Articles | Volume 17, issue 5
https://doi.org/10.5194/os-17-1421-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-1421-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Distribution of suspended particulate matter at the equatorial transect in the Atlantic Ocean
Vadim Sivkov
Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nahimovskiy prospekt, Moscow, 117997, Russia
Immanuel Kant Baltic Federal University, Kaliningrad, 14, A. Nevskogo str., Kaliningrad, 236016, Russia
Shirshov Institute of Oceanology, Russian Academy of Sciences, 36, Nahimovskiy prospekt, Moscow, 117997, Russia
Immanuel Kant Baltic Federal University, Kaliningrad, 14, A. Nevskogo str., Kaliningrad, 236016, Russia
Related authors
No articles found.
Mariia Kapustina and Ekaterina Bubnova
EGUsphere, https://doi.org/10.5194/egusphere-2024-2673, https://doi.org/10.5194/egusphere-2024-2673, 2024
Preprint withdrawn
Short summary
Short summary
The Baltic Sea is facing a serious problem: oxygen depletion in its deep waters. Our study, analyzing 20 years of data in the Gdansk Deep, shows that oxygen levels are declining. This is likely due to warming waters, which accelerate the decomposition of organic matter, consuming oxygen. Our research suggests that other oxygen sources, like deep convection and advection processes, might be playing a crucial role for the Baltic Sea well-being.
Cited articles
Alldredge, A. L., Passow, U., and Logan, B. E.: The abundance and significance of a class of large, transparent organic particles in the ocean, Deep-Sea Res. Pt. I, 40, 1131–1140, https://doi.org/10.1016/0967-0637(93)90129-Q, 1993. a
Armi, L.: Mixing in the deep ocean: the importance of boundaries, Oceanus, 21, 14–19, 1978. a
Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S., and Wakeham, S. G.: A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals, Deep-Sea Res. Pt. II, 49, 219–236, https://doi.org/10.1016/S0967-0645(01)00101-1, 2001. a
Barth, A., Alvera-Azcárate, A., Troupin, C., Ouberdous, M., and Beckers, J.-M.: A web interface for griding arbitrarily distributed in situ data based on Data-Interpolating Variational Analysis (DIVA), Adv. Geosci., 28, 29–37, https://doi.org/10.5194/adgeo-28-29-2010, 2010. a, b
Bourlès, B., Gouriou, Y., and Chuchla, R.: On the circulation in the upper layer of the western equatorial Atlantic, J. Geophys. Res.-Oceans, 104, 21151–21170, https://doi.org/10.1029/1999JC900058, 1999. a, b, c, d
Bowden, K. F.: The dynamics of flow on a submarine ridge, Tellus, 12, 419–426, https://doi.org/10.3402/tellusa.v12i4.9415, 1960. a
Brandt, P., Schott, F. A., Provost, C., Kartavtseff, A., Hormann, V., Bourlès, B., and Fischer, J.: Circulation in the central equatorial Atlantic: Mean and intraseasonal to seasonal variability, Geophys. Res. Lett., 33, L07609, https://doi.org/10.1029/2005GL025498, 2006. a
Brandt, P., Hormann, V., Körtzinger, A., Visbeck, M., Krahmann, G., Stramma, L., Lumpkin, R., and Schmid, C.: Changes in the ventilation of the oxygen minimum zone of the tropical North Atlantic, J. Phys. Oceanogr., 40, 1784–1801, https://doi.org/10.1175/2010JPO4301.1, 2010. a
Bressac, M., Guieu, C., Doxaran, D., Bourrin, F., Desboeufs, K., Leblond, N., and Ridame, C.: Quantification of the lithogenic carbon pump following a simulated dust-deposition event in large mesocosms, Biogeosciences, 11, 1007–1020, https://doi.org/10.5194/bg-11-1007-2014, 2014. a
Brewer, P. G., Spencer, D. W., Biscaye, P. E., Hanley, A., Sachs, P. L., Smith, C. L., Kadar, S., and Fredericks, J.: The distribution of particulate matter in the Atlantic Ocean, Earth Planet. Sc. Lett., 32, 393–402, https://doi.org/10.1016/0012-821X(76)90080-7, 1976. a, b
Bruce, J., Kerling, J., and Beatty III, W.: On the North Brazilian eddy field, Prog. Oceanogr., 14, 57–63, https://doi.org/10.1016/0079-6611(85)90005-9, 1985. a, b, c
Bubnova, E., Kapustina, M., Krechik, V., and Sivkov, V.: Suspended matter distribution in the surface layer of the East Equatorial Atlantic, Oceanology, 60, 228–235, https://doi.org/10.31857/S0030157420010049, 2020. a, b
Burlakova, Z., Eremeeva, L., and Morozova, A.: Suspended matter in the estuaries of the Guinean shelf, Physical Oceanography, 8, 269–283, 1997. a
Candela, J., Beardsley, R. C., and Limeburner, R.: Separation of tidal and subtidal currents in ship-mounted acoustic Doppler current profiler observations, J. Geophys. Res.-Oceans, 97, 769–788, https://doi.org/10.1029/91JC02569, 1992. a
Carder, K. L., Betzer, P. R., and Eggimann, D. W.: Physical, chemical, and optical measures of suspended-particle concentrations: their intercomparison and application to the West African Shelf, in: Suspended solids in water, edited by: Gibbs, R., Springer, Boston, MA, 173–193, 1974. a
Chester, R.: Particulate material in the oceans, in: Marine Geochemistry, Springer, Dodrecht, 321–345, https://doi.org/10.1007/978-94-010-9488-7_10, 1990. a, b, c
Craig, H. and Turekian, K.: The GEOSECS program: 1973–1976, Earth Planet. Sc. Lett., 32, 217–219, https://doi.org/10.1016/0012-821X(76)90062-5, 1976. a
Csanady, G.: “Pycnobathic” currents over the upper continental slope, J. Phys. Oceanogr., 15, 306–315, https://doi.org/10.1175/1520-0485(1985)015<0306:COTUCS>2.0.CO;2, 1985. a
Didden, N. and Schott, F.: Eddies in the North Brazil Current retroflection region observed by Geosat altimetry, J. Geophys. Res.-Oceans, 98, 20121–20131, https://doi.org/10.1029/93JC01184, 1993. a
Doi, T., Tozuka, T., and Yamagata, T.: Interannual variability of the Guinea Dome and its possible link with the Atlantic Meridional Mode, Clim. Dynam., 33, 985–998, https://doi.org/10.1007/s00382-009-0574-z, 2009. a
Egloff, J.: Morphology of ocean basin seaward of northwest Africa: Canary Islands to Monrovia, Liberia, AAPG Bull., 56, 694–706, 1972. a
Eittreim, S., Thorndike, E. M., and Sullivan, L.: Turbidity distribution in the Atlantic Ocean, Deep Sea Research and Oceanographic Abstracts, 23, 1115–1127, https://doi.org/10.1016/0011-7471(76)90888-3, 1976. a, b, c
Eittreim, S. L. and Ewing, M.: Turbidity distribution in the deep waters of the western Atlantic trough, in: Suspended solids in water, edited by: Gibbs, R., Springer, Boston, MA, 213–225, 1974. a
Emelyanov, E. M.: The barrier zones in the ocean, Springer Science and Business Media, Berlin, Heideberg, 2005. a
Emery, K. and Honjo, S.: Surface suspended matter off western Africa: relations of organic matter, skeletal debris and detrital minerals, Sedimentology, 26, 775–794, https://doi.org/10.1111/j.1365-3091.1979.tb00972.x, 1979. a
Fratantoni, D. M., Johns, W. E., and Townsend, T. L.: Rings of the North Brazil Current: Their structure and behavior inferred from observations and a numerical simulation, J. Geophys. Res.-Oceans, 100, 10633–10654, https://doi.org/10.1029/95JC00925, 1995. a
Gardner, W. D., Biscaye, P. E., Zaneveld, J. R. V., and Richardson, M. J.: Calibration and comparison of the LDGO nephelometer and the OSU transmissometer on the Nova Scotian Rise, Mar. Geol., 66, 323–344, https://doi.org/10.1016/0025-3227(85)90037-4, 1985a. a, b
Gardner, W. D., Southard, J. B., and Hollister, C. D.: Sedimentation, resuspension and chemistry of particles in the northwest Atlantic, Mar. Geol., 65, 199–242, https://doi.org/10.1016/0025-3227(85)90057-X, 1985b. a
Gardner, W. D., Richardson, M. J., Mishonov, A. V., and Biscaye, P. E.: Global comparison of benthic nepheloid layers based on 52 years of nephelometer and transmissometer measurements, Prog. Oceanogr., 168, 100–111, https://doi.org/10.1016/j.pocean.2018.09.008, 2018. a
GEBCO Bathymetric Compilation Group: The GEBCO_2020 Grid – a continuous terrain model of the global oceans and land, https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9, 2020. a, b
Gibbs, R. J.: The suspended material of the Amazon shelf and tropical Atlantic Ocean, in: Suspended solids in water, edited by: Gibbs, R., Springer, Boston, MA, 203–210, https://doi.org/10.1007/978-1-4684-8529-5_1, 1974. a
Herbland, A., Le Bouteiller, A., and Raimbault, P.: Size structure of phytoplankton biomass in the equatorial Atlantic Ocean, Deep-Sea Res. Pt. I, 32, 819–836, https://doi.org/10.1016/0198-0149(85)90118-9, 1985. a
Iversen, M. H. and Ploug, H.: Ballast minerals and the sinking carbon flux in the ocean: carbon-specific respiration rates and sinking velocity of marine snow aggregates, Biogeosciences, 7, 2613–2624, https://doi.org/10.5194/bg-7-2613-2010, 2010. a
Jeandel, C., Rutgers van der Loeff, M., Lam, P. J., Roy-Barman, M., Sherrell, R. M., Kretschmer, S., German, C., and Dehairs, F.: What did we learn about ocean particle dynamics in the GEOSECS–JGOFS era?, Prog. Oceanogr., 133, 6–16, https://doi.org/10.1016/j.pocean.2014.12.018, 2015. a
Karstensen, J., Stramma, L., and Visbeck, M.: Oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans, Prog. Oceanogr., 77, 331–350, https://doi.org/10.1016/j.pocean.2007.05.009, 2008. a, b
Lal, D.: The oceanic microcosm of particles, Science, 198, 997–1009, https://doi.org/10.1126/science.198.4321.997, 1977. a
Lavelle, J.: On the dynamics of current jets trapped to the flanks of mid-ocean ridges, J. Geophys. Res.-Oceans, 117, C07002, https://doi.org/10.1029/2011JC007627, 2012. a
Lázaro, C., Fernandes, M. J., Santos, A. M. P., and Oliveira, P.: Seasonal and interannual variability of surface circulation in the Cape Verde region from 8 years of merged T/P and ERS-2 altimeter data, Remote Sens. Environ., 98, 45–62, https://doi.org/10.1016/j.rse.2005.06.005, 2005. a, b
Louis, J., Pedrotti, M. L., Gazeau, F., and Guieu, C.: Experimental evidence of formation of transparent exopolymer particles (TEP) and POC export provoked by dust addition under current and high pCO2 conditions, PloS one, 12, e0171980, https://doi.org/10.1371/journal.pone.0171980, 2017. a, b
Mayer, D. A. and Weisberg, R. H.: A description of COADS surface meteorological fields and the implied Sverdrup transports for the Atlantic Ocean from 30∘ S to 60∘ N, J. Phys. Oceanogr., 23, 2201–2221, https://doi.org/10.1175/1520-0485(1993)023<2201:ADOCSM>2.0.CO;2, 1993. a
Mazarovich, A. and Sokolov, S. Y.: Hydrothermal fields in the Mid-Atlantic Ridge: Setting and prospects for further discoveries, Russian Journal of Earth Sciences, 4, 423–431, 2002. a
McCartney, M., Bennett, S., and Woodgate-Jones, M.: Eastward flow through the Mid-Atlantic Ridge at 11∘ N and its influence on the abyss of the eastern basin, J. Phys. Oceanogr., 21, 1089–1121, https://doi.org/10.1175/1520-0485(1991)021<1089:EFTTMA>2.0.CO;2, 1991. a
McCartney, M. S.: Crossing of the equator by the deep western boundary current in the western Atlantic Ocean, J. Phys. Oceanogr., 23, 1953–1974, https://doi.org/10.1175/1520-0485(1993)023<1953:COTEBT>2.0.CO;2, 1993. a, b
McCave, I.: Vertical flux of particles in the ocean, Deep Sea Research and Oceanographic Abstracts, 22, 491–502, https://doi.org/10.1016/0011-7471(75)90022-4, 1975. a, b, c
McCave, I.: Size spectra and aggregation of suspended particles in the deep ocean, Deep-Sea Res. Pt. I, 31, 329–352, https://doi.org/10.1016/0198-0149(84)90088-8, 1984. a, b, c, d
McCave, I.: Properties of suspended sediment over the HEBBLE area on the Nova Scotian Rise, Mar. Geol., 66, 169–188, https://doi.org/10.1016/0025-3227(85)90028-3, 1985. a, b, c
McCave, I.: Local and global aspects of the bottom nepheloid layers in the world ocean, Neth. J. Sea Res., 20, 167–181, https://doi.org/10.1016/0077-7579(86)90040-2, 1986. a, b
McCave, I., Hall, I. R., Antia, A., Chou, L., Dehairs, F., Lampitt, R., Thomsen, L., Van Weering, T., and Wollast, R.: Distribution, composition and flux of particulate material over the European margin at 47–50 N, Deep-Sea Res. Pt. II, 48, 3107–3139, https://doi.org/10.1016/S0967-0645(01)00034-0, 2001. a
Mittelstaedt, E.: The ocean boundary along the northwest African coast: Circulation and oceanographic properties at the sea surface, Prog. Oceanogr., 26, 307–355, https://doi.org/10.1016/0079-6611(91)90011-A, 1991. a, b, c
Molinari, R. L., Fine, R. A., and Johns, E.: The deep western boundary current in the tropical North Atlantic Ocean, Deep-Sea Res. Pt. I, 39, 1967–1984, https://doi.org/10.1016/0198-0149(92)90008-H, 1992. a, b
Morozov, E. G.: Oceanic Internal Tides: Observations, Analysis and Modeling,
Springer International Publishing, Cham, https://doi.org/10.1007/978-3-319-73159-9, 2018. a
Mullin, J. and Riley, J.: The colorimetric determination of silicate with special reference to sea and natural waters, Anal. Chim. Acta, 12, 162–176, 1955. a
Nowell, A., McCave, I., and Hollister, C.: Contributions of HEBBLE to understanding marine sedimentation, Mar. Geol., 66, 397–409, https://doi.org/10.1016/0025-3227(85)90041-6, 1985. a, b
Oudot, C., Ternon, J.-F., Andrié, C., Braga, E. S., and Morin, P.: On the crossing of the equator by intermediate water masses in the western Atlantic Ocean: Identification and pathways of Antarctic Intermediate Water and Upper Circumpolar Water, J. Geophys. Res.-Oceans, 104, 20911–20926, https://doi.org/10.1029/1999JC900123, 1999. a, b
Passow, U.: Transparent exopolymer particles (TEP) in aquatic environments, Prog. Oceanogr., 55, 287–333, https://doi.org/10.1016/S0079-6611(02)00138-6, 2002. a
Passow, U. and Alldredge, A.: Distribution, size and bacterial colonization of transparent exopolymer particles (TEP) in the ocean, Mar. Ecol. Prog. Ser., 113, 185–198, 1994. a
Passow, U., Shipe, R., Murray, A., Pak, D., Brzezinski, M., and Alldredge, A.: The origin of transparent exopolymer particles (TEP) and their role in the sedimentation of particulate matter, Cont. Shelf Res., 21, 327–346, https://doi.org/10.1016/S0278-4343(00)00101-1, 2001. a
Peterson, R. G. and Stramma, L.: Upper-level circulation in the South Atlantic Ocean, Prog. Oceanogr., 26, 1–73, https://doi.org/10.1016/0079-6611(91)90006-8, 1991. a, b
Petschick, R., Kuhn, G., and Gingele, F.: Clay mineral distribution in surface sediments of the South Atlantic: sources, transport, and relation to oceanography, Mar. Geol., 130, 203–229, https://doi.org/10.1016/0025-3227(95)00148-4, 1996. a
Pradhan, Y., Lavender, S. J., Hardman-Mountford, N. J., and Aiken, J.: Seasonal and inter-annual variability of chlorophyll-a concentration in the Mauritanian upwelling: Observation of an anomalous event during 1998–1999, Deep-Sea Res. Pt. II, 53, 1548–1559, https://doi.org/10.1016/j.dsr2.2006.05.016, 2006. a
Reid, J. L.: On the total geostrophic circulation of the North Atlantic Ocean: Flow patterns, tracers, and transports, Prog. Oceanogr., 33, 1–92, https://doi.org/10.1016/0079-6611(89)90001-3, 1994. a
Reid, J. L.: On the total geostrophic circulation of the Pacific Ocean: Flow patterns, tracers, and transports, Prog. Oceanogr., 39, 263–352, https://doi.org/10.1016/S0079-6611(97)00012-8, 1997. a
Richardson, P., Hufford, G., Limeburner, R., and Brown, W.: North Brazil current retroflection eddies, J. Geophys. Res.-Oceans, 99, 5081–5093, https://doi.org/10.1029/93JC03486, 1994. a
Rossignol, M. and Meyrueis, A.: Campagnes oceanographiques du Gerad-Treca, Cent. Oceanogr. Dakar-Thiaroye, ORSTOM, Dakar, Senegal, 53, 1964. a
Schott, F. A., Brandt, P.,
Hamann, M., Fischer, J., and Stramma, L.: On the boundary flow off Brazil at
5–10∘ S and its connection to the interior tropical Atlantic, Geophys. Res. Lett., 29, 1840, https://doi.org/10.1029/2002GL014786, 2002. a, b
Sheldon, R., Prakash, A., and Sutcliffe Jr., W.: The size distribution of particles in the ocean 1, Limnol. Oceanogr., 17, 327–340, https://doi.org/10.4319/lo.1972.17.3.0327, 1972. a
Siedler, G., Zangenberg, N., Onken, R., and Morlière, A.: Seasonal changes in the tropical Atlantic circulation: Observation and simulation of the Guinea Dome, J. Geophys. Res.-Oceans, 97, 703–715, https://doi.org/10.1029/91JC02501, 1992. a, b
Signorini, S., Murtugudde, R., McClain, C., Christian, J., Picaut, J., and Busalacchi, A.: Biological and physical signatures in the tropical and subtropical Atlantic, J. Geophys. Res.-Oceans, 104, 18367–18382, https://doi.org/10.1029/1999JC900134, 1999. a
Sivkov, V., Zhurov, Y., and Demidova, T.: A new data on the distribution of
suspended matter in the North Atlantic, in: Proceedings of the XIV School of
Marine geology, vol. 2, 172–173, IO RAN, 2001 (in Russian). a
Smith, K., Williams, P., and Druffel, E.: Upward fluxes of particulate organic matter in the deep North Pacific, Nature, 337, 724–726, https://doi.org/10.1038/337724a0, 1989. a
Stramma, L. and Schott, F.: The mean flow field of the tropical Atlantic Ocean, Deep-Sea Res. Pt. II, 46, 279–303, https://doi.org/10.1016/S0967-0645(98)00109-X, 1999. a, b
Stramma, L., Rhein, M., Brandt, P., Dengler, M., Böning, C., and Walter, M.: Upper ocean circulation in the western tropical Atlantic in boreal fall 2000, Deep-Sea Res. Pt. I, 52, 221–240, https://doi.org/10.1016/j.dsr.2004.07.021, 2005.
a, b, c, d
Stramma, L., Brandt, P., Schafstall, J., Schott, F., Fischer, J., and Körtzinger, A.: Oxygen minimum zone in the North Atlantic south and east of the Cape Verde Islands, J. Geophys. Res.-Oceans, 113, C04014, https://doi.org/10.1029/2007JC004369, 2008. a, b, c
Thorpe, S. and White, M.: A deep intermediate nepheloid layer, Deep-Sea Res. Pt I, 35, 1665–1671, https://doi.org/10.1016/0198-0149(88)90109-4, 1988. a
Touratier, F., Goyet, C., Coatanoan, C., and Andrié, C.: Assessments of anthropogenic CO2 distribution in the tropical Atlantic Ocean, Deep-Sea Res. Pt. I, 52, 2275–2284, 2005. a
Tucholke, B. E. and Eittreim, S.: The western boundary undercurrent as a turbidity maximum over the Puerto Rico Trench, J. Geophys. Res., 79, 4115–4118, 1974. a
Turekian, K. K.: The fate of metals in the oceans, Geochim. Cosmochim. Ac., 41, 1139–1144, https://doi.org/10.1016/0016-7037(77)90109-0, 1977. a
Van der Jagt, H., Friese, C., Stuut, J.-B. W., Fischer, G., and Iversen, M. H.: The ballasting effect of Saharan dust deposition on aggregate dynamics and carbon export: Aggregation, settling, and scavenging potential of marine snow, Limnol. Oceanogr., 63, 1386–1394, https://doi.org/10.1002/lno.10779, 2018. a, b, c, d
Vladimirov, V., Bezborodov, A., Martynov, O., Ovsyanyi, E., and Diallo, B.: Relation between the depth of visibility of a white disk and the concentration of suspended matter in shelf waters off the Republic of Guinea, Soviet J. Phys. Oceanogr., 1, 469–474, 1990. a
Whitehead Jr., J. and Worthington, L.: The flux and mixing rates of Antarctic Bottom Water within the North Atlantic, J. Geophys. Res.-Oceans, 87, 7903–7924, https://doi.org/10.1029/JC087iC10p07903, 1982. a, b, c
Wilson, W. D., Johns, E., and Molinari, R.: Upper layer circulation in the western tropical North Atlantic Ocean during August 1989, J. Geophys. Res.-Oceans, 99, 22513–22523, https://doi.org/10.1029/94JC02066, 1994. a, b, c, d
Wüst, G.: Schichtung und Zirkulation des Atlantischen Ozeans, Wiss. Erg., 6, 288, 1935. a
Short summary
A suspended particulate matter distribution against a hydrographical background was studied along an oceanographic transect across the Equatorial Atlantic in the year 2000. Alongside the general agreement with the three-layer model of the ocean suspended particulate matter distribution, there was a massive area with high SPM concentrations above the Sierra Leone Rise and local SPM maxima in the bottom layer within Antarctic Bottom Water.
A suspended particulate matter distribution against a hydrographical background was studied...