Articles | Volume 17, issue 6
https://doi.org/10.5194/os-17-1585-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-1585-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
On the low western Pacific sea levels observed prior to strong East Pacific El Niños
National Oceanography Centre, Southampton SO14 3ZH, UK
Related authors
David John Webb
EGUsphere, https://doi.org/10.5194/egusphere-2024-3560, https://doi.org/10.5194/egusphere-2024-3560, 2024
Short summary
Short summary
A modern climate model is used to test the hypothesis that changes observed during El Niños are, in part, forced by changes in the temperature of the North Equatorial Counter Current. This is a warm current that flows eastwards across the Pacific, a few degrees north of the Equator, close to the Inter-Tropical Convection Zone, a major region of deep atmospheric convection. The tests generate a significant El Niño type response in the ocean, giving confidence that the hypothesis is correct.
David J. Webb, Andrew C. Coward, and Helen M. Snaith
Ocean Sci., 16, 565–574, https://doi.org/10.5194/os-16-565-2020, https://doi.org/10.5194/os-16-565-2020, 2020
Short summary
Short summary
In conflict with conventional theory, recent analysis of data from a high-resolution global ocean model showed that the North Equatorial Counter Current was responsible for the unusually warm water which triggered the strong El Niños of 1982–83 and 1997–98. In this paper some of the key physics deduced from the model results are tested against satellite data from the 1997–98 event. The results show that the model closely followed reality during the period, further supporting the new mechanisms.
David John Webb
Ocean Sci., 14, 633–660, https://doi.org/10.5194/os-14-633-2018, https://doi.org/10.5194/os-14-633-2018, 2018
Short summary
Short summary
Results from a high-resolution ocean model show that during the strong El Niños of 1983 and 1998, transport of warm water in the equatorial Pacific was dominated by the North Equatorial Counter Current and not by equatorial Kelvin waves. The results show why the NECC fails to do this in most years and how stronger than normal annual Rossby waves near the Equator can both trigger the El Niño in the western Pacific and help to ensure that the warm water arrives off South America around Christmas.
D. J. Webb
Ocean Sci., 10, 411–426, https://doi.org/10.5194/os-10-411-2014, https://doi.org/10.5194/os-10-411-2014, 2014
D. J. Webb
Ocean Sci., 9, 731–744, https://doi.org/10.5194/os-9-731-2013, https://doi.org/10.5194/os-9-731-2013, 2013
David John Webb
EGUsphere, https://doi.org/10.5194/egusphere-2024-3560, https://doi.org/10.5194/egusphere-2024-3560, 2024
Short summary
Short summary
A modern climate model is used to test the hypothesis that changes observed during El Niños are, in part, forced by changes in the temperature of the North Equatorial Counter Current. This is a warm current that flows eastwards across the Pacific, a few degrees north of the Equator, close to the Inter-Tropical Convection Zone, a major region of deep atmospheric convection. The tests generate a significant El Niño type response in the ocean, giving confidence that the hypothesis is correct.
David J. Webb, Andrew C. Coward, and Helen M. Snaith
Ocean Sci., 16, 565–574, https://doi.org/10.5194/os-16-565-2020, https://doi.org/10.5194/os-16-565-2020, 2020
Short summary
Short summary
In conflict with conventional theory, recent analysis of data from a high-resolution global ocean model showed that the North Equatorial Counter Current was responsible for the unusually warm water which triggered the strong El Niños of 1982–83 and 1997–98. In this paper some of the key physics deduced from the model results are tested against satellite data from the 1997–98 event. The results show that the model closely followed reality during the period, further supporting the new mechanisms.
David John Webb
Ocean Sci., 14, 633–660, https://doi.org/10.5194/os-14-633-2018, https://doi.org/10.5194/os-14-633-2018, 2018
Short summary
Short summary
Results from a high-resolution ocean model show that during the strong El Niños of 1983 and 1998, transport of warm water in the equatorial Pacific was dominated by the North Equatorial Counter Current and not by equatorial Kelvin waves. The results show why the NECC fails to do this in most years and how stronger than normal annual Rossby waves near the Equator can both trigger the El Niño in the western Pacific and help to ensure that the warm water arrives off South America around Christmas.
D. J. Webb
Ocean Sci., 10, 411–426, https://doi.org/10.5194/os-10-411-2014, https://doi.org/10.5194/os-10-411-2014, 2014
D. J. Webb
Ocean Sci., 9, 731–744, https://doi.org/10.5194/os-9-731-2013, https://doi.org/10.5194/os-9-731-2013, 2013
Cited articles
Ashok, K., Behera, S. K., Rao, S. A., Weng, H., and Yamagata, T.: El Niño Modoki and its possible teleconnection, J. Geophys. Res., 112, C11007, https://doi.org/10.1029/2006JC003798, 2007. a
Baturin, N. and Niiler, P.:
Effects of instability waves in the mixed layer of the equatorial Pacific,
J. Geophys. Res.,
102, 27771–27793, 1997. a
Bourdallé-Badie, R., Bell, M., Chanut, J., Clementi, E., Coward, A., Drudi, M., Éthé, C., Iovino, D., Lea, D., Lévy, C., Madec, G., Martin, N., Masson, S., Mathiot, P., Mocavero, S., Müller, S., Nurser, G., Samson, G., and Storkey, D.: “NEMO ocean engine”, Scientific Notes of Climate Modelling Center, 27 – ISSN 1288–1619, Institut Pierre-Simon Laplace (IPSL), Zenodo [code], https://doi.org/10.5281/zenodo.1464816, 2019. a
Bryden, H. L. and Brady, E. C.:
Diagnostic Model of the Three-Dimensional Circulation in the Upper Equatorial Pacific Ocean,
J. Phys. Oceanogr.,
15, 1255–1273, 1985. a
Byrne, M. P., Pendergrass, A. G., Rapp, A. D., and Wodzicki, K. R.:
Response of the Intertropical Convergence Zone to Climate Change: Location, Width, and Strength,
Current Climate Change Reports,
4, 355–370, https://doi.org/10.1007/s40641-018-0110-5, 2018. a
Cai, W., Borlace, S., Lengaigne, M., van Rensch, P., Collins, M., Vecchi, G., Timmermann, A., Santoso, A., McPhaden, M. J., Wu, L., England, M. H., Wang, G., Guilyardi, E., and Jin, F.-F.:
Increasing frequency of extreme El Niño events due to greenhouse warming,
Nature Clim. Change,
4, 111–116, https://doi.org/10.1038/nclimate2100, 2014. a
Cane, M. A.:
Oceanographic Events during El Niño,
Science,
222, 1189–1195, 2011. a
Chelton, D. B., Wentz, F. J., Genremann, C. L., de Szoeke, R. A., and Schlax, M. G.:
Satellite Microwave SST Observations of Transequatorial Tropical Instability Waves,
Geophys. Res. Lett.,
27, 1239–1242, 2000. a
Chen, X., Ling, J., and Li, C.:
Evolution of the Madden–Julian Oscillation in Two Types of El Niño,
J. Climate,
29, 1919–1934, 2016. a
Chiodi, A. M. and Harrison, D. E.:
Observed El Niño SSTA Development and the Effects of Easterly and Westerly Wind Events in 2014/15,
J. Climate,
30, 1505–1519, 2017. a
Clarke, A. J.: El Niño Physics and El Niño Predictibility, Annu. Rev. Mar. Sci., 6, 79–99, https://doi.org/10.1146/annurev-marine-010213-135026, 2014. a
Coward, A. C.: NEMO ∘ global ocean model archive, JASMIN/CEDA [data set], http://gws-access.ceda.ac.uk/public/nemo/runs/ORCA0083-N06/means (last access: 27 October 2021), 2015. a
de Cuevas, B., Webb, D., Coward, A., Richmond, C., and Rourke, E.:
The UK Ocean Circulation and Climate Advanced Modelling Project (OCCAM),
in: High Performance Computing,
edited by: Allan, R., Guest, M., Simpson, A., Henty, D., and Nicole, D.,
Kluwer Academic, New York, 681 pp., 325–336, 1999. a
Dussin, R., Barnier, B., Brodeau, L., and Molines, J. M.:
The making of Drakkar forcing set DFS5, Report DRAKKAR/MyOcean Report 01-04-16, Laboratoire de Glaciologie et Géophysique de l'Environnement CNRS, Université de Grenoble, available at: http://archimer.ifremer.fr/doc/00000/11154/14032.pdf
(last access: 25 October 2021), 2016. a, b
Evans, J. L. and Webster, C. C.:
A variable sea surface temperature threshold for tropical convection,
Aust. Meteorol. Ocean.,
64, S1–S8, https://doi.org/10.22499/2.6401.007, 2014. a
Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S., Collins, W., Cox, P., Driouech, F., Emori, S., Eyring, V., Forest, C., Gleckler, P., Guilyardi, E., Jakob, C., Kattsov, V., Reason, C., and Rummukainen, M.:
Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, chap. Evaluation of Climate Models,
Cambridge University Press, Cambridge, UK and New York, NY, USA, 2013. a
Gadgil, S., Joseph, P. V., and Joshi, N. V.:
Ocean-atmosphere coupling over monsoon regions,
Nature,
312, 141–143, 1984. a
Griffies, S. M., Gnanadesikan, A., Dixon, K. W., Dunne, J. P., Gerdes, R., Harrison, M. J., Rosati, A., Russell, J. L., Samuels, B. L., Spelman, M. J., Winton, M., and Zhang, R.: Formulation of an ocean model for global climate simulations, Ocean Sci., 1, 45–79, https://doi.org/10.5194/os-1-45-2005, 2005. a
Guilyardi, E., Wittenberg, A., Fedorov, A., Collins, M., Wang, C., Capotondi, A., and van Oldenborg, G. J.:
Understanding El Niño in Ocean–Atmosphere General Circulation Models: Progress and Challenges,
B. Am. Meteorol. Soc.,
90, 325–340, 2009. a
Ham, Y.-G. and Kug, J.-S.:
How well do current climate models simulate two types of El Nino?,
Clim. Dynam.,
39, 383–398, 2012. a
Hansen, D. V. and Paul, C. A.:
Genesis and Effects of Long waves in the Equatorial Pacific,
J. Geophys. Res.,
89, 10431–10440, 1984. a
Harrison, D., Giese, B., and Sarachij, E.:
Mechanisms of SST Change in the Equatorial waveguide during the 1982–83 ENSO,
J. Climate,
3, 173–188, 1990. a
Hsin, Y.-C. and Qiu, B.:
Seasonal fluctuations of the surface North Equatorial Countercurrent (NECC) across the Pacific basin,
J. Geophys. Res.,
117, 1–17, https://doi.org/10.1029/2011JC007794, 2012. a
Hsu, C.-W., Yin, J., Griffies, S. M., and Dussin, R.: A mechanistic analysis of tropical Pacific dynamic sea level in GFDL-OM4 under OMIP-I and OMIP-II forcings, Geosci. Model Dev., 14, 2471–2502, https://doi.org/10.5194/gmd-14-2471-2021, 2021. a
Hurlburt, H., Kindle, J. C., and O'Brien, J. J.:
A Numerical Simulaiton of the Onset of El Niño,
J. Phys. Oceanogr.,
6, 621–631, 1976. a
Jochum, M., Cronin, M. F., Kessler, W. S., and Shea, D.:
Observed horizontal temperature advection by tropical instability waves,
Geophys. Res. Lett.,
34, 1–4, 2007. a
Kashino, Y., Atmadipoera, A., Kuroda, Y., and Lukijanto:
Observed features of the Halmahera and Mindanao Eddies,
J. Geophys. Res.-Oceans,
118, 6543–6560, https://doi.org/10.1002/2013JC009207, 2003. a
Kennan, S. C. and Lament, P. J. F.:
Observations of a Tropical Instability Vortex,
J. Phys. Oceanogr.,
30, 2277–2301, 2000. a
Knauss, J. A.:
The Structure of the Pacific Equatorial Countercurrent,
J. Geophys. Res.,
66, 143–155, 1961. a
Larkin, N. K. and Harrison, D. E.: On the definition of El Niño and associated seasonal average U.S. weather anomalies, Geophys. Res. Lett., 32, L13705, https://doi.org/10.1029/2005GL022738, 2005. a, b
Lengaigne, M., Boulanger, J.-P. H., Menkes, C., Masson, S., Madec, G., and Delecluse, P.: Ocean response to the March 1997 Westerly Wind Event, J. Geophys. Res., 107, 8015, https://doi.org/10.1029/2001JC000841, 2002. a
Love, C.:
EASTROPIC Atlas Vol 1,
Government Printing Office, Washington, DC, 1972. a
Love, C.:
EASTROPIC Atlas Vol 9,
Government Printing Office, Washington, DC, 1975. a
Madden, R. A. and Julian, P. R.:
Description of global-scale circulation cells in the tropics with a 40–50 day period,
J. Atmos. Sci.,
29, 1109–1123, 1972. a
Madden, R. A. and Julian, P. R.: Historical perspective, in: Intraseasonal Variability in the Atmosphere–Ocean Climate System, 2nd Edn., edited by: Lau, W. K. M. and Waliser, D. E., Springer, Heidelberg, Dordrecht, London, New York Praxis Publishing, Chichester, UK, 1–16, 2012. a
Madec, G., Delecluse, P., Imbard, M., and Levy, C.: OPA 8.1 Ocean General Circulation Model reference manual, Note du Pole de modelisation XX, Institut Pierre-Simon Laplace (IPSL), France, 1998. a
McCreary, J. P.:
Modelling Equatorial Ocean Circulation,
Annu. Rev. Fluid Mech.,
17, 359–409, 1985. a
McPhaden, M. J.:
Continuously Stratified Models of the Steady-State Equatorial Ocean,
J. Phys. Oceanogr.,
11, 337–354, 1981. a
McPhaden, M. J.:
Trade Wind Fetch Related Variations in Equatorial Undercurrent Depth, Speed, and Transport,
J. Geophys. Res.,
98, 2555–2559, 1993. a
Menkes, C., Vialard, J., Kennan, S., Boulanger, J.-P., and Madec, G.:
A Modeling Study of the Impact of Tropical Instability Waves on the Heat Budget of the Eastern Equatorial Pacific,
J. Phys. Oceanogr.,
36, 847–865, 2006. a
Meyers, G.:
On the Annual Rossby Wave in the Tropical North Pacific Ocean,
J. Phys. Oceanogr.,
9, 663–674, 1979. a
Meyers, G. and Donguy, J.-R.:
The North Equatorial Countercurrent and heat storage in the western Pacific Ocean during 1982–83,
Nature,
312, 258–268, 1984. a
Min, Q., Su, J., Zhang, R., and Rong, X.:
What hindered the El Niño pattern in 2014,
Geophys. Res. Lett.,
42, 6762–6770, 2015. a
Montgomery, R. and Palmen, E.: Contribution to the question of the Equatorial Counter Current, J. Mar. Res., 4, 112–133, 1940. a
Munk, W. H.:
On the wind driven ocean circulation,
J. Meteorol.,
7, 79–93, 1950. a
NEMO Consortium: NEMO/XIOS 2.5, IPSL [code], https://forge.ipsl.jussieu.fr/nemo/svn/NEMO/releases/r4.0/r4.0.6, last access: 26 October 2021. a
Neumann, G. and Pierson, W. J.: Principals of Physical Oceanography, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, USA, 1966. a
Pacanowski, R. and Philander, S.:
Parameterization of vertical mixing in numerical models of tropical oceans,
J. Phys. Oceanogr.,
11, 1443–1451, 1981. a
Philander, S.:
El Niño and La Niña,
Am. Sci.,
77, 451–459, 1989. a
Picaut, J., Ioualalen, M., Menkes, C., Delcroix, T., and McPhaden, M. J.:
Mechanism of the Zonal Displacements of the Pacific Warm Pool: Implications for ENSO,
Science,
274, 1486–1489, https://doi.org/10.1126/science.274.5292.1486, 1996. a
Smith, R., Dukowicz, J., and Malone, R.:
Parallel ocean general circulation modelling,
Physica D,
60, 39–61, 1992. a
Sun, Z., Liu, H., Lin, P., Tseng, Y., Small, J., and Bryan, F.:
The Modeling of the North Equatorial Countercurrent in the Community Earth System Model and its Oceanic Component,
J. Adv. Model. Earth Sy.,
1, 531–544, https://doi.org/10.1029/2018MS001521, 2019. a
Taft, B. A. and Kovala, B.: Vertical sections of temperature, salinity, thermosteric anomaly and zonal geostrophic velocity from NORPAX Shuttle Experimant – Part 1, NOAA Data Report ERL PMEL-3, NTIS: PB82-163106, PMEL –
Pacific Marine Environmental Laboratory
Seattle, Washington, USA, 98 pp., 1981. a
Taft, B. A., Cantos-Figuerola, A., and Kovala, P. Vertical sections of temperature, salinity, thermosteric anomaly and zonal geostrophic velocity from NORPAX Shuttle Experimant – Part 3, NOAA Data Report ERL PMEL-7, NTIS: PB83-169961, PMEL – Pacific Marine Environmental Laboratory Seattle, Washington, USA, 92 pp., 1982. a
Tan, S. and Zhou, H.:
The observed impacts of the two types of El Niño on the North Equatorial Countercurrent in the Pacific Ocean,
Geophys. Res. Lett.,
45, 10439–10500, https://doi.org/10.1029/2018GL079273, 2018. a, b
Thompson, S. R.: Sills of the Global Ocean: a compilation, Ocean Model., 109, 7–9, 1995. a
Wang, G. and Hendon, H. H.:
Why 2015 was a strong El Niño and 2014 was not,
Geophys. Res. Lett.,
44, 8567–8575, https://doi.org/10.1002/2017GL074244, 2017. a
Webb, D.:
The vertical advection of momentum in Bryan-Cox-Semtner ocean general circulation models,
J. Phys. Oceanogr.,
25, 3186–3195, 1995. a
Webb, D., Coward, A., de Cuevas, B., and Gwilliam, C.:
A Multiprocessor Ocean General Circulation Model Using Message Passing,
J. Atmos. Ocean. Tech.,
14, 175–183, https://doi.org/10.1175/1520-0426(1997)014<0175:AMOGCM>2.0.CO;2, 1997. a
Webb, D., de Cuevas, B., and Richmond, C.:
Improved advection schemes for ocean models,
J. Atmos. Ocean. Tech.,
15, 1171–1187, 1998. a
Webb, D. J.: Moma, GitHub [code], https://github.com/djwebb/moma (last access: 26 October 2021), 2019. a
Webb, D. J., Coward, A. C., and Snaith, H. M.: A comparison of ocean model data and satellite observations of features affecting the growth of the North Equatorial Counter Current during the strong 1997–1998 El Niño, Ocean Sci., 16, 565–574, https://doi.org/10.5194/os-16-565-2020, 2020. a
Wijaya, Y. J. and Hisaki, Y.:
Differences in the Reaction of North Equatorial Countercurrent to the Developing and Mature Phase of ENSO Events in the Western Pacific Ocean,
Climate,
9, 175–183, https://doi.org/10.3390/cli9040057, 2021. a, b
Wyrtki, K.:
Teleconnections in the Equatorial Pacific Ocean,
Science,
180, 66–68, 1973. a
Wyrtki, K.:
Sea Level and the Seasonal Fluctuations of the Equatorial Currents in the Western Pacific Ocean,
J. Phys. Oceanogr.,
4, 91–103, 1974b. a
Wyrtki, K. and Kilonsly, B.:
Mean Water and Current Structure during the Hawaii-to-Tahiti Shuttle Experiment,
J. Phys. Oceanogr.,
14, 242–254, 1984. a
Yu, J.-Y. and Liu, W. T.:
A linear relationship between ENSO intensity and tropical instability wave activity in the eastern Pacific Ocean,
Geophys. Res. Lett.,
30, CLM 5-1–5-5, https://doi.org/10.1029/2003GL017176, 2003. a
Yu, Z., Mccreary, J. P., Kessler, W. S., and Kelly, K. A.:
Influence of Equatorial Dynamics on the Pacific North Equatorial Countercurrent,
J. Phys. Oceanogr.,
30, 3179–3190, 2000. a
Zhang, C.:
Large-Scale Variability of Atmospheric Deep Convection in Relation to Sea Surface Temperature in the Tropics,
J. Climate,
6, 1898–1913, 1993. a
Zhang, C.:
Madden–Julian Oscillation,
Rev. Geophys.,
43, 1–36, https://doi.org/10.1029/2004RG000158, 2005. a
Zhang, R.-H. and Busalacchi, A. J.:
A Possible Link between Off-equatorial Warm Anomalies Propagating along the NECC Path and the Onset of the 1997–98 El Niño,
Geophys. Res. Lett.,
26, 2873–2876, 1999. a
Zhao, J., Li, Y., and Wang, F.:
Dynamical responses of the west Pacific North Equatorial Countercurrent (NECC) system to El Niño events,
J. Geophys. Res.-Oceans,
118, 2828–2844, https://doi.org/10.1002/jgrc.20196, 2013. a, b, c
Short summary
Research on strong El Niños has shown that they may be a result of a stronger-than-normal North Equatorial Counter Current, itself triggered by lower-than-normal sea levels that develop early in the year. A numerical model study of the 1981–1982 El Niño shows that the low sea levels are due to local winds in the west Pacific, and this is shown also to be true for the 1997–1998 and 2015–2016 El Niños. As a result, we now have a much better understanding of the mechanism causing strong El Niños.
Research on strong El Niños has shown that they may be a result of a stronger-than-normal North...