Articles | Volume 17, issue 5
https://doi.org/10.5194/os-17-1303-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-17-1303-2021
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Causes of uncertainties in the representation of the Arabian Sea oxygen minimum zone in CMIP5 models
Henrike Schmidt
CORRESPONDING AUTHOR
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
Julia Getzlaff
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
Ulrike Löptien
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
Andreas Oschlies
GEOMAR Helmholtz Centre for Ocean Research Kiel, Düsternbrooker Weg 20, 24105 Kiel, Germany
Kiel University, Christian-Albrechts-Platz 4, 24118 Kiel, Germany
Related authors
Tim Rixen, Greg Cowie, Birgit Gaye, Joaquim Goes, Helga do Rosário Gomes, Raleigh R. Hood, Zouhair Lachkar, Henrike Schmidt, Joachim Segschneider, and Arvind Singh
Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, https://doi.org/10.5194/bg-17-6051-2020, 2020
Short summary
Short summary
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to human-induced global changes. This includes the occurrence of anoxic events on the Indian shelf and affects benthic ecosystems and the pelagic ecosystem structure in the Arabian Sea. Consequences for biogeochemical cycles are unknown, which, in addition to the poor representation of mesoscale features, reduces the reliability of predictions of the future OMZ development in the northern Indian Ocean.
Henrike Schmidt, Rena Czeschel, and Martin Visbeck
Ocean Sci., 16, 1459–1474, https://doi.org/10.5194/os-16-1459-2020, https://doi.org/10.5194/os-16-1459-2020, 2020
Short summary
Short summary
Our investigations give detailed insight on the seasonally changing current system at intermediate depth in the Arabian Sea that is influenced by the monsoon. The changing currents influence the oxygen transport in the interior ocean and thus allow us to draw conclusions on the maintenance and seasonal variability of the upper part of the oxygen minimum zone in the Arabian Sea.
Haichao Guo, Wolfgang Koeve, Andreas Oschlies, Yan-Chun He, Tronje Peer Kemena, Lennart Gerke, and Iris Kriest
Ocean Sci., 21, 1167–1182, https://doi.org/10.5194/os-21-1167-2025, https://doi.org/10.5194/os-21-1167-2025, 2025
Short summary
Short summary
We evaluated the effectiveness of the inverse Gaussian transit time distribution (IG-TTD) with respect to estimating the mean state and temporal changes of seawater age, defined as the duration since water last had contact with the atmosphere, within the tropical thermocline. Results suggest that the IG-TTD underestimates seawater age. Moreover, the IG-TTD constrained by a single tracer gives spurious trends in water age. Incorporating an additional tracer improves IG-TTD's accuracy for estimating temporal change of seawater age.
Heiner Dietze and Ulrike Löptien
Biogeosciences, 22, 1215–1236, https://doi.org/10.5194/bg-22-1215-2025, https://doi.org/10.5194/bg-22-1215-2025, 2025
Short summary
Short summary
We introduce argon saturation as a prognostic variable in a suite of coupled general ocean circulation biogeochemical models off Mauritania. Our results indicate that the effect of increasing the spatial horizontal model resolutions from 12 km to 1.5 km leads to changes comparable to other infamous spurious effects of state-of-the-art numerical advection numerics.
Miriam Tivig, David P. Keller, and Andreas Oschlies
Biogeosciences, 21, 4469–4493, https://doi.org/10.5194/bg-21-4469-2024, https://doi.org/10.5194/bg-21-4469-2024, 2024
Short summary
Short summary
Marine biological production is highly dependent on the availability of nitrogen and phosphorus. Rivers are the main source of phosphorus to the oceans but poorly represented in global model oceans. We include dissolved nitrogen and phosphorus from river export in a global model ocean and find that the addition of riverine phosphorus affects marine biology on millennial timescales more than riverine nitrogen alone. Globally, riverine phosphorus input increases primary production rates.
Na Li, Christopher J. Somes, Angela Landolfi, Chia-Te Chien, Markus Pahlow, and Andreas Oschlies
Biogeosciences, 21, 4361–4380, https://doi.org/10.5194/bg-21-4361-2024, https://doi.org/10.5194/bg-21-4361-2024, 2024
Short summary
Short summary
N is a crucial nutrient that limits phytoplankton growth in large ocean areas. The amount of oceanic N is governed by the balance of N2 fixation and denitrification. Here we incorporate benthic denitrification into an Earth system model with variable particulate stoichiometry. Our model compares better to the observed surface nutrient distributions, marine N2 fixation, and primary production. Benthic denitrification plays an important role in marine N and C cycling and hence the global climate.
Timothée Bourgeois, Olivier Torres, Friederike Fröb, Aurich Jeltsch-Thömmes, Giang T. Tran, Jörg Schwinger, Thomas L. Frölicher, Jean Negrel, David Keller, Andreas Oschlies, Laurent Bopp, and Fortunat Joos
EGUsphere, https://doi.org/10.5194/egusphere-2024-2768, https://doi.org/10.5194/egusphere-2024-2768, 2024
Short summary
Short summary
Anthropogenic greenhouse gas emissions significantly impact ocean ecosystems through climate change and acidification, leading to either progressive or abrupt changes. This study maps the crossing of physical and ecological limits for various ocean impact metrics under three emission scenarios. Using Earth system models, we identify when these limits are exceeded, highlighting the urgent need for ambitious climate action to safeguard the world's oceans and ecosystems.
Tianfei Xue, Jens Terhaar, A. E. Friederike Prowe, Thomas L. Frölicher, Andreas Oschlies, and Ivy Frenger
Biogeosciences, 21, 2473–2491, https://doi.org/10.5194/bg-21-2473-2024, https://doi.org/10.5194/bg-21-2473-2024, 2024
Short summary
Short summary
Phytoplankton play a crucial role in marine ecosystems. However, climate change's impact on phytoplankton biomass remains uncertain, particularly in the Southern Ocean. In this region, phytoplankton biomass within the water column is likely to remain stable in response to climate change, as supported by models. This stability arises from a shallower mixed layer, favoring phytoplankton growth but also increasing zooplankton grazing due to phytoplankton concentration near the surface.
Katja Fennel, Matthew C. Long, Christopher Algar, Brendan Carter, David Keller, Arnaud Laurent, Jann Paul Mattern, Ruth Musgrave, Andreas Oschlies, Josiane Ostiguy, Jaime B. Palter, and Daniel B. Whitt
State Planet, 2-oae2023, 9, https://doi.org/10.5194/sp-2-oae2023-9-2023, https://doi.org/10.5194/sp-2-oae2023-9-2023, 2023
Short summary
Short summary
This paper describes biogeochemical models and modelling techniques for applications related to ocean alkalinity enhancement (OAE) research. Many of the most pressing OAE-related research questions cannot be addressed by observation alone but will require a combination of skilful models and observations. We present illustrative examples with references to further information; describe limitations, caveats, and future research needs; and provide practical recommendations.
Andreas Oschlies, Lennart T. Bach, Rosalind E. M. Rickaby, Terre Satterfield, Romany Webb, and Jean-Pierre Gattuso
State Planet, 2-oae2023, 1, https://doi.org/10.5194/sp-2-oae2023-1-2023, https://doi.org/10.5194/sp-2-oae2023-1-2023, 2023
Short summary
Short summary
Reaching promised climate targets will require the deployment of carbon dioxide removal (CDR). Marine CDR options receive more and more interest. Based on idealized theoretical studies, ocean alkalinity enhancement (OAE) appears as a promising marine CDR method. We provide an overview on the current situation of developing OAE as a marine CDR method and describe the history that has led to the creation of the OAE research best practice guide.
Iris Kriest, Julia Getzlaff, Angela Landolfi, Volkmar Sauerland, Markus Schartau, and Andreas Oschlies
Biogeosciences, 20, 2645–2669, https://doi.org/10.5194/bg-20-2645-2023, https://doi.org/10.5194/bg-20-2645-2023, 2023
Short summary
Short summary
Global biogeochemical ocean models are often subjectively assessed and tuned against observations. We applied different strategies to calibrate a global model against observations. Although the calibrated models show similar tracer distributions at the surface, they differ in global biogeochemical fluxes, especially in global particle flux. Simulated global volume of oxygen minimum zones varies strongly with calibration strategy and over time, rendering its temporal extrapolation difficult.
Jiajun Wu, David P. Keller, and Andreas Oschlies
Earth Syst. Dynam., 14, 185–221, https://doi.org/10.5194/esd-14-185-2023, https://doi.org/10.5194/esd-14-185-2023, 2023
Short summary
Short summary
In this study we investigate an ocean-based carbon dioxide removal method: macroalgae open-ocean mariculture and sinking (MOS), which aims to cultivate seaweed in the open-ocean surface and to sink matured biomass quickly to the deep seafloor. Our results suggest that MOS has considerable potential as an ocean-based CDR method. However, MOS has inherent side effects on marine ecosystems and biogeochemistry, which will require careful evaluation beyond this first idealized modeling study.
Chia-Te Chien, Jonathan V. Durgadoo, Dana Ehlert, Ivy Frenger, David P. Keller, Wolfgang Koeve, Iris Kriest, Angela Landolfi, Lavinia Patara, Sebastian Wahl, and Andreas Oschlies
Geosci. Model Dev., 15, 5987–6024, https://doi.org/10.5194/gmd-15-5987-2022, https://doi.org/10.5194/gmd-15-5987-2022, 2022
Short summary
Short summary
We present the implementation and evaluation of a marine biogeochemical model, Model of Oceanic Pelagic Stoichiometry (MOPS) in the Flexible Ocean and Climate Infrastructure (FOCI) climate model. FOCI-MOPS enables the simulation of marine biological processes, the marine carbon, nitrogen and oxygen cycles, and air–sea gas exchange of CO2 and O2. As shown by our evaluation, FOCI-MOPS shows an overall adequate performance that makes it an appropriate tool for Earth climate system simulations.
Tianfei Xue, Ivy Frenger, A. E. Friederike Prowe, Yonss Saranga José, and Andreas Oschlies
Biogeosciences, 19, 455–475, https://doi.org/10.5194/bg-19-455-2022, https://doi.org/10.5194/bg-19-455-2022, 2022
Short summary
Short summary
The Peruvian system supports 10 % of the world's fishing yield. In the Peruvian system, wind and earth’s rotation bring cold, nutrient-rich water to the surface and allow phytoplankton to grow. But observations show that it grows worse at high upwelling. Using a model, we find that high upwelling happens when air mixes the water the most. Then phytoplankton is diluted and grows slowly due to low light and cool upwelled water. This study helps to estimate how it might change in a warming climate.
Karin Kvale, David P. Keller, Wolfgang Koeve, Katrin J. Meissner, Christopher J. Somes, Wanxuan Yao, and Andreas Oschlies
Geosci. Model Dev., 14, 7255–7285, https://doi.org/10.5194/gmd-14-7255-2021, https://doi.org/10.5194/gmd-14-7255-2021, 2021
Short summary
Short summary
We present a new model of biological marine silicate cycling for the University of Victoria Earth System Climate Model (UVic ESCM). This new model adds diatoms, which are a key aspect of the biological carbon pump, to an existing ecosystem model. Our modifications change how the model responds to warming, with net primary production declining more strongly than in previous versions. Diatoms in particular are simulated to decline with climate warming due to their high nutrient requirements.
Olaf Duteil, Ivy Frenger, and Julia Getzlaff
Ocean Sci., 17, 1489–1507, https://doi.org/10.5194/os-17-1489-2021, https://doi.org/10.5194/os-17-1489-2021, 2021
Short summary
Short summary
The large oxygen minimum zones in the tropical Pacific Ocean are still not well represented by typical climate models. We analyze a set of ocean models and highlight the fact that an oxygen concentration that is too low at intermediate depth in the subtropical regions associated with a sluggish representation of the intermediate equatorial current system may be responsible for the overly large extension of the modeled oxygen minimum zones, potentially hampering future projections.
Maria-Theresia Verwega, Christopher J. Somes, Markus Schartau, Robyn Elizabeth Tuerena, Anne Lorrain, Andreas Oschlies, and Thomas Slawig
Earth Syst. Sci. Data, 13, 4861–4880, https://doi.org/10.5194/essd-13-4861-2021, https://doi.org/10.5194/essd-13-4861-2021, 2021
Short summary
Short summary
This work describes a ready-to-use collection of particulate organic carbon stable isotope ratio data sets. It covers the 1960s–2010s and all main oceans, providing meta-information and gridded data. The best coverage exists in Atlantic, Indian and Southern Ocean surface waters during the 1990s. It indicates no major difference between methods and shows decreasing values towards high latitudes, with the lowest in the Southern Ocean, and a long-term decline in all regions but the Southern Ocean.
Miriam Tivig, David P. Keller, and Andreas Oschlies
Biogeosciences, 18, 5327–5350, https://doi.org/10.5194/bg-18-5327-2021, https://doi.org/10.5194/bg-18-5327-2021, 2021
Short summary
Short summary
Nitrogen is one of the most important elements for life in the ocean. A major source is the riverine discharge of dissolved nitrogen. While global models often omit rivers as a nutrient source, we included nitrogen from rivers in our Earth system model and found that additional nitrogen affected marine biology not only locally but also in regions far off the coast. Depending on regional conditions, primary production was enhanced or even decreased due to internal feedbacks in the nitrogen cycle.
Heiner Dietze and Ulrike Löptien
Biogeosciences, 18, 4243–4264, https://doi.org/10.5194/bg-18-4243-2021, https://doi.org/10.5194/bg-18-4243-2021, 2021
Short summary
Short summary
In recent years fish-kill events caused by oxygen deficit have been reported in Eckernförde Bight (Baltic Sea). This study sets out to understand the processes causing respective oxygen deficits by combining high-resolution coupled ocean circulation biogeochemical modeling, monitoring data, and artificial intelligence.
Jaard Hauschildt, Soeren Thomsen, Vincent Echevin, Andreas Oschlies, Yonss Saranga José, Gerd Krahmann, Laura A. Bristow, and Gaute Lavik
Biogeosciences, 18, 3605–3629, https://doi.org/10.5194/bg-18-3605-2021, https://doi.org/10.5194/bg-18-3605-2021, 2021
Short summary
Short summary
In this paper we quantify the subduction of upwelled nitrate due to physical processes on the order of several kilometers in the coastal upwelling off Peru and its effect on primary production. We also compare the prepresentation of these processes in a high-resolution simulation (~2.5 km) with a more coarsely resolved simulation (~12 km). To do this, we combine high-resolution shipboard observations of physical and biogeochemical parameters with a complex biogeochemical model configuration.
Mariana Hill Cruz, Iris Kriest, Yonss Saranga José, Rainer Kiko, Helena Hauss, and Andreas Oschlies
Biogeosciences, 18, 2891–2916, https://doi.org/10.5194/bg-18-2891-2021, https://doi.org/10.5194/bg-18-2891-2021, 2021
Short summary
Short summary
In this study we use a regional biogeochemical model of the eastern tropical South Pacific Ocean to implicitly simulate the effect that fluctuations in populations of small pelagic fish, such as anchovy and sardine, may have on the biogeochemistry of the northern Humboldt Current System. To do so, we vary the zooplankton mortality in the model, under the assumption that these fishes eat zooplankton. We also evaluate the model for the first time against mesozooplankton observations.
Britta Munkes, Ulrike Löptien, and Heiner Dietze
Biogeosciences, 18, 2347–2378, https://doi.org/10.5194/bg-18-2347-2021, https://doi.org/10.5194/bg-18-2347-2021, 2021
Short summary
Short summary
Cyanobacteria blooms can strongly aggravate eutrophication problems of water bodies. Their controls are, however, not comprehensively understood, which impedes effective management and protection plans. Here we review the current understanding of cyanobacteria blooms. Juxtaposition of respective field and laboratory studies with state-of-the-art mathematical models reveals substantial uncertainty associated with nutrient demands, grazing, and death of cyanobacteria.
Tim Rixen, Greg Cowie, Birgit Gaye, Joaquim Goes, Helga do Rosário Gomes, Raleigh R. Hood, Zouhair Lachkar, Henrike Schmidt, Joachim Segschneider, and Arvind Singh
Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, https://doi.org/10.5194/bg-17-6051-2020, 2020
Short summary
Short summary
The northern Indian Ocean hosts an extensive oxygen minimum zone (OMZ), which intensified due to human-induced global changes. This includes the occurrence of anoxic events on the Indian shelf and affects benthic ecosystems and the pelagic ecosystem structure in the Arabian Sea. Consequences for biogeochemical cycles are unknown, which, in addition to the poor representation of mesoscale features, reduces the reliability of predictions of the future OMZ development in the northern Indian Ocean.
Henrike Schmidt, Rena Czeschel, and Martin Visbeck
Ocean Sci., 16, 1459–1474, https://doi.org/10.5194/os-16-1459-2020, https://doi.org/10.5194/os-16-1459-2020, 2020
Short summary
Short summary
Our investigations give detailed insight on the seasonally changing current system at intermediate depth in the Arabian Sea that is influenced by the monsoon. The changing currents influence the oxygen transport in the interior ocean and thus allow us to draw conclusions on the maintenance and seasonal variability of the upper part of the oxygen minimum zone in the Arabian Sea.
Markus Pahlow, Chia-Te Chien, Lionel A. Arteaga, and Andreas Oschlies
Geosci. Model Dev., 13, 4663–4690, https://doi.org/10.5194/gmd-13-4663-2020, https://doi.org/10.5194/gmd-13-4663-2020, 2020
Short summary
Short summary
The stoichiometry of marine biotic processes is important for the regulation of atmospheric CO2 and hence the global climate. We replace a simplistic, fixed-stoichiometry plankton module in an Earth system model with an optimal-regulation model with variable stoichiometry. Our model compares better to the observed carbon transfer from the surface to depth and surface nutrient distributions. This work could aid our ability to describe and project the role of marine ecosystems in the Earth system.
Chia-Te Chien, Markus Pahlow, Markus Schartau, and Andreas Oschlies
Geosci. Model Dev., 13, 4691–4712, https://doi.org/10.5194/gmd-13-4691-2020, https://doi.org/10.5194/gmd-13-4691-2020, 2020
Short summary
Short summary
We demonstrate sensitivities of tracers to parameters of a new optimality-based plankton–ecosystem model (OPEM) in the UVic-ESCM. We find that changes in phytoplankton subsistence nitrogen quota strongly impact the nitrogen inventory, nitrogen fixation, and elemental stoichiometry of ordinary phytoplankton and diazotrophs. We introduce a new likelihood-based metric for model calibration, and it shows the capability of constraining globally averaged oxygen, nitrate, and DIC concentrations.
Nadine Mengis, David P. Keller, Andrew H. MacDougall, Michael Eby, Nesha Wright, Katrin J. Meissner, Andreas Oschlies, Andreas Schmittner, Alexander J. MacIsaac, H. Damon Matthews, and Kirsten Zickfeld
Geosci. Model Dev., 13, 4183–4204, https://doi.org/10.5194/gmd-13-4183-2020, https://doi.org/10.5194/gmd-13-4183-2020, 2020
Short summary
Short summary
In this paper, we evaluate the newest version of the University of Victoria Earth System Climate Model (UVic ESCM 2.10). Combining recent model developments as a joint effort, this version is to be used in the next phase of model intercomparison and climate change studies. The UVic ESCM 2.10 is capable of reproducing changes in historical temperature and carbon fluxes well. Additionally, the model is able to reproduce the three-dimensional distribution of many ocean tracers.
Cited articles
Adachi, Y., Yukimoto, S., Deushi, M., Obata, A., Nakano, H., Tanaka, T. Y.,
Hosaka, M., Sakami, T., Yoshimura, H., Hirabara, M., Shindo, E., Tsujino, H.,
Mizuta, R., Yabu, S., Koshiro, T., Ose, T., and Kitoh, A.: Basic performance
of a new earth system model of the Meteorological Research Institute, Papers
in Meteorology and Geophysics, 64, 1–19, https://doi.org/10.2467/mripapers.64.1, 2013. a, b
Assmann, K. M., Bentsen, M., Segschneider, J., and Heinze, C.: An isopycnic ocean carbon cycle model, Geosci. Model Dev., 3, 143–167, https://doi.org/10.5194/gmd-3-143-2010, 2010. a
Aumont, O. and Bopp, L.: Globalizing results from ocean in situ iron
fertilization studies, Global Biogeochem. Cy., 20, 1–15,
https://doi.org/10.1029/2005GB002591, 2006. a, b
Beal, L. M., Ffield, A., and Gordon, A. L.: Spreading of Red Sea overflow
waters in the Indian Ocean, J. Geophys. Res., 105,
8549–8564, https://doi.org/10.1029/1999JC900306,
2000. a
Beal, L. M., Hormann, V., Lumpkin, R., and Foltz, G. R.: The Response of the
Surface Circulation of the Arabian Sea to Monsoonal Forcing, J. Phys. Oceanogr., 43, 2008–2022, https://doi.org/10.1175/JPO-D-13-033.1,
2013. a
Bentsen, M., Bethke, I., Debernard, J. B., Iversen, T., Kirkevåg, A., Seland, Ø., Drange, H., Roelandt, C., Seierstad, I. A., Hoose, C., and Kristjánsson, J. E.: The Norwegian Earth System Model, NorESM1-M – Part 1: Description and basic evaluation of the physical climate, Geosci. Model Dev., 6, 687–720, https://doi.org/10.5194/gmd-6-687-2013, 2013. a
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013. a, b, c, d, e
Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P.,
Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee,
K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W., Pitcher, G. C.,
Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M.,
Yasuhara, M., and Zhang, J.: Declining oxygen in the global ocean and
coastal waters, Science, 359, eaam7240, https://doi.org/10.1126/science.aam7240, 2018. a
Cocco, V., Joos, F., Steinacher, M., Frölicher, T. L., Bopp, L., Dunne, J., Gehlen, M., Heinze, C., Orr, J., Oschlies, A., Schneider, B., Segschneider, J., and Tjiputra, J.: Oxygen and indicators of stress for marine life in multi-model global warming projections, Biogeosciences, 10, 1849–1868, https://doi.org/10.5194/bg-10-1849-2013, 2013. a, b, c
Danabasoglu, G., Bates, S. C., Briegleb, B. P., Jayne, S. R., Jochum, M.,
Large, W. G., Peacock, S., and Yeager, S. G.: The CCSM4 ocean component,
J. Climate, 25, 1361–1389, https://doi.org/10.1175/JCLI-D-11-00091.1, 2012. a
De Amorim, R. C. and Hennig, C.: Recovering the number of clusters in data
sets with noise features using feature rescaling factors, Information
Sciences, 324, 126–145, https://doi.org/10.1016/j.ins.2015.06.039,
2015. a
Diaz, R. J. and Rosenberg, R.: Spreading Dead Zones and Consequences for
Marine Ecosystems, Science, 321, 926–930, https://doi.org/10.1126/science.1156401,
2008. a, b
Dufresne, J. L., Foujols, M. A., Denvil, S., Caubel, A., Marti, O., Aumont, O.,
Balkanski, Y., Bekki, S., Bellenger, H., Benshila, R., Bony, S., Bopp, L.,
Braconnot, P., Brockmann, P., Cadule, P., Cheruy, F., Codron, F., Cozic, A.,
Cugnet, D., de Noblet, N., Duvel, J. P., Ethé, C., Fairhead, L.,
Fichefet, T., Flavoni, S., Friedlingstein, P., Grandpeix, J. Y., Guez, L.,
Guilyardi, E., Hauglustaine, D., Hourdin, F., Idelkadi, A., Ghattas, J.,
Joussaume, S., Kageyama, M., Krinner, G., Labetoulle, S., Lahellec, A.,
Lefebvre, M. P., Lefevre, F., Levy, C., Li, Z. X., Lloyd, J., Lott, F.,
Madec, G., Mancip, M., Marchand, M., Masson, S., Meurdesoif, Y., Mignot, J.,
Musat, I., Parouty, S., Polcher, J., Rio, C., Schulz, M., Swingedouw, D.,
Szopa, S., Talandier, C., Terray, P., Viovy, N., and Vuichard, N.: Climate
change projections using the IPSL-CM5 Earth System Model: From CMIP3 to
CMIP5, Clim. Dynam., 40, 2123–2165, https://doi.org/10.1007/s00382-012-1636-1, 2013. a, b
Dunne, J. P., John, J. G., Adcroft, A. J., Griffies, S. M., Hallberg, R. W.,
Shevliakova, E., Stouffer, R. J., Cooke, W., Dunne, K. A., Harrison, M. J.,
Krasting, J. P., Malyshev, S. L., Milly, P. C., Phillipps, P. J., Sentman,
L. T., Samuels, B. L., Spelman, M. J., Winton, M., Wittenberg, A. T., and
Zadeh, N.: GFDL's ESM2 global coupled climate-carbon earth system models,
Part I: Physical formulation and baseline simulation characteristics,
J. Climate, 25, 6646–6665, https://doi.org/10.1175/JCLI-D-11-00560.1, 2012. a, b
Dunne, J. P., John, J. G., Shevliakova, S., Stouffer, R. J., Krasting, J. P.,
Malyshev, S. L., Milly, P. C., Sentman, L. T., Adcroft, A. J., Cooke, W.,
Dunne, K. A., Griffies, S. M., Hallberg, R. W., Harrison, M. J., Levy, H.,
Wittenberg, A. T., Phillips, P. J., and Zadeh, N.: GFDL's ESM2 global
coupled climate-carbon earth system models. Part II: Carbon system
formulation and baseline simulation characteristics, J. Climate, 26,
2247–2267, https://doi.org/10.1175/JCLI-D-12-00150.1, 2013. a, b
ESGF: Earth System Grid Federation, World Climate Research Programme, CMIP5 Project data download, [data set], available at: https://esgf-node.llnl.gov/projects/cmip5/, last access: 20 July 2019. a
Gent, P. R., Danabasoglu, G., Donner, L. J., Holland, M. M., Hunke, E. C.,
Jayne, S. R., Lawrence, D. M., Neale, R. B., Rasch, P. J., Vertenstein, M.,
Worley, P. H., Yang, Z. L., and Zhang, M.: The community climate system
model version 4, J. Climate, 24, 4973–4991,
https://doi.org/10.1175/2011JCLI4083.1, 2011. a
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak,
K., Gayler, V., Haak, H., Hollweg, H.-D., Ilyina, T., Kinne, S., Kornblueh,
L., Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D.,
Pithan, F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H.,
Schnur, R., Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C.,
Wegner, J., Widmann, H., Wieners, K.-H., Claussen, M., Marotzke, J., and
Stevens, B.: Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM
simulations for the Coupled Model Intercomparison Project phase 5, J. Adv. Model. Earth Sys., 5, 572–597, https://doi.org/10.1002/jame.20038,
2013. a, b
Halloran, P. R., Bell, T. G., and Totterdell, I. J.: Can we trust empirical marine DMS parameterisations within projections of future climate?, Biogeosciences, 7, 1645–1656, https://doi.org/10.5194/bg-7-1645-2010, 2010. a
Hood, R. R., Beckley, L. E., and Wiggert, J. D.: Biogeochemical and ecological
impacts of boundary currents in the Indian Ocean, Prog. Oceanogr.,
156, 290–325, https://doi.org/10.1016/j.pocean.2017.04.011,
2017. a
Ilyina, T., Six, K. D., Segschneider, J., Maier-Reimer, E., Li, H., and
Núñez-Riboni, I.: Global ocean biogeochemistry model HAMOCC:
Model architecture and performance as component of the MPI-Earth system model
in different CMIP5 experimental realizations, J. Adv. Model. Earth Sys., 5, 287–315, https://doi.org/10.1029/2012MS000178, 2013. a, b
Ito, T., Minobe, S., Long, M. C., and Deutsch, C.: Upper ocean O2 trends:
1958–2015, Geophys. Res. Lett., 44, 4214–4223,
https://doi.org/10.1002/2017GL073613, 2017. a
Jenkins, W. J.: Tritium-Helium Dating in the Sargasso Sea: A Measurement of
Oxygen Utilization Rates, Science, 196, 291–292, https://doi.org/10.1126/science.196.4287.291, 1977. a
Johnson, S. C.: Hierarchical clustering schemes, Psychometrika, 32, 241–254,
https://doi.org/10.1007/BF02289588, 1967. a
Jones, C. D., Hughes, J. K., Bellouin, N., Hardiman, S. C., Jones, G. S., Knight, J., Liddicoat, S., O'Connor, F. M., Andres, R. J., Bell, C., Boo, K.-O., Bozzo, A., Butchart, N., Cadule, P., Corbin, K. D., Doutriaux-Boucher, M., Friedlingstein, P., Gornall, J., Gray, L., Halloran, P. R., Hurtt, G., Ingram, W. J., Lamarque, J.-F., Law, R. M., Meinshausen, M., Osprey, S., Palin, E. J., Parsons Chini, L., Raddatz, T., Sanderson, M. G., Sellar, A. A., Schurer, A., Valdes, P., Wood, N., Woodward, S., Yoshioka, M., and Zerroukat, M.: The HadGEM2-ES implementation of CMIP5 centennial simulations, Geosci. Model Dev., 4, 543–570, https://doi.org/10.5194/gmd-4-543-2011, 2011. a
Jungclaus, J. H., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D.,
Mikolajewicz, U., Notz, D., and Von Storch, J. S.: Characteristics of the
ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean
component of the MPI-Earth system model, J. Adv. Model. Earth Sys., 5, 422–446, https://doi.org/10.1002/jame.20023, 2013. a, b
Kamykowski, D. and Zentara, S. J.: Hypoxia in the world ocean as recorded in
the historical data set, Deep Sea Res., 37, 1861–1874, https://doi.org/10.1016/0198-0149(90)90082-7, 1990. a, b, c
Karstensen, J., Stramma, L., and Visbeck, M.: Oxygen minimum zones in the
eastern tropical Atlantic and Pacific oceans, Prog. Oceanogr., 77,
331–350, https://doi.org/10.1016/j.pocean.2007.05.009, 2008. a
Keeling, R. E., Körtzinger, A., and Gruber, N.: Ocean deoxygenation in a
warming world., Annu. Rev. Mar. Sci., 2, 199–229,
https://doi.org/10.1146/annurev.marine.010908.163855, 2010. a, b, c, d
Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., and Ziehn, T.: Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, 2020. a, b, c, d
Lachkar, Z., Smith, S., Levy, M., Pauluis, O., Lévy, M., and Pauluis, O.:
Eddies reduce denitrification and compress habitats in the Arabian Sea,
Geophys. Res. Lett., 43, 1–17, https://doi.org/10.1002/2016GL069876,
2016. a, b
Levin, L. A., Whitcraft, C. R., Mendoza, G. F., and Gonzalez, J. P.: Oxygen
and organic matter thresholds for benthic faunal activity on the Pakistan
margin oxygen minimum zone (700–1100 m), Deep-Sea Res. Pt. II, 56, 449–471, https://doi.org/10.1016/j.dsr2.2008.05.032,
2009. a
Löptien, U. and Dietze, H.: Reciprocal bias compensation and ensuing uncertainties in model-based climate projections: pelagic biogeochemistry versus ocean mixing, Biogeosciences, 16, 1865–1881, https://doi.org/10.5194/bg-16-1865-2019, 2019. a
McCartney, M. and Woodgate-Jones, M.: A deep-reaching anticyclonic eddy in the
subtropical gyre of the eastern South Atlantic, Deep Sea Res.,
38, 411–443,
https://doi.org/10.1016/s0198-0149(12)80019-7, 1991. a
McCreary, J. P., Yu, Z., Hood, R. R., Vinaychandran, P. N., Furue, R., Ishida,
A., and Richards, K. J.: Dynamics of the Indian-Ocean oxygen minimum zones,
Prog. Oceanogr., 112, 15–37,
https://doi.org/10.1016/j.pocean.2013.03.002,
2013. a
Mignot, J., Swingedouw, D., Deshayes, J., Marti, O., Talandier, C.,
Séférian, R., Lengaigne, M., and Madec, G.: On the evolution of
the oceanic component of the IPSL climate models from CMIP3 to CMIP5: A mean
state comparison, Ocean Model., 72, 167–184,
https://doi.org/10.1016/j.ocemod.2013.09.001, 2013. a
Moore, J. K., Doney, S. C., and Lindsay, K.: Upper ocean ecosystem dynamics
and iron cycling in a global three-dimensional model, Global Biogeochem. Cy., 18, 1–21, https://doi.org/10.1029/2004GB002220, 2004. a
NOAA: National Oceanic and Atmospheric Administration,
WOA13 temperature, salinity and oxygen, [data set], available at: https://www.nodc.noaa.gov/cgi-bin/OC5/woa13/woa13oxnu.pl; https://www.nodc.noaa.gov/cgi-bin/OC5/woa13/woa13.pl, last access:
15 June 2020. a
Oschlies, A., Schulz, K. G., Riebesell, U., and Schmittner, A.: Simulated 21st
century's increase in oceanic suboxia by CO2-enhanced biotic carbon export,
Global Biogeochem. Cy., 22, 1–10, https://doi.org/10.1029/2007GB003147, 2008. a
Oschlies, A., Duteil, O., Getzlaff, J., Koeve, W., Landolfi, A., and Schmidtko,
S.: Patterns of deoxygenation: sensitivity to natural and anthropogenic
drivers, Philos. T. Roy. Soc. A, 375, 20160325, https://doi.org/10.1098/rsta.2016.0325,
2017. a, b, c
Oschlies, A., Brandt, P., Stramma, L., and Schmidtko, S.: Drivers and
mechanisms of ocean deoxygenation, Nat. Geosci., 11, 467–473,
https://doi.org/10.1038/s41561-018-0152-2,
2018. a, b
Palmer, J. R. and Totterdell, I. J.: Production and export in a global ocean
ecosystem model, Deep-Sea Res. Pt. I
48, 1169–1198, https://doi.org/10.1016/S0967-0637(00)00080-7, 2001. a
Prasad, T. G., Ikeda, M., and Kumar, S. P.: Seasonal spreading of the Persian
Gulf Water mass in the Arabian Sea, J. Geophys. Res., 106,
17059–17071, https://doi.org/10.1029/2000JC000480,
2001. a
Rao, C. K., Naqvi, S. W., Kumar, M. D., Varaprasad, S. J., Jayakumar, D. A.,
George, M. D., and Singbal, S. Y.: Hydrochemistry of the Bay of Bengal:
possible reasons for a different water-column cycling of carbon and nitrogen
from the Arabian Sea, Mar. Chem., 47, 279–290,
https://doi.org/10.1016/0304-4203(94)90026-4, 1994. a, b, c, d, e
Resplandy, L., Lévy, M., Bopp, L., Echevin, V., Pous, S., Sarma, V. V. S. S., and Kumar, D.: Controlling factors of the oxygen balance in the Arabian Sea's OMZ, Biogeosciences, 9, 5095–5109, https://doi.org/10.5194/bg-9-5095-2012, 2012. a, b, c
Rixen, T. and Ittekkot, V.: Nitrogen deficits in the Arabian Sea, implications
from a three component mixing analysis, Deep-Sea Res. Pt. II, 52, 1879–1891,
https://doi.org/10.1016/j.dsr2.2005.06.007,
2005. a
Rixen, T., Cowie, G., Gaye, B., Goes, J., do Rosário Gomes, H., Hood, R. R., Lachkar, Z., Schmidt, H., Segschneider, J., and Singh, A.: Reviews and syntheses: Present, past, and future of the oxygen minimum zone in the northern Indian Ocean, Biogeosciences, 17, 6051–6080, https://doi.org/10.5194/bg-17-6051-2020, 2020. a
Sallée, J. B., Shuckburgh, E., Bruneau, N., Meijers, A. J., Bracegirdle,
T. J., and Wang, Z.: Assessment of Southern Ocean mixed-layer depths in
CMIP5 models: Historical bias and forcing response, J. Geophys. Res.-Oceans, 118, 1845–1862, https://doi.org/10.1002/jgrc.20157,
2013a. a
Sallée, J. B., Shuckburgh, E., Bruneau, N., Meijers, A. J., Bracegirdle,
T. J., Wang, Z., and Roy, T.: Assessment of Southern Ocean water mass
circulation and characteristics in CMIP5 models: Historical bias and forcing
response, J. Geophys. Res.-Oceans, 118, 1830–1844,
https://doi.org/10.1002/jgrc.20135, 2013b. a, b, c, d, e, f, g, h
Schmidt, H., Getzlaff, J., Löptien, U., and Oschlies, A.,: Causes of uncertainties in the representation of the Arabian Sea oxygen minimum zone in CMIP5 models, [code], available at: https://oceanrep.geomar.de/52412/, last access: 17 May 2021. a
Schmidtko, S., Stramma, L., and Visbeck, M.: Decline in global oceanic oxygen
content during the past five decades, Nature, 542, 335–339,
https://doi.org/10.1038/nature21399, 2017. a
Séférian, R., Bopp, L., Gehlen, M., Orr, J. C., Ethé, C.,
Cadule, P., Aumont, O., Salas y Mélia, D., Voldoire, A., and Madec,
G.: Skill assessment of three earth system models with common marine
biogeochemistry, Clim. Dynam., 40, 2549–2573,
https://doi.org/10.1007/s00382-012-1362-8, 2013. a, b
Séférian, R., Gehlen, M., Bopp, L., Resplandy, L., Orr, J. C., Marti, O., Dunne, J. P., Christian, J. R., Doney, S. C., Ilyina, T., Lindsay, K., Halloran, P. R., Heinze, C., Segschneider, J., Tjiputra, J., Aumont, O., and Romanou, A.: Inconsistent strategies to spin up models in CMIP5: implications for ocean biogeochemical model performance assessment, Geosci. Model Dev., 9, 1827–1851, https://doi.org/10.5194/gmd-9-1827-2016, 2016. a
Séférian, R., Berthet, S., Yool, A., Palmiéri, J., Bopp, L.,
Tagliabue, A., Kwiatkowski, L., Aumont, O., Christian, J., Dunne, J., Gehlen,
M., Ilyina, T., John, J. G., Li, H., Long, M. C., Luo, J. Y., Nakano, H.,
Romanou, A., Schwinger, J., Stock, C., Santana-Falcón, Y., Takano, Y.,
Tjiputra, J., Tsujino, H., Watanabe, M., Wu, T., Wu, F., and Yamamoto, A.:
Tracking Improvement in Simulated Marine Biogeochemistry Between CMIP5 and
CMIP6, Current Climate Change Reports, 6, 95–119,
https://doi.org/10.1007/s40641-020-00160-0, 2020. a, b, c, d
Segschneider, J. and Bendtsen, J.: Temperature-dependent remineralization in a
warming ocean increases surface pCO2 through changes in marine ecosystem
composition, Global Biogeochem. Cy., 27, 1214–1225,
https://doi.org/10.1002/2013GB004684, 2013. a
Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, A. K., He, Y.-C., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O., Liakka, J., Moseid, K. O., Nummelin, A., Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations, Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, 2020. a
Shankar, D., Shenoi, S. S. C., Nayak, R. K., Vinayachandran, P. N.,
Nampoothiri, G., Almeida, A. M., Michael, G. S., Kumar, M. R. R., Sundar, D.,
and Sreejith, O. P.: Hydrography of the eastern Arabian Sea during summer
monsoon 2002, J. Earth Sys. Sci., 114, 459–474,
https://doi.org/10.1007/BF02702023, 2005. a
Sharma, G.: Upwelling Off the Southwest Coast of India, Indian Journal of
Geo-Marine Sciences (IJMS), 07, 209–218, 1978. a
Shenoi, S. S. C., Saji, P. K., and Almeida, A. M.: Near-surface circulation
and kinetic energy in the tropical Indian Ocean derived from Lagrangian
drifters, J. Mar. Res., 57, 885–907,
https://doi.org/10.1357/002224099321514088,
1999. a
Shenoy, D. M., Suresh, I., Uskaikar, H., Kurian, S., Vidya, P. J., Shirodkar,
G., Gauns, M. U., and Naqvi, S. W.: Variability of dissolved oxygen in the
Arabian Sea Oxygen Minimum Zone and its driving mechanisms, J.
Mar. Sys., 204, 103310, https://doi.org/10.1016/j.jmarsys.2020.103310,
2020. a
Shetye, S. R., Gouveia, A. D., Shenoi, S. S. C., Sundar, D., Michael, G. S.,
Almeida, A. M., and Santanam, K.: Hydrography and circulation off the west
coast of India during the Southwest Monsoon 1987, J. Mar. Res., 48, 359–378, https://doi.org/10.1357/002224090784988809, 1990. a
Sprintall, J. and Tomczak, M.: On the formation of central water and
thermocline ventilation in the southern hemisphere, Deep-Sea Res. Pt. I, 40, 827–848, https://doi.org/10.1016/0967-0637(93)90074-D, 1993. a, b, c
Stramma, L., Brandt, P., Schott, F., Quadfasel, D., and Fischer, J.: Winter
and summer monsoon water mass, heat and freshwater transport changes in the
Arabian Sea near 8∘ N, Deep-Sea Res. Pt. II, 49, 1173–1195, https://doi.org/10.1016/S0967-0645(01)00169-2, 2002. a, b
Stramma, L., Schmidtko, S., Levin, L. A., and Johnson, G. C.: Ocean oxygen
minima expansions and their biological impacts, Deep-Sea Res. Pt. I, 57, 587–595, https://doi.org/10.1016/j.dsr.2010.01.005,
2010. a
Stramma, L., Oschlies, A., and Schmidtko, S.: Mismatch between observed and modeled trends in dissolved upper-ocean oxygen over the last 50 yr, Biogeosciences, 9, 4045–4057, https://doi.org/10.5194/bg-9-4045-2012, 2012.
a, b
Suess, E.: Particulate organic carbon flux in the oceans - Surface
productivity and oxygen utilization, Nature, 288, 260–263,
https://doi.org/10.1038/288260a0, 1980. a
Sverdrup, H. U.: On the explanation of the oxygen minima and maxima in the
oceans, ICES J. Mar. Sci., 13, 163–172,
https://doi.org/10.1093/icesjms/13.2.163, 1938. a, b
Tagklis, F., Ito, T., and Bracco, A.: Modulation of the North Atlantic deoxygenation by the slowdown of the nutrient stream, Biogeosciences, 17, 231–244, https://doi.org/10.5194/bg-17-231-2020, 2020. a
Talley, L. D., Pickard, G. L., Emery, W. J., and Swift, J. H.: Chapter 10 –
Pacific Ocean, in: Descriptive Physical Oceanography (Sixth Edition), edited
by: Talley, L. D., Pickard, G. L., Emery, W. J., and Swift, J. H., Chap. 10, Academic Press, sixth edit edn., 303–362,
https://doi.org/10.1016/B978-0-7506-4552-2.10010-1,
2011a. a
Talley, L. D., Pickard, G. L., Emery, W. J., and Swift, J. H.: Chapter 11 –
Indian Ocean, in: Descriptive Physical Oceanography (Sixth Edition), edited
by Talley, L. D., Pickard, G. L., Emery, W. J., and Swift, J. H., Chap. 11, sixth edit edn., 363–399,
https://doi.org/10.1016/B978-0-7506-4552-2.10010-1, 2011b. a
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and the
experiment design, B. Am. Meteorol. Soc., 93,
485–498, https://doi.org/10.1175/BAMS-D-11-00094.1, 2012. a, b
Tomczak, M. and Godfrey, J. S.: Regional Oceanography: An Introduction, Chapter 12: Hydrology of the Indian Ocean, 199–214, 1994. a
You, Y.: Implications of the deep circulation and ventilation of the Indian
Ocean on the renewal mechanism of North Atlantic Deep Water, J. Geophys. Res.-Oceans, 105, 23895–23926,
https://doi.org/10.1029/2000jc900105, 2000. a
Zweng, M. M., Reagan, J., Antonov, J., Mishonov, A., Boyer, T., Garcia, H.,
Baranova, O., Johnson, D., Seidov, D., and Bidlle, M.: World Ocean Atlas
2013, Volume 2: Salinity, NOAA Atlas NESDIS, 2, 39,
https://doi.org/10.1182/blood-2011-06-357442, 2013. a, b
Short summary
Oxygen-poor regions in the open ocean restrict marine habitats. Global climate simulations show large uncertainties regarding the prediction of these areas. We analyse the representation of the simulated oxygen minimum zones in the Arabian Sea using 10 climate models. We give an overview of the main deficiencies that cause the model–data misfit in oxygen concentrations. This detailed process analysis shall foster future model improvements regarding the oxygen minimum zone in the Arabian Sea.
Oxygen-poor regions in the open ocean restrict marine habitats. Global climate simulations show...