Articles | Volume 17, issue 5
https://doi.org/10.5194/os-17-1509-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-1509-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Winter observations alter the seasonal perspectives of the nutrient transport pathways into the lower St. Lawrence Estuary
Cynthia Evelyn Bluteau
CORRESPONDING AUTHOR
Institut des sciences de la mer, Université du Québec à Rimouski, Rimouski, Canada
Peter S. Galbraith
Institut Maurice-Lamontagne, Fisheries and Oceans Canada, Mont-Joli, Canada
Daniel Bourgault
Institut des sciences de la mer, Université du Québec à Rimouski, Rimouski, Canada
Vincent Villeneuve
Département de biologie, Université Laval, Québec, Canada
Jean-Éric Tremblay
Département de biologie, Université Laval, Québec, Canada
Related authors
No articles found.
Nancy Soontiens, Heather J. Andres, Jonathan Coyne, Frédéric Cyr, Peter S. Galbraith, and Jared Penney
State Planet Discuss., https://doi.org/10.5194/sp-2024-5, https://doi.org/10.5194/sp-2024-5, 2024
Preprint under review for SP
Short summary
Short summary
In this study, we explored a series of surface marine heat waves over the Newfoundland and Labrador Shelf in the summer and fall of 2023. We connected these marine heat waves to environmental conditions finding that low winds, high freshwater density, and high stratification were factors contributing to the unusually high sea surface temperature anomalies. We explored the vertical structure of temperature anomalies finding the heat waves were confined near the surface for most of the summer.
Hannah Sharpe, Michel Gosselin, Catherine Lalande, Alexandre Normandeau, Jean-Carlos Montero-Serrano, Khouloud Baccara, Daniel Bourgault, Owen Sherwood, and Audrey Limoges
Biogeosciences, 20, 4981–5001, https://doi.org/10.5194/bg-20-4981-2023, https://doi.org/10.5194/bg-20-4981-2023, 2023
Short summary
Short summary
We studied the impact of submarine canyon processes within the Pointe-des-Monts system on biogenic matter export and phytoplankton assemblages. Using data from three oceanographic moorings, we show that the canyon experienced two low-amplitude sediment remobilization events in 2020–2021 that led to enhanced particle fluxes in the deep-water column layer > 2.6 km offshore. Sinking phytoplankton fluxes were lower near the canyon compared to background values from the lower St. Lawrence Estuary.
Olivia Gibb, Frédéric Cyr, Kumiko Azetsu-Scott, Joël Chassé, Darlene Childs, Carrie-Ellen Gabriel, Peter S. Galbraith, Gary Maillet, Pierre Pepin, Stephen Punshon, and Michel Starr
Earth Syst. Sci. Data, 15, 4127–4162, https://doi.org/10.5194/essd-15-4127-2023, https://doi.org/10.5194/essd-15-4127-2023, 2023
Short summary
Short summary
The ocean absorbs large quantities of carbon dioxide (CO2) released into the atmosphere as a result of the burning of fossil fuels. This, in turn, causes ocean acidification, which poses a major threat to global ocean ecosystems. In this study, we compiled 9 years (2014–2022) of ocean carbonate data (i.e., ocean acidification parameters) collected in Atlantic Canada as part of the Atlantic Zone Monitoring Program.
Zhibo Shao, Yangchun Xu, Hua Wang, Weicheng Luo, Lice Wang, Yuhong Huang, Nona Sheila R. Agawin, Ayaz Ahmed, Mar Benavides, Mikkel Bentzon-Tilia, Ilana Berman-Frank, Hugo Berthelot, Isabelle C. Biegala, Mariana B. Bif, Antonio Bode, Sophie Bonnet, Deborah A. Bronk, Mark V. Brown, Lisa Campbell, Douglas G. Capone, Edward J. Carpenter, Nicolas Cassar, Bonnie X. Chang, Dreux Chappell, Yuh-ling Lee Chen, Matthew J. Church, Francisco M. Cornejo-Castillo, Amália Maria Sacilotto Detoni, Scott C. Doney, Cecile Dupouy, Marta Estrada, Camila Fernandez, Bieito Fernández-Castro, Debany Fonseca-Batista, Rachel A. Foster, Ken Furuya, Nicole Garcia, Kanji Goto, Jesús Gago, Mary R. Gradoville, M. Robert Hamersley, Britt A. Henke, Cora Hörstmann, Amal Jayakumar, Zhibing Jiang, Shuh-Ji Kao, David M. Karl, Leila R. Kittu, Angela N. Knapp, Sanjeev Kumar, Julie LaRoche, Hongbin Liu, Jiaxing Liu, Caroline Lory, Carolin R. Löscher, Emilio Marañón, Lauren F. Messer, Matthew M. Mills, Wiebke Mohr, Pia H. Moisander, Claire Mahaffey, Robert Moore, Beatriz Mouriño-Carballido, Margaret R. Mulholland, Shin-ichiro Nakaoka, Joseph A. Needoba, Eric J. Raes, Eyal Rahav, Teodoro Ramírez-Cárdenas, Christian Furbo Reeder, Lasse Riemann, Virginie Riou, Julie C. Robidart, Vedula V. S. S. Sarma, Takuya Sato, Himanshu Saxena, Corday Selden, Justin R. Seymour, Dalin Shi, Takuhei Shiozaki, Arvind Singh, Rachel E. Sipler, Jun Sun, Koji Suzuki, Kazutaka Takahashi, Yehui Tan, Weiyi Tang, Jean-Éric Tremblay, Kendra Turk-Kubo, Zuozhu Wen, Angelicque E. White, Samuel T. Wilson, Takashi Yoshida, Jonathan P. Zehr, Run Zhang, Yao Zhang, and Ya-Wei Luo
Earth Syst. Sci. Data, 15, 3673–3709, https://doi.org/10.5194/essd-15-3673-2023, https://doi.org/10.5194/essd-15-3673-2023, 2023
Short summary
Short summary
N2 fixation by marine diazotrophs is an important bioavailable N source to the global ocean. This updated global oceanic diazotroph database increases the number of in situ measurements of N2 fixation rates, diazotrophic cell abundances, and nifH gene copy abundances by 184 %, 86 %, and 809 %, respectively. Using the updated database, the global marine N2 fixation rate is estimated at 223 ± 30 Tg N yr−1, which triplicates that using the original database.
Martine Lizotte, Bennet Juhls, Atsushi Matsuoka, Philippe Massicotte, Gaëlle Mével, David Obie James Anikina, Sofia Antonova, Guislain Bécu, Marine Béguin, Simon Bélanger, Thomas Bossé-Demers, Lisa Bröder, Flavienne Bruyant, Gwénaëlle Chaillou, Jérôme Comte, Raoul-Marie Couture, Emmanuel Devred, Gabrièle Deslongchamps, Thibaud Dezutter, Miles Dillon, David Doxaran, Aude Flamand, Frank Fell, Joannie Ferland, Marie-Hélène Forget, Michael Fritz, Thomas J. Gordon, Caroline Guilmette, Andrea Hilborn, Rachel Hussherr, Charlotte Irish, Fabien Joux, Lauren Kipp, Audrey Laberge-Carignan, Hugues Lantuit, Edouard Leymarie, Antonio Mannino, Juliette Maury, Paul Overduin, Laurent Oziel, Colin Stedmon, Crystal Thomas, Lucas Tisserand, Jean-Éric Tremblay, Jorien Vonk, Dustin Whalen, and Marcel Babin
Earth Syst. Sci. Data, 15, 1617–1653, https://doi.org/10.5194/essd-15-1617-2023, https://doi.org/10.5194/essd-15-1617-2023, 2023
Short summary
Short summary
Permafrost thaw in the Mackenzie Delta region results in the release of organic matter into the coastal marine environment. What happens to this carbon-rich organic matter as it transits along the fresh to salty aquatic environments is still underdocumented. Four expeditions were conducted from April to September 2019 in the coastal area of the Beaufort Sea to study the fate of organic matter. This paper describes a rich set of data characterizing the composition and sources of organic matter.
Flavienne Bruyant, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Lise Artigue, Lucas Barbedo de Freitas, Guislain Bécu, Simon Bélanger, Pascaline Bourgain, Annick Bricaud, Etienne Brouard, Camille Brunet, Tonya Burgers, Danielle Caleb, Katrine Chalut, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Marine Cusa, Fanny Cusset, Laeticia Dadaglio, Marty Davelaar, Gabrièle Deslongchamps, Céline Dimier, Julie Dinasquet, Dany Dumont, Brent Else, Igor Eulaers, Joannie Ferland, Gabrielle Filteau, Marie-Hélène Forget, Jérome Fort, Louis Fortier, Martí Galí, Morgane Gallinari, Svend-Erik Garbus, Nicole Garcia, Catherine Gérikas Ribeiro, Colline Gombault, Priscilla Gourvil, Clémence Goyens, Cindy Grant, Pierre-Luc Grondin, Pascal Guillot, Sandrine Hillion, Rachel Hussherr, Fabien Joux, Hannah Joy-Warren, Gabriel Joyal, David Kieber, Augustin Lafond, José Lagunas, Patrick Lajeunesse, Catherine Lalande, Jade Larivière, Florence Le Gall, Karine Leblanc, Mathieu Leblanc, Justine Legras, Keith Lévesque, Kate-M. Lewis, Edouard Leymarie, Aude Leynaert, Thomas Linkowski, Martine Lizotte, Adriana Lopes dos Santos, Claudie Marec, Dominique Marie, Guillaume Massé, Philippe Massicotte, Atsushi Matsuoka, Lisa A. Miller, Sharif Mirshak, Nathalie Morata, Brivaela Moriceau, Philippe-Israël Morin, Simon Morisset, Anders Mosbech, Alfonso Mucci, Gabrielle Nadaï, Christian Nozais, Ingrid Obernosterer, Thimoté Paire, Christos Panagiotopoulos, Marie Parenteau, Noémie Pelletier, Marc Picheral, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Llúcia Ribot Lacosta, Jean-François Rontani, Blanche Saint-Béat, Julie Sansoulet, Noé Sardet, Catherine Schmechtig, Antoine Sciandra, Richard Sempéré, Caroline Sévigny, Jordan Toullec, Margot Tragin, Jean-Éric Tremblay, Annie-Pier Trottier, Daniel Vaulot, Anda Vladoiu, Lei Xue, Gustavo Yunda-Guarin, and Marcel Babin
Earth Syst. Sci. Data, 14, 4607–4642, https://doi.org/10.5194/essd-14-4607-2022, https://doi.org/10.5194/essd-14-4607-2022, 2022
Short summary
Short summary
This paper presents a dataset acquired during a research cruise held in Baffin Bay in 2016. We observed that the disappearance of sea ice in the Arctic Ocean increases both the length and spatial extent of the phytoplankton growth season. In the future, this will impact the food webs on which the local populations depend for their food supply and fisheries. This dataset will provide insight into quantifying these impacts and help the decision-making process for policymakers.
Frédéric Cyr and Peter S. Galbraith
Earth Syst. Sci. Data, 13, 1807–1828, https://doi.org/10.5194/essd-13-1807-2021, https://doi.org/10.5194/essd-13-1807-2021, 2021
Short summary
Short summary
Climate indices are often regarded as simple ways to relate mean environmental conditions to the state of an ecosystem. Such indices are often used to inform fisheries scientists and managers or used in fisheries resource assessments and ecosystem studies. The Newfoundland and Labrador (NL) climate index aims to describe the environmental conditions on the NL shelf and in the Northwest Atlantic as a whole. It consists of annual normalized anomalies of 10 subindices relevant for the NL shelf.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Martine Lizotte, Maurice Levasseur, Virginie Galindo, Margaux Gourdal, Michel Gosselin, Jean-Éric Tremblay, Marjolaine Blais, Joannie Charette, and Rachel Hussherr
Biogeosciences, 17, 1557–1581, https://doi.org/10.5194/bg-17-1557-2020, https://doi.org/10.5194/bg-17-1557-2020, 2020
Short summary
Short summary
This study brings further support to the premise that the prevalence of younger and thinner icescapes over older and thicker ones in the Canadian High Arctic favors the early development of under-ice microorganisms as well as their production of the climate-relevant gas dimethylsulfide (DMS). Given the rapid rate of climate-driven changes in Arctic sea ice, our results suggest implications for the timing and magnitude of DMS pulses in the Arctic, with ramifications for climate forecasting.
Philippe Massicotte, Rémi Amiraux, Marie-Pier Amyot, Philippe Archambault, Mathieu Ardyna, Laurent Arnaud, Lise Artigue, Cyril Aubry, Pierre Ayotte, Guislain Bécu, Simon Bélanger, Ronald Benner, Henry C. Bittig, Annick Bricaud, Éric Brossier, Flavienne Bruyant, Laurent Chauvaud, Debra Christiansen-Stowe, Hervé Claustre, Véronique Cornet-Barthaux, Pierre Coupel, Christine Cox, Aurelie Delaforge, Thibaud Dezutter, Céline Dimier, Florent Domine, Francis Dufour, Christiane Dufresne, Dany Dumont, Jens Ehn, Brent Else, Joannie Ferland, Marie-Hélène Forget, Louis Fortier, Martí Galí, Virginie Galindo, Morgane Gallinari, Nicole Garcia, Catherine Gérikas Ribeiro, Margaux Gourdal, Priscilla Gourvil, Clemence Goyens, Pierre-Luc Grondin, Pascal Guillot, Caroline Guilmette, Marie-Noëlle Houssais, Fabien Joux, Léo Lacour, Thomas Lacour, Augustin Lafond, José Lagunas, Catherine Lalande, Julien Laliberté, Simon Lambert-Girard, Jade Larivière, Johann Lavaud, Anita LeBaron, Karine Leblanc, Florence Le Gall, Justine Legras, Mélanie Lemire, Maurice Levasseur, Edouard Leymarie, Aude Leynaert, Adriana Lopes dos Santos, Antonio Lourenço, David Mah, Claudie Marec, Dominique Marie, Nicolas Martin, Constance Marty, Sabine Marty, Guillaume Massé, Atsushi Matsuoka, Lisa Matthes, Brivaela Moriceau, Pierre-Emmanuel Muller, Christopher-John Mundy, Griet Neukermans, Laurent Oziel, Christos Panagiotopoulos, Jean-Jacques Pangrazi, Ghislain Picard, Marc Picheral, France Pinczon du Sel, Nicole Pogorzelec, Ian Probert, Bernard Quéguiner, Patrick Raimbault, Joséphine Ras, Eric Rehm, Erin Reimer, Jean-François Rontani, Søren Rysgaard, Blanche Saint-Béat, Makoto Sampei, Julie Sansoulet, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Caroline Sévigny, Yuan Shen, Margot Tragin, Jean-Éric Tremblay, Daniel Vaulot, Gauthier Verin, Frédéric Vivier, Anda Vladoiu, Jeremy Whitehead, and Marcel Babin
Earth Syst. Sci. Data, 12, 151–176, https://doi.org/10.5194/essd-12-151-2020, https://doi.org/10.5194/essd-12-151-2020, 2020
Short summary
Short summary
The Green Edge initiative was developed to understand the processes controlling the primary productivity and the fate of organic matter produced during the Arctic spring bloom (PSB). In this article, we present an overview of an extensive and comprehensive dataset acquired during two expeditions conducted in 2015 and 2016 on landfast ice southeast of Qikiqtarjuaq Island in Baffin Bay.
Robin Bénard, Maurice Levasseur, Michael Scarratt, Sonia Michaud, Michel Starr, Alfonso Mucci, Gustavo Ferreyra, Michel Gosselin, Jean-Éric Tremblay, Martine Lizotte, and Gui-Peng Yang
Biogeosciences, 16, 1167–1185, https://doi.org/10.5194/bg-16-1167-2019, https://doi.org/10.5194/bg-16-1167-2019, 2019
Short summary
Short summary
We present rare data on the combined effects of acidification and warming on dimethylsulfide (DMS) during a mesocosm experiment. Our results show a reduction of DMS under elevated pCO2, but warming the mesocosms by 5 °C translated into a positive offset in concentrations of DMS over the whole range of pCO2 tested. Our results suggest that warming could mitigate the expected reduction in DMS production due to OA, even increasing the net DMS production, with possible repercussions for the climate.
Robin Bénard, Maurice Levasseur, Michael Scarratt, Marie-Amélie Blais, Alfonso Mucci, Gustavo Ferreyra, Michel Starr, Michel Gosselin, Jean-Éric Tremblay, and Martine Lizotte
Biogeosciences, 15, 4883–4904, https://doi.org/10.5194/bg-15-4883-2018, https://doi.org/10.5194/bg-15-4883-2018, 2018
Short summary
Short summary
We investigated the combined effect of ocean acidification and warming on the dynamics of the phytoplankton fall boom in the Lower St. Lawrence Estuary, Canada. Twelve 2600 L mesocosms were used to cover a wide range of pH and two temperatures. We found that warming, rather than acidification, is more likely to alter the autumnal bloom in this estuary in the decades to come by stimulating the development and senescence of diatoms, and promoting picocyanobacteria proliferation.
Douglas B. Collins, Julia Burkart, Rachel Y.-W. Chang, Martine Lizotte, Aude Boivin-Rioux, Marjolaine Blais, Emma L. Mungall, Matthew Boyer, Victoria E. Irish, Guillaume Massé, Daniel Kunkel, Jean-Éric Tremblay, Tim Papakyriakou, Allan K. Bertram, Heiko Bozem, Michel Gosselin, Maurice Levasseur, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 17, 13119–13138, https://doi.org/10.5194/acp-17-13119-2017, https://doi.org/10.5194/acp-17-13119-2017, 2017
Short summary
Short summary
The sources of aerosol particles and their growth to sizes large enough to act as cloud droplet seeds is of major importance to climate since clouds exert substantial control over the atmospheric energy balance. Using ship-board measurements from two summers in the Canadian Arctic, aerosol formation events were related to co-sampled atmospheric and oceanic parameters, providing insight into factors that drive particle formation and motivating further study of ocean–atmosphere interactions.
Rachel Hussherr, Maurice Levasseur, Martine Lizotte, Jean-Éric Tremblay, Jacoba Mol, Helmuth Thomas, Michel Gosselin, Michel Starr, Lisa A. Miller, Tereza Jarniková, Nina Schuback, and Alfonso Mucci
Biogeosciences, 14, 2407–2427, https://doi.org/10.5194/bg-14-2407-2017, https://doi.org/10.5194/bg-14-2407-2017, 2017
Short summary
Short summary
This study assesses the impact of ocean acidification on phytoplankton and its synthesis of the climate-active gas dimethyl sulfide (DMS), as well as its modulation, by two contrasting light regimes in the Arctic. The light regimes tested had no significant impact on either the phytoplankton or DMS concentration, whereas both variables decreased linearly with the decrease in pH. Thus, a rapid decrease in surface water pH could alter the algal biomass and inhibit DMS production in the Arctic.
Josiane Mélançon, Maurice Levasseur, Martine Lizotte, Michael Scarratt, Jean-Éric Tremblay, Philippe Tortell, Gui-Peng Yang, Guang-Yu Shi, Huiwang Gao, David Semeniuk, Marie Robert, Michael Arychuk, Keith Johnson, Nes Sutherland, Marty Davelaar, Nina Nemcek, Angelica Peña, and Wendy Richardson
Biogeosciences, 13, 1677–1692, https://doi.org/10.5194/bg-13-1677-2016, https://doi.org/10.5194/bg-13-1677-2016, 2016
Short summary
Short summary
Ocean acidification is likely to affect iron-limited phytoplankton fertilization by desert dust. Short incubations of northeast subarctic Pacific waters enriched with dust and set at pH 8.0 and 7.8 were conducted. Acidification led to a significant reduction (by 16–38 %) of the final concentration of chl a reached after enrichment. These results show that dust deposition events in a low-pH iron-limited ocean are likely to stimulate phytoplankton growth to a lesser extent than in today's ocean.
Gregory R. Wentworth, Jennifer G. Murphy, Betty Croft, Randall V. Martin, Jeffrey R. Pierce, Jean-Sébastien Côté, Isabelle Courchesne, Jean-Éric Tremblay, Jonathan Gagnon, Jennie L. Thomas, Sangeeta Sharma, Desiree Toom-Sauntry, Alina Chivulescu, Maurice Levasseur, and Jonathan P. D. Abbatt
Atmos. Chem. Phys., 16, 1937–1953, https://doi.org/10.5194/acp-16-1937-2016, https://doi.org/10.5194/acp-16-1937-2016, 2016
Short summary
Short summary
Air near the surface in the summertime Arctic is extremely clean and typically has very low concentrations of both gases and particles. However, atmospheric measurements taken throughout the Canadian Arctic in the summer of 2014 revealed higher-than-expected amounts of gaseous ammonia. It is likely the majority of this ammonia is coming from migratory seabird colonies throughout the Arctic. Seabird guano (dung) releases ammonia which could impact climate and sensitive Arctic ecosystems.
P. Coupel, A. Matsuoka, D. Ruiz-Pino, M. Gosselin, D. Marie, J.-É. Tremblay, and M. Babin
Biogeosciences, 12, 991–1006, https://doi.org/10.5194/bg-12-991-2015, https://doi.org/10.5194/bg-12-991-2015, 2015
J.-É. Tremblay, P. Raimbault, N. Garcia, B. Lansard, M. Babin, and J. Gagnon
Biogeosciences, 11, 4853–4868, https://doi.org/10.5194/bg-11-4853-2014, https://doi.org/10.5194/bg-11-4853-2014, 2014
A. Forest, P. Coupel, B. Else, S. Nahavandian, B. Lansard, P. Raimbault, T. Papakyriakou, Y. Gratton, L. Fortier, J.-É. Tremblay, and M. Babin
Biogeosciences, 11, 2827–2856, https://doi.org/10.5194/bg-11-2827-2014, https://doi.org/10.5194/bg-11-2827-2014, 2014
M. Ardyna, M. Babin, M. Gosselin, E. Devred, S. Bélanger, A. Matsuoka, and J.-É. Tremblay
Biogeosciences, 10, 4383–4404, https://doi.org/10.5194/bg-10-4383-2013, https://doi.org/10.5194/bg-10-4383-2013, 2013
S. Bélanger, M. Babin, and J.-É. Tremblay
Biogeosciences, 10, 4087–4101, https://doi.org/10.5194/bg-10-4087-2013, https://doi.org/10.5194/bg-10-4087-2013, 2013
V. Le Fouest, M. Babin, and J.-É. Tremblay
Biogeosciences, 10, 3661–3677, https://doi.org/10.5194/bg-10-3661-2013, https://doi.org/10.5194/bg-10-3661-2013, 2013
J. Martin, J. É. Tremblay, and N. M. Price
Biogeosciences, 9, 5353–5371, https://doi.org/10.5194/bg-9-5353-2012, https://doi.org/10.5194/bg-9-5353-2012, 2012
Cited articles
Archambault, P., Schloss, I. R., Grant, C., and Plante, S. (Eds.): Les
hydrocarbures dans le golfe du Saint-Laurent: Enjeux sociaux,
économiques et environnementaux, Notre Golfe, Rimouski, Québec,
Canada, 2017. a
Barber, D. G., Asplin, M. G., Gratton, Y., Lukovich, J., Galley, R. J.,
Raddatz, R. L., and Leitch, D.: The International Polar Year (IPY)
Circumpolar Flaw Lead (CFL) System Study: Overview and the
physical system, Atmos.-Ocean, 48, 225–243, https://doi.org/10.3137/OC317.2010, 2010. a
Bendtsen, J. and Richardson, K.: Turbulence measurements suggest high rates of new production over the shelf edge in the northeastern North Sea during summer, Biogeosciences, 15, 7315–7332, https://doi.org/10.5194/bg-15-7315-2018, 2018. a
Blais, M., Galbraith, P. S., Plourde, S., Scarratt, M., Devine, L., and Lehoux, C.: Chemical and biological oceanographic conditions in the Estuary and Gulf of St. Lawrence during 2018, Research document, DFO Canadian Science
Advisory Secretariat (CSAS), Mont-Joli, QC, Canada, iv + 64 pp., 2019. a
Bluteau, C. E., Jones, N. L., and Ivey, G. N.: Estimating turbulent dissipation from microstructure shear measurements using maximum likelihood spectral fitting over the inertial and viscous subranges, J. Atmos. Ocean. Tech., 116, 713–722, 2016. a
Bluteau, C. E., Galbraith, P. S., Bourgault, D., Tremblay, J.-E., and Villeneuve, V.: Nutrient fluxes in the lower St. Lawrence Estuary, in: Nutrient transport pathways during winter in the Lower St. Lawrence Estuary (Version v1), Zenodo [data set], https://doi.org/10.5281/zenodo.3840552, 2020. a
Bourgault, D. and Koutitonsky, V. G.: Real-time monitoring of the freshwater
discharge at the head of the St. Lawrence Estuary, Atmos. Ocean, 37,
203–220, 1999. a
Bourgault, D. and Matte, P.: A physically based method for real-time monitoring
of tidal river discharges from water level observations, with an application
to the St. Lawrence River, J. Geophys. Res., 125, e2019JC015992,
https://doi.org/10.1029/2019JC015992, 2020a. a, b, c
Bourgault, D. and Matte, P.: Qmec: a Matlab code to compute tidal river
discharge from water level, Qmec [code], https://doi.org/10.24433/CO.7299598.v1, 2020b. a, b
Fortier, L., Barber, D., and Michaud, J., eds.: On thin ice: a synthesis of the
Canadian Arctic Shelf Exchange Study (CASES), Aboriginal Issues
Press, Winnipeg, MB, Canada, 2008. a
Galbraith, P., Chassé, J., Caverhill, C., Nicot, P., Gilbert, D., Lefaivre,
D., and Lafleur, C.: Physical Oceanographic Conditions in the Gulf of St.
Lawrence during 2018, Research document, DFO Canadian Science Advisory
Secretariat, Canadian Science Advisory Secretariat (CSAS), Ottawa, ON, iv + 79 pp., 2019. a, b, c
Galbraith, P. S.: Winter water masses in the Gulf of St. Lawrence, J. Geophys. Res., 111, C06022, https://doi.org/10.1029/2005JC003159, 2006. a
Gilbert, D., Sundby, B., Gobeil, C., Mucci, A., and Tremblay, G.-H.: A
seventy-two-year record of diminishing deep-water oxygen in the St. Lawrence
estuary: The northwest Atlantic connection, Limnol. Oceanogr., 50,
1654–1666, https://doi.org/10.4319/lo.2005.50.5.1654, 2005. a, b
Goodman, L., Levine, E. R., and Lueck, R. G.: On Measuring the Terms of the
Turbulent Kinetic Energy Budget from an AUV, J. Atmos. Ocean. Tech.,
23, 977–990, https://doi.org/10.1175/JTECH1889.1, 2006. a
Green, R. H., Jones, N. L., Rayson, M. D., Lowe, R. J., Bluteau, C. E., and
Ivey, G. N.: Nutrient fluxes into an isolated coral reef atoll by tidally
driven internal bores, Limnol. Oceanogr., 64, 461–473,
https://doi.org/10.1002/lno.11051, 2019. a
Gregg, M., D'Asaro, E., Riley, J., and Kunze, E.: Mixing Efficiency in the
Ocean, Annu. Rev. Mar. Sci, 10, 443–473,
https://doi.org/10.1146/annurev-marine-121916-063643, 2018. a
Greisman, P. and Ingram, R. G.: Nutrient distribution in the St. Lawrence
Estuary, J. Fish. Res. Board Can., 34, 2117–2123, 1977. a
Hansen, H. P. and Koroleff, F.: Methods of Seawater Analysis, chap.
Determination of nutrients, Wiley-VCH Verlag GmbH, 3rd edn., 159–228,
https://doi.org/10.1002/9783527613984, 2007. a
Hieronymus, M. and Carpenter, J. R.: Energy and Variance Budgets of a Diffusive
Staircase with Implications for Heat Flux Scaling, J. Phys. Oceanogr., 46,
2553–2569, https://doi.org/10.1175/JPO-D-15-0155.1, 2016. a
Holleman, R. C., Geyer, W. R., and Ralston, D. K.: Stratified Turbulence and
Mixing Efficiency in a Salt Wedge Estuary, J. Phys. Oceanogr., 46,
1769–1783, https://doi.org/10.1175/JPO-D-15-0193.1, 2016. a
Hudon, C., Gagnon, P., Rondeau, M., Hébert, S., Gilbert, D., Hill, B.,
Patoine, M., and Starr, M.: Hydrological and biological processes modulate
carbon, nitrogen and phosphorus flux from the St. Lawrence River to its
estuary (Quebec, Canada), Biogeochemistry, 135, 251–276,
https://doi.org/10.1007/s10533-017-0371-4, 2017. a, b, c, d, e, f
Ingram, R. G.: Vertical mixing at the head of the Laurentian Channel, Estuar.
Coast. Shelf Sci., 16, 332–338, https://doi.org/10.1016/0272-7714(83)90150-6, 1983. a, b, c
Ivey, G. N., Bluteau, C. E., and Jones, N. L.: Quantifying Diapycnal Mixing in
an Energetic Ocean, J. Geophys. Res., 123, 346–357,
https://doi.org/10.1002/2017JC013242, 2018. a
Lauzier, L. M. and Trites, R. W.: The Deep Waters in the Laurentian Channel, J.
Fish. Res. Board Can., 15, 1247–1257, https://doi.org/10.1139/f58-068, 1958. a
Mitchell, M., Harrison, G., Pauley, K., Gagné, A., Maillet, G., and Strain,
P.: Atlantic Zonal Monitoring Program Sampling Protocol, techreport 223,
Government of Canada, Can. Tech. Rep. Hydrogr. Ocean Sci., Darmouth, Nova Scotia, iv +23 pp., 2002. a
Monismith, S. G., Koseff, J. R., and White, B. L.: Mixing Efficiency in the
Presence of Stratification: When Is It Constant?, Geophys. Res. Lett., 45,
5627–5634, https://doi.org/10.1029/2018GL077229, 2018. a, b
Mouriño-Carballido, B., Otero Ferrer, J. L., Fernández Castro, B.,
Marañón, E., Blazquez Maseda, M., Aguiar-González, B., Chouciño,
P., Graña, R., Moreira-Coello, V., and Villamana, M.: Magnitude of
nitrate turbulent diffusion in contrasting marine environments, Sci. Rep.-UK,
11, 18804, https://doi.org/10.1038/s41598-021-97731-4, 2021. a, b, c, d
OSGL: https://catalogue.ogsl.ca/organization/mpo, last access: 23 October 2021. a
Osborn, T. R.: Estimates of the local rate of vertical diffusion from
dissipation measurements, J. Phys. Oceanogr., 10, 83–89,
https://doi.org/10.1175/1520-0485(1980)010<0083:EOTLRO>2.0.CO;2, 1980. a
Papakyriakou, T. and Stern, G.: The IPY Circumpolar Flaw Lead and
Arctic SOLAS Experiments: Oceanography, Geophysics, and
Biogeochemistry of the Amundsen Gulf and Southern Beaufort Sea
during a year of unprecedented sea ice minima, J. Geophys. Res., 116–117,
2011–2012. a
Polyakov, I. V., Padman, L., Lenn, Y.-D., Pnyushkov, A., Rember, R., and
Ivanov, V. V.: Eastern Arctic Ocean Diapycnal Heat Fluxes through Large
Double-Diffusive Steps, J. Phys. Oceanogr., 49, 227–246,
https://doi.org/10.1175/JPO-D-18-0080.1, 2019. a, b
Saucier, F. J. and Chassé, J.: Tidal circulation and buoyancy effects in
the St. Lawrence Estuary, Atmosphere-Ocean, 38, 1–52,
https://doi.org/10.1080/07055900.2000.9649658, 2000. a
Schafstall, J., Dengler, M., Brandt, P., and Bange, H.: Tidal-induced mixing
and diapycnal nutrient fluxes in the Mauritanian upwelling region, J.
Geophys. Res., 115, C10014, https://doi.org/10.1029/2009JC005940, 2010. a
Schlitzer, R.: ODV 5.5.1, Ocean Data View, https://odv.awi.de, last access: June 2020. a
Sharples, J., Tweddle, J. F., Green, J. A. M., Palmer, M. R., Kim, Y.-N.,
Hickman, A. E., Holligan, P. M., Moore, C. M., Rippeth, T. P., Simpson,
J. H., and Krivtsov, V.: Spring-neap modulation of internal tide mixing and
vertical nitrate fluxes at a shelf edge in summer, Limnol.
Oceanogr., 52, 1735–1747, https://doi.org/10.4319/lo.2007.52.5.1735, 2007. a
Sinclair, M., El-Sabh, M., and Brindle, J.-R.: Seaward nutrient transport in
the lower St. Lawrence Estuary, J. Fish. Res. Board
of Canada, 33, 1271–1277, https://doi.org/10.1139/f76-163, 1976. a, b, c
Smith, C. G., Saucier, F. J., and Straub, D.: Response of the Lower
St. Lawrence Estuary to external forcing in winter, J. Phys. Oceanogr.,
36, 1485–1501, https://doi.org/10.1175/JPO2927.1, 2006. a
Therriault, J.-C., Petrie, B., Pepin, P., Gagnon, J., Gregory, D., Helbig, J.,
Herman, A., Lefaivre, D., Mitchell, M., Pelchat, B., and nd D. Sameoto,
J. R.: Proposal for a northwest Atlantic zonal monitoring program,
Can.Tech. Rep. Hydrogr. Ocean Sci. 194, Fish. Oceans Canada, 57 pp.,
1998. a
Tremblay, J.-E., Legendre, L., and Therriault, J.-C.: Size-differential Effects
of Vertical Stability on the Biomass and Production of Phytoplankton in a
Large Estuarine System, Estuar. Coast. Shelf Sci., 45, 415–431,
https://doi.org/10.1006/ecss.1996.0223, 1997.
a
Troupin, C., Barth, A., Sirjacobs, D., Ouberdous, M., Brankart, J.-M.,
Brasseur, P., Rixen, M., Alvera-Azcárate, A., Belounis, M., Capet, A.,
Lenartz, F., Toussaint, M.-E., and Beckers, J.-M.: Generation of analysis and
consistent error fields using the Data Interpolating Variational Analysis
(Diva), Ocean Modell., 52–53, 90–101, https://doi.org/10.1016/j.ocemod.2012.05.002,
2012. a, b, c, d
Villeneuve, V.: Caractérisation des variations saisonnière et spatiale des éléments nutritifs et de la prise de l'azote dissous dans l'estuaire du fleuve Saint-Laurent, MSc thesis, Université Laval, available at: https://corpus.ulaval.ca/jspui/bitstream/20.500.11794/66815/1/36437.pdf (last access: 23 October 2021), 2020. a, b, c, d
Waterhouse, A. F., MacKinnon, J. A., Nash, J. D., Alford, M. H., Kunze, E.,
Polzin, H. L. S. K. L., Sun, L. C. S. L. O. M., Pinkel, R., Talley, L. D.,
Whalen, C. B., Huussen, T. N., Carter, G. S., Fer, I., Waterman, S.,
Garabato, A. C. N., Sanford, T. B., and Lee, C. M.: Global patterns of
diapycnal mixing from measurements of the turbulent dissipation rate, J.
Geophys. Res., 44, 1854–1872, https://doi.org/10.1175/JPO-D-13-0104.1, 2014. a
Short summary
In 2018, the Canadian Coast Guard approved a science team to sample in tandem with its ice-breaking and ship escorting operations. This collaboration provided the first mixing observations during winter that covered the largest spatial extent of the St. Lawrence Estuary and the Gulf of St. Lawrence ever measured in any season. Contrary to previous assumptions, we demonstrate that fluvial nitrate inputs from upstream (i.e., Great Lakes) are the most significant source of nitrate in the estuary.
In 2018, the Canadian Coast Guard approved a science team to sample in tandem with its...