., Bender, M. L.,
Strutton, P. G., Moore, T. S., DeGrandpre, M. D., Sabine, C. L., Ho, D. T.,
and Hargreaves, B. R.: Dissolved O2∕Ar and other methods reveal rapidchanges in productivity during a Lagrangian experiment in the Southern
Ocean, J. Geophys. Res.-Oceans, 117, 92–99, https://doi.org/10.1029/2011JC007046,
2012.
Han, A. Q., Dai, M. H., Gan, J. P., Kao, S.-J., Zhao, X. Z., Jan, S., Li, Q., Lin, H., Chen, C.-T. A., Wang, L., Hu, J. Y., Wang, L. F., and Gong, F.: Inter-shelf nutrient transport from the East China Sea as a major nutrient source supporting winter primary production on the northeast South China Sea shelf, Biogeosciences, 10, 8159–8170, https://doi.org/10.5194/bg-10-8159-2013, 2013.
Hanson, C. E., Pesant, S., Waite, A. M., and Pattiaratchi, C. B.: Assessing
the magnitude and significance of deep chlorophyll maxima of the coastal
eastern Indian Ocean, Deep. Res. Pt. II, 54, 884–901, https://doi.org/10.1016/j.dsr2.2006.08.021, 2007.
He, X., Xu, D., Bai, Y., Pan, D., Chen, C. A., Chen, X., and Gong, F.:
Eddy-entrained Pearl River plume into the oligotrophic basin of the South
China Sea, Cont. Shelf Res., 124, 117–124, https://doi.org/10.1016/j.csr.2016.06.003,
2016.
Hendricks, M. B., Bender, M. L., and Barnett, B. A.: Net and gross O2
production in the southern ocean from measurements of biological O2
saturation and its triple isotope composition, Deep. Res. Pt. I, 51, 1541–1561, https://doi.org/10.1016/j.dsr.2004.06.006, 2004.
Hu, J., Kawamura, H., Hong, H., and Qi, Y.: A Review on the currents in the
South China Sea: Seasonal circulation, South China Sea warm current and
Kuroshio intrusion, J. Oceanogr., 56, 607–624,
https://doi.org/10.1023/A:1011117531252, 2000.
Huang, K., Ducklow, H., Vernet, M., Cassar, N., and Bender, M. L.: Export
production and its regulating factors in the West Antarctica Peninsula
region of the Southern Ocean, Global Biogeochem. Cy., 26, GB2005,
https://doi.org/10.1029/2010GB004028, 2012.
Huang, Y., Yang, B., Chen, B., Qiu, G., Wang, H., and Huang, B.: Net
community production in the South China Sea Basin estimated from in situ
O2 measurements on an Argo profiling float, Deep Sea Res. Pt. I, 131, 54–61, https://doi.org/10.1016/j.dsr.2017.11.002, 2018.
Izett, R. W., Manning, C. C., Hamme, R. C., and Tortell, P. D.: Refined
Estimates of Net Community Production in the Subarctic Northeast Pacific
Derived From ΔO2∕Ar Measurements With N2O-Based Corrections for Vertical Mixing, Global Biogeochem. Cy., 32, 326–350,
https://doi.org/10.1002/2017GB005792, 2018.
Jiang, Z., Huang, C., Dai, M., Kao, S., Hydes, D. J., Chou, W. and Janf, S.:
Short-term dynamics of oxygen and carbon in productive nearshore shallow
seawater systems off Taiwan: Observations and modeling, Limnol. Oceanogr.,
56, 1832–1849, https://doi.org/10.4319/lo.2011.56.5.1832, 2011.
Jing, Z., Qi, Y., Hua, Z., and Zhang, H.:
Numerical study on the summer upwelling system in the northern continental shelf of
the South China Sea, Cont. Shelf Res., 29, 467–478,
https://doi.org/10.1016/j.csr.2008.11.008, 2009.
Jonsson, B. F., Doney, S. C., Dunne, J., and Bender, M.: Evaluation of the
Southern Ocean O2∕Ar-based NCP estimates in a model framework, J.
Geophys. Res.-Biogeosci., 118, 385–399, https://doi.org/10.1002/jgrg.20032,
2013.
Jerlov, N. G.: Marine optics, Elsevier, Netherlands, 1976.
Kaiser, J., Reuer, M. K., Barnett, B., and Bender, M. L.: Marine productivity
estimates from continuous O2∕Ar ratio measurements by membrane inlet mass spectrometry, Geophys. Res. Lett., 32, 1–5,
https://doi.org/10.1029/2005GL023459, 2005.
Kirk, J. T.: Light and photosynthesis in aquatic ecosystems, Cambridge
University Press, UK, 1994.
La Roche, J.: Ammonium regeneration: its contribution to phytoplankton
nitrogen requirements in a eutrophic environment, Mar. Biol., 75,
231–240, https://doi.org/10.1007/BF00406007, 1983.
Lee Chen, Y.: Spatial and seasonal variations of nitrate-based new
production and primary production in the South China Sea, Deep Sea Res. Pt.
I, 52, 319–340, https://doi.org/10.1016/j.dsr.2004.11.001, 2005.
Lee Chen, Y. and Chen, H.: Seasonal dynamics of primary and new production
in the northern South China Sea: The significance of river discharge and
nutrient advection, Deep Sea Res. Pt., 53, 971–986, https://doi.org/10.1016/j.dsr.2006.02.005, 2006.
Li, D., Zhou, M., Zhang, Z., Zhong, Y., Zhu, Y., Yang, C., Xu, M., Xu, D.,
and Hu, Z.: Intrusions of Kuroshio and Shelf Waters on Northern Slope of
South China Sea in Summer 2015, J. Ocean Univ. China, 17, 477–486,
https://doi.org/10.1007/s11802-018-3384-2, 2018.
Li, Q., Guo, X., Zhai, W., Xu, Y., and Dai, M.: Partial pressure of CO2
and air-sea CO2 fluxes in the South China Sea: Synthesis of an 18-year
dataset, Prog. Oceanogr., 182, 102272, https://doi.org/10.1016/j.pocean.2020.102272, 2020.
Liu, M., Liu, X., Ma, A., Li, T., and Du, Z.: Spatio-temporal stability and
abnormality of chlorophyll-a in the northern south china sea during
2002–2012 from MODIS images using wavelet analysis, Cont. Shelf Res., 75,
15–27, https://doi.org/10.1016/j.csr.2013.12.010, 2014.
Lockwood, D., Quay, P. D., Kavanaugh, M. T., Juranek, L. W., and Feely, R.
A.: High-resolution estimates of net community production and air-sea
CO2 flux in the northeast Pacific, Global Biogeochem. Cy., 26, GB4010,
https://doi.org/10.1029/2012GB004380, 2012.
Ma, H., Zeng, Z., He, J., Chen, L., Yin, M., Zeng, S., and Zeng, W.: Vertical
flux of particulate organic carbon in the central South China Sea estimated
from 234Th-238U disequilibria, Chinese J. Oceanol. Limnol., 26,
480–485, https://doi.org/10.1007/s00343-008-0480-y, 2008.
Ma, H., Zeng, Z., Yu, W., He, J., Chen, L., Cheng, J., Yin, M., and Zeng, S.:
234Th/ 238U disequilibrium and particulate organic carbon export
in the northwestern South China Sea, Acta Oceanol. Sin., 30, 55–62,
https://doi.org/10.1007/s13131-011-0119-2, 2011.
Manning, C. C., Stanley, R. H. R., Nicholson, D. P., Smith, J. M., Timothy
Pennington, J., Fewings, M. R., Squibb, M. E., and Chavez, F. P.: Impact of
recently upwelled water on productivity investigated using in situ and
incubation-based methods in Monterey Bay, J. Geophys. Res.-Oceans, 122,
1901–1926, https://doi.org/10.1002/2016JC012306, 2017.
Mathis, J. T., Cross, J. N., and Bates, N. R.: Coupling primary production
and terrestrial runoff to ocean acidification and carbonate mineral
suppression in the eastern Bering Sea, J. Geophys. Res.-Ocean., 116, C02030,
https://doi.org/10.1029/2010JC006453, 2011.
Millero, F. J. and Poisson, A.: International one-atmosphere equation of
state of seawater, Deep Sea Res. Pt. A, 28, 625–629, https://doi.org/10.1016/0198-0149(81)90122-9, 1981.
Nemcek, N., Ianson, D., and Tortell, P. D.: A high-resolution survey of DMS,
CO2, and O2∕Ar distributions in productive coastal waters, Global Biogeochem. Cy., 22, GB2009, https://doi.org/10.1029/2006GB002879, 2008.
Ning, X., Chai, F., Xue, H., Cai, Y., Liu, C., and Shi, J.:
Physical-biological oceanographic coupling influencing phytoplankton and
primary production in the South China Sea, J. Geophys. Res.-Oceans, 109, C10005,
https://doi.org/10.1029/2004JC002365, 2004.
Ning, X., Peng, X., Le, F., Hao, Q., Sun, J., Liu, C., and Cai, Y.: Nutrient limitation of phytoplankton in anticyclonic eddies of the northern South China Sea, Biogeosciences Discuss., 5, 4591–4619, https://doi.org/10.5194/bgd-5-4591-2008, 2008.
Pan, X., Wong, G. T. F., Shiah, F. K., and Ho, T. Y.: Enhancement of
biological productivity by internal waves: Observations in the summertime in
the northern South China Sea, J. Oceanogr., 68, 427–437,
https://doi.org/10.1007/s10872-012-0107-y, 2012.
Parsons, T. R., Maita, Y., and Lalli, C. M.: A Manual of Chemical &
Biological Methods for Seawater Analysis, Pergamon Press, Oxford, UK, 1984.
Qin,
C., Zhang, G., Zheng, W., Han, Y., and Liu, S.: Net community production, nutrients,
and hydrographic parameters in the South China Sea in October 2014 and June 2015, Zenodo, https://doi.org/10.5281/zenodo.4496886,
2021.
Quay, P. D., Peacock, C., Bjrkman, K., and Karl, D. M.: Measuring primary
production rates in the ocean: Enigmatic results between incubation and
non-incubation methods at Station ALOHA, Global Biogeochem. Cy., 24, GB3014,
https://doi.org/10.1029/2009GB003665, 2010.
Rehder, G. and Suess, E.: Methane and pCO2 in the Kuroshio and the South China Sea during maximum summer surface temperatures, Mar. Chem., 75,
89–108, https://doi.org/10.1016/S0304-4203(01)00026-3, 2001.
Reuer, M. K., Barnett, B. A., Bender, M. L., Falkowski, P. G., and Hendricks,
M. B.: New estimates of Southern Ocean biological production rates from
O2∕Ar ratios and the triple isotope composition of O2, Deep Sea Res. Pt. I, 54, 951–974,https://doi.org/10.1016/j.dsr.2007.02.007, 2007.
Shadwick, E. H., Tilbrook, B., Cassar, N., Trull, T. W., and Rintoul, S. R.:
Summertime physical and biological controls on O2 and CO2 in the
Australian Sector of the Southern Ocean, J. Mar. Syst., 147, 21–28,
https://doi.org/10.1016/j.jmarsys.2013.12.008, 2015.
Shi, X., Li, H., Han, X., Wang, L., and Zhu, C.: Influence of typical
mesoscale oceanographical process on the distribution of nutrients and
dissolved oxygen in the Northern part of South China Sea in summer (in
Chinese), Acta Sci. Circumstantiae, 34, 695–703,
https://doi.org/10.13671/j.hjkxxb.2014.0121, 2014.
Stanley, R. H. R., Kirkpatrick, J. B., Cassar, N., Barnett, B. A., and
Bender, M. L.: Net community production and gross primary production rates
in the western equatorial Pacific, Global Biogeochem. Cy., 24, GB4001,
https://doi.org/10.1029/2009GB003651, 2010.
Su, J. and Yuan, Y.: Coastal hydrology of China, China Ocean
Press, Beijing, China, 2005 (in Chinese).
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A.,
Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson,
A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii,
M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema,
M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A.,
Bellerby, R., Wong, C. S., Delille, B., Bates, N. R. and de Baar, H. J. W.:
Climatological mean and decadal change in surface ocean pCO2, and net
sea–air CO2 flux over the global oceans, Deep Sea Res. Pt. II, 56, 554–577, https://doi.org/10.1016/j.dsr2.2008.12.009, 2009.
Tamminen, T.: Effects of ammonium effluents on planktonic primary production
and decomposition in a coastal brackish water environment I. Nutrient
balance of the water body and effluent tests, Netherlands J. Sea Res.,
16, 455–464, https://doi.org/10.1016/0077-7579(82)90050-3, 1982.
Teeter, L., Hamme, R. C., Ianson, D., and Bianucci, L.: Accurate Estimation
of Net Community Production From O2∕Ar Measurements, Global Biogeochem. Cy., 32, 1163–1181, https://doi.org/10.1029/2017GB005874, 2018.
Teira, E., Mouriño, B., Marañón, E., Pérez, V., Pazó, M.
J., Serret, P., De Armas, D., Escánez, J., Woodward, E. M. S., and
Fernández, E.: Variability of chlorophyll and primary production in the
Eastern North Atlantic Subtropical Gyre: Potential factors affecting
phytoplankton activity, Deep. Res. Pt. I,, 52, 569–588, https://doi.org/10.1016/j.dsr.2004.11.007, 2005.
Tortell, P. D.: Dissolved gas measurements in oceanic waters made by
membrane inlet mass spectrometry, Limnol. Oceanogr. Methods, 3, 24–37,
https://doi.org/10.4319/lom.2005.3.24, 2005.
Tortell, P. D., Asher, E. C., Ducklow, H. W., Goldman, J. A. L., Dacey, J.
W. H., Grzymski, J. J., Young, J. N., Kranz, S. A., Bernard, K. S., and
Morel, F. M. M.: Metabolic balance of coastal Antarctic waters revealed by
autonomous pCO2 and ΔO2∕Ar measurements, Geophys. Res. Lett., 41, 6803–6810, https://doi.org/10.1002/2014GL061266, 2014.
Tortell, P. D., Merzouk, A., Ianson, D., Pawlowicz, R., and Yelland, D. R.:
Influence of regional climate forcing on surface water pCO2,
ΔO2∕Ar and dimethylsulfide (DMS) along the southern British
Columbia coast, Cont. Shelf Res., 47, 119–132,
https://doi.org/10.1016/j.csr.2012.07.007, 2012.
Ulfsbo, A., Cassar, N., Korhonen, M., Van Heuven, S., Hoppema, M., Kattner,
G., and Anderson, L. G.: Late summer net community production in the central
Arctic Ocean using multiple approaches, Global Biogeochem. Cy., 28,
1129–1148, https://doi.org/10.1002/2014GB004833, 2014.
Uu, D. V. and Brankart, J. M.: Seasonal variation of temperature and
salinity fields and water masses in the Bien Dong (South China) Sea, Math.
Comput. Model., 26, 97–113, https://doi.org/10.1016/S0895-7177(97)00243-4, 1997.
Wang, N., Lin, W., Cheng, B., and Huang, B.: Metabolic states of the Taiwan
Strait and the northern South China Sea in summer 2012, J.
Trop. Oceanogr., 33, 61–68, https://doi.org/10.3969/j.issn.1009-5470.2014.04.008,
2014 (in Chinese).
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean, J. Geophys. Res.-Oceans, 97, 7373–7382, https://doi.org/10.1029/92JC00188,
1992.
Weiss, R. F.: The solubility of nitrogen, oxygen and argon in water and
seawater, Deep Sea Res. Oceanogr. Abstr., 17, 721–735,
https://doi.org/10.1016/0011-7471(70)90037-9, 1970.
Zhai, W. D., Dai, M., and Cai, W.-J.: Coupling of surface pCO2 and dissolved oxygen in the northern South China Sea: impacts of contrasting coastal processes, Biogeosciences, 6, 2589–2598, https://doi.org/10.5194/bg-6-2589-2009, 2009.
Zhang, R., Zhu, X., Yang, C., Ye, L., Zhang, G., Ren, J., Wu, Y., Liu, S.,
Zhang, J., and Zhou, M.: Distribution of dissolved iron in the Pearl River
(Zhujiang) Estuary and the northern continental slope of the South China
Sea, Deep Sea Res. Pt. II, 167, 14–24, https://doi.org/10.1016/j.dsr2.2018.12.006, 2019.
Short summary
We conducted an underway measurement of dissolved O2 / Ar using membrane inlet mass spectrometry and estimated net community production (NCP) in the South China Sea (SCS) in both summer and autumn. We found that nutrient content, especially nitrogen, is the dominant factor affecting primary production in the SCS. In the summer, we observed a rapid response of the ecosystem to episodic nutrient supply induced by eddies. This is the first report on NCP estimation based on O2 / Ar data in the SCS.
We conducted an underway measurement of dissolved O2 / Ar using membrane inlet mass spectrometry...