Research article 27 Jan 2021
Research article | 27 Jan 2021
The impacts of runoff decrease and shoreline change on the salinity distribution in the wetlands of Liao River estuary, China
Mingliang Zhang et al.
Related authors
Huiting Qiao, Mingliang Zhang, Hengzhi Jiang, Tianping Xu, and Hongxing Zhang
Ocean Sci., 14, 437–451, https://doi.org/10.5194/os-14-437-2018, https://doi.org/10.5194/os-14-437-2018, 2018
Short summary
Short summary
Suaeda heteroptera is a dominant species in the wetlands of the Liao River estuary and a typical saline–alkaline indicator plant, which is distributed on coastal tidal flats, forming a rare natural
pink beachlandscape. The MIKE 21 model is used to simulate the hydrodynamic characteristics and salinity transport processes in this region. The results of this study are important for furthering the understanding of suitable circumstances for vegetation growth in the Pink Beach wetlands.
Huiting Qiao, Mingliang Zhang, Hengzhi Jiang, Tianping Xu, and Hongxing Zhang
Ocean Sci., 14, 437–451, https://doi.org/10.5194/os-14-437-2018, https://doi.org/10.5194/os-14-437-2018, 2018
Short summary
Short summary
Suaeda heteroptera is a dominant species in the wetlands of the Liao River estuary and a typical saline–alkaline indicator plant, which is distributed on coastal tidal flats, forming a rare natural
pink beachlandscape. The MIKE 21 model is used to simulate the hydrodynamic characteristics and salinity transport processes in this region. The results of this study are important for furthering the understanding of suitable circumstances for vegetation growth in the Pink Beach wetlands.
Cited articles
Alebregtse, N. C. and de Swart, H. E.: Effect of river discharge and geometry
on tides and net water transport in an estuarine network, an idealized model
applied to the Yangtze Estuary, Cont. Shelf Res., 123, 29–49,
https://doi.org/10.1016/j.csr.2016.03.028, 2016.
Andrews, S. W., Gross, E. S., and Hutton, P. H.: Modeling salt intrusion in the
San Francisco Estuary prior to anthropogenic influence, Cont. Shelf Res.,
146, 58–81, https://doi.org/10.1016/j.csr.2017.07.010, 2017.
Blumberg, A. F. and Kantha, L. H.: Open boundary condition for circulation
models, J. Hydraul. Eng., 111, 237–255,
https://doi.org/10.1061/(ASCE)0733-9429(1985)111:2(237), 1985.
Bowen, M. M. and Geyer, W. R.: Salt transport and the time-dependent salt
balance of a partially stratified estuary, J. Geophys. Res., 108, 3158,
https://doi.org/10.1029/2001JC001231, 2003.
Chen, C. S., Liu, H. D., and Beardsley, R. C.: An unstructured grid,
finite-volume, three-dimensional, primitive equations ocean model:
application to coastal ocean and estuaries, J. Atmos. Ocean. Tech., 20, 159–186, https://doi.org/10.1175/1520-0426(2003)020{<}0159:AUGFVT{>}2.0.CO;2, 2003.
Chen, C. S., Beardsley, R. C., and Cowles, G.: An unstructured grid,
finite-volume coastal ocean model (FVCOM) system, Oceanography, 19,
78–89, https://doi.org/10.5670/oceanog.2006.92, 2006a.
Chen, C. S., Beardsley, R. C., and Cowles, G.: An unstructured grid, finite-volume coastal ocean model: FVCOM User Manual, Second Edition, Technical Report 06-0602, University of Massachusetts Dartmouth, New Bedford, MA, USA, 2006b.
Danish Hydraulic Institute (DHI): MIKE 21 Toolbox Global Tide Model – Tidal
prediction, DHI Water and Environment, Hørsholm, Denmark, 2017.
Gong, W. P., Lin, Z. Y., Chen, Y. Z., Chen, Z. Y., and Zhang, H.: Effect of winds and waves on salt intrusion in the Pearl River estuary, Ocean Sci., 14, 139–159, https://doi.org/10.5194/os-14-139-2018, 2018.
Gronewold, A. D., Anderson, E. J., and Smith, J.: Evaluating operational
hydrodynamic models for real-time simulation of evaporation from large
lakes, Geophys. Res. Lett., 46, 3263–3269,
https://doi.org/10.1029/2019GL082289, 2019.
Hansen, D. V. and Rattray, M.: Gravitational circulation in straits and
estuaries, J. Mar. Res., 23, 104–122, 1965.
Haralambidou, K., Sylaios, G., and Tsihrintzis, V. A.: Salt-wedge propagation
in a Mediterranean micro-tidal river mouth, Estuar. Coast. Shelf S., 90,
174–184, https://doi.org/10.1016/j.ecss.2010.08.010, 2010.
Jia H., Shen, Y. M., Su, M. R., and Yu, C. X.: Numerical simulation of
hydrodynamic and water quality effects of shoreline changes in Bohai Bay,
Front. Earth Sci., 12, 625–639,
https://doi.org/10.1007/s11707-018-0688-x, 2018.
Lai, W. F., Pan, J. Y., and Devlin, A. T.: Impact of tides and winds on
estuarine circulation in the Pearl River Estuary, Cont. Shelf Res., 168,
68–82, https://doi.org/10.1016/j.csr.2018.09.004, 2018.
Lerczak, J. A., Geyer, W. R., and Chant, R. J.: Mechanisms driving the
time-dependent salt flux in a partially stratified estuary, J. Phys.
Oceanogr., 36, 2296–2311, https://doi.org/10.1175/JPO2959.1, 2006.
Li, S. H., Ge, Z. M., Xie, L. N., Chen, W., Yuan, L., Wang, D. Q., Li, X. Z., and
Zhang, L. Q. Ecophysiological response of native and exotic salt marsh
vegetation to waterlogging and salinity: Implications for the effects of
sea-level rise, Sci. Rep.-UK, 8, 2441.
https://doi.org/10.1038/s41598-017-18721-z, 2018.
Lin, Y. H. and Fissel, D. B.: High resolution 3-D finite-volume coastal ocean
modeling in lower Campbell River and Discovery Passage, British Columbia,
Canada, J. Mar. Sci. Eng., 2, 209–225,
https://doi.org/10.3390/jmse2010209, 2014.
Liu, C. J., Yu, M. H., Jia, L. W., Cai, H. Y., and Chen, X. Q.: Impacts of
physical alterations on salt transport during the dry season in the Modaomen
Estuary, Pearl River Delta, China, Estuar. Coast. Shelf S., 227, 106345,
https://doi.org/10.1016/j.ecss.2019.106345, 2019.
Liu, H., Yin, B. S., Xu, Y. Q., and Yang D. Z.: Numerical simulation of tides
and tidal currents in Liaodong Bay with POM, Prog. Nat. Sci.,
15, 47–55, https://doi.org/10.1080/10020070512331341760, 2005
MacCready, P.: Calculating estuarine exchange flow using isohaline
coordinates, J. Phys. Oceanogr., 41, 1116–1124,
https://doi.org/10.1175/2011JPO4517.1, 2011.
McClain, M. E., Boyer, E. W., Dent, C. L., Gergel, S. E., Grimm, N. B., Groffman, P. M., Hart, S. C., Harvey, J. W., Johnston, C. A., Mayprga, E., McDowell, W. H.,
and Pinay, G.: Biogeochemical hot spots and hot moments at the interface of
terrestrial and aquatic ecosystems, Ecosystems, 6, 301–312,
https://doi.org/10.1007/s10021-003-0161-9, 2003.
Popescu, I., Cioaca, E., Pan, Q., Jonoski, A., and Hanganu, J.: Use of
hydrodynamic models for the management of the Danube Delta wetlands: The
case study of Sontea-Fortuna ecosystem, Environ. Sci. Policy, 46, 48–56,
https://doi.org/10.1016/j.envsci.2014.01.012, 2015.
Pritchard, D. W.: Salinity distribution and circulation in the Chesapeake Bay
estuaries system, J. Mar. Res., 11, 106–123, 1952.
Pritchard, D. W.: A study of the salt balance in a coastal plain estuary, J.
Mar. Res., 13, 133–144, 1954.
Qiao, H., Zhang, M., Jiang, H., Xu, T., and Zhang, H.: Numerical study of hydrodynamic and salinity transport processes in the Pink Beach wetlands of the Liao River estuary, China, Ocean Sci., 14, 437–451, https://doi.org/10.5194/os-14-437-2018, 2018.
Ralston, D. K., Geyer, W. R., and Lerczak, J. A.: Subtidal salinity and
velocity in the Hudson River estuary: observations and modeling, J. Phys.
Oceanogr., 38, 753–770, https://doi.org/10.1175/2007JPO3808.1, 2008.
Sassi, M. G. and Hoitink, A. J. F.: River flow controls on tides and tide-mean
water level profiles in a tidal freshwater river, J. Geophys. Res., 118,
4139–4151, https://doi.org/10.1002/jgrc.20297, 2013.
Scully, M. E. and Geyer, W. R.: The role of advection, straining, and mixing
on the tidal variability of estuarine stratification, J. Phys. Oceanogr.,
42, 855–868, https://doi.org/10.1175/JPO-D-10-05010.1, 2012.
Song, J., Chen, M., Feng, G., Jia, Y. H., Wang, B. S., and Zhang, F. S.: Effect
of salinity on growth, ion accumulation and the roles of ions in osmotic
adjustment of two populations of Suaeda salsa, Plant Soil, 314, 133–141,
https://doi.org/10.1007/s11104-008-9712-3, 2009.
Sun, Z. G., Mou, X. J., and Sun, W. L.: Potential effects of tidal flat
variations on decomposition and nutrient dynamics of Phragmites australis, Suaeda salsa, and Suaeda glauca litter in
newly created marshes of the Yellow River Estuary, China, Ecol. Eng., 93,
175–186, https://doi.org/10.1016/j.ecoleng.2016.05.024, 2016.
Tian, R.: Factors controlling saltwater intrusion across multi-time scales
in estuaries, Chester River, Chesapeake Bay, Estuar. Coast. Shelf S., 223,
61–73, https://doi.org/10.1016/j.ecss.2019.04.041, 2019.
Tsihrintzis, V. A., John, D. L., and Tremblay, P. J.: Hydrodynamic modeling of
wetlands for flood detention, Water Resour. Manag., 12, 251–269,
https://doi.org/10.1023/A:1008031011773, 1998.
Veerapaga, N., Azhikodan, G., Shintani, T., Iwamoto, N., and Yokoyama, K.: A
three-dimensional environmental hydrodynamic model, Fantom-Refined:
Validation and application for salt water intrusion in a meso-macrotidal
estuary, Ocean Model., 141, 101425,
https://doi.org/10.1016/j.ocemod.2019.101425, 2019.
Wang, J., Li, L., He, Z. G., Kalhoro, N. A., and Xu, D. F.: Numerical modelling
study of seawater intrusion in Indus River Estuary, Pakistan, Ocean Eng.,
184, 74–84, https://doi.org/10.1016/j.oceaneng.2019.05.029, 2019.
Wang, Y., Liu, R. H., Gao, H. W., Bai, J., and Ling, M.: Degeneration
mechanism research of Suaeda heteroptera wetland of the Shuangtaizi Estuary National Nature
Reserve in China, Procedia Environ. Sci., 2, 1157–1162,
https://doi.org/10.1016/j.proenv.2010.10.124, 2010.
Wang, Y. N., Ji, Y. P., Sun, Z., Li, J., Zhang, M. L., and Wu, G. L.: Analysis of Suaeda heteroptera cover change and
its driving factors in the wetlands of the Liao River Estuary, China, IOP Conf. Series: Earth and Environmental Science,
467, https://doi.org/10.1088/1755-1315/467/1/012150, 2020.
Weilhoefer, C. L.: A review of indicators of estuarine tidal wetland
condition, Ecol. Indic., 11, 514–525,
https://doi.org/10.1016/j.ecolind.2010.07.007, 2011.
Yang, J. S., Zhan, C., Li, Y. Z., Zhou, D., Yu, Y., and Yu, J. B.: Effect of
salinity on soil respiration in relation to dissolved organic carbon and
microbial characteristics of a wetland in the Liaohe River estuary,
Northeast China, Sci. Total Environ., 642, 946–953,
https://doi.org/10.1016/j.scitotenv.2018.06.121, 2018.
Zhao, L. Z., Chen, C. S., Vallino, J., Hopkinson, C., Beardsley, R. C., Lin, H. C., and Lerczak, J.: Wetland-estuarine-shelf interactions in the Plum
Island Sound and Merrimack River in the Massachusetts coast, J. Geophys.
Res., 115, 039, https://doi.org/10.1029/2009JC006085, 2010.
Short summary
In this paper, we applied FVCOM to perform the numerical simulation of salinity in Liao River estuary waters, with consideration of the effects of river discharge cutoff and shoreline variation. Decrease in runoff was demonstrated to significantly increase the mean salinity values of the estuary. The shoreline change caused by the port construction was observed to have an obvious influence on salinity distribution patterns, with the mean salinity value increased in wetland waters near the port.
In this paper, we applied FVCOM to perform the numerical simulation of salinity in Liao River...