Articles | Volume 16, issue 3
https://doi.org/10.5194/os-16-729-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-729-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Biogeochemical processes accounting for the natural mercury variations in the Southern Ocean diatom ooze sediments
Sara Zaferani
CORRESPONDING AUTHOR
Institut für Geoökologie, AG Umweltgeochemie, Technische
Universität Braunschweig, 38106 Braunschweig, Germany
Harald Biester
Institut für Geoökologie, AG Umweltgeochemie, Technische
Universität Braunschweig, 38106 Braunschweig, Germany
Related authors
No articles found.
Laura Balzer, Katrin Schulz, Christian Birkel, and Harald Biester
SOIL Discuss., https://doi.org/10.5194/soil-2020-20, https://doi.org/10.5194/soil-2020-20, 2020
Manuscript not accepted for further review
Tanja Broder, Klaus-Holger Knorr, and Harald Biester
Hydrol. Earth Syst. Sci., 21, 2035–2051, https://doi.org/10.5194/hess-21-2035-2017, https://doi.org/10.5194/hess-21-2035-2017, 2017
Short summary
Short summary
This study elucidates controls on temporal variability in DOM concentration and quality in stream water draining a bog and a forested peaty riparian zone, particularly considering drought and storm flow events. DOM quality was monitored using spectrofluorometric indices (SUVA254, SR and FI) and PARAFAC modeling of EEMs. DOM quality depended clearly on hydrologic preconditions and season. Moreover, the forested peaty riparian zone generated most variability in headwater DOM quantity and quality.
T. Broder and H. Biester
Biogeosciences, 12, 4651–4664, https://doi.org/10.5194/bg-12-4651-2015, https://doi.org/10.5194/bg-12-4651-2015, 2015
Short summary
Short summary
This study combines a 1-year monitoring of precipitation, ombrotrophic peatland water level and pore water concentration changes with bog discharge and DOC, iron, As and Pb stream concentrations. Exports of As and Pb are dependent on not only the amount of precipitation and discharge but also the frequency and depth of water table fluctuations by connection of additional DOC, As and Pb pools in the acrotelm during water table rise, which is most pronounced after drought.
S. T. Lennartz, A. Lehmann, J. Herrford, F. Malien, H.-P. Hansen, H. Biester, and H. W. Bange
Biogeosciences, 11, 6323–6339, https://doi.org/10.5194/bg-11-6323-2014, https://doi.org/10.5194/bg-11-6323-2014, 2014
Short summary
Short summary
A time series of nine oceanic parameters from the coastal time series station Boknis Eck (BE, southwestern Baltic Sea) in the period of 1957-2013 is analysed with respect to seasonal cycles and long-term trends. Most striking was a paradoxical decreasing trend in oxygen with a simultaneous decline in eutrophication. Possible reasons for this paradox, e.g. processes related to warming temperatures such as increased decomposition of organic matter or altered ventilation, are discussed.
H. Biester, K.-H. Knorr, J. Schellekens, A. Basler, and Y.-M. Hermanns
Biogeosciences, 11, 2691–2707, https://doi.org/10.5194/bg-11-2691-2014, https://doi.org/10.5194/bg-11-2691-2014, 2014
Cited articles
Aksentov, K. I. and Sattarova, V. V.: Mercury geochemistry of deep-sea
sediment cores from the Kuril area, northwest Pacific, Prog. Oceanogr., 180,
102235, https://doi.org/10.1016/j.pocean.2019.102235, 2020.
Amos, H. M., Jacob, D. J., Streets, D. G., and Sunderland, E. M.: Legacy
impacts of all-time anthropogenic emissions on the global mercury cycle,
Global Biogeochem. Cy., 27, 410–421, https://doi.org/10.1002/gbc.20040,
2013.
Amyot, M., Gill, G. A., and Morel, F. M. M.: Production and loss of dissolved
gaseous mercury in coastal seawater, Environ. Sci. Technol., 31,
3606–3611, https://doi.org/10.1021/es9703685, 1997.
Arrigo, K. R., Worthen, D., Schnell, A., and Lizotte, M. P.: Primary
production in Southern Ocean waters, J. Geophys. Res.-Ocean., 103,
15587–15600, https://doi.org/10.1029/98JC00930, 1998.
Canário, J., Santos-Echeandia, J., Padeiro, A., Amaro, E., Strass, V.,
Klaas, C., Hoppema, M., Ossebaar, S., Koch, B. P., and Laglera, L. M.:
Mercury and methylmercury in the Atlantic sector of the Southern Ocean,
Deep-Sea Res. Pt II, 138, 52–62,
https://doi.org/10.1016/j.dsr2.2016.07.012, 2017.
Cheburkin, A. K. and Shotyk, W.: An energy-dispersive miniprobe multielement
analyzer (EMMA) for direct analysis of Pb and other trace elements in peats,
Fresen. J. Anal. Chem., 354, 688–691,
https://doi.org/10.1007/s0021663540688, 1996.
Chen, S.-Y., Ambe, S., Takematsu, N., and Ambe, F.: The chemical states of
iron in marine sediments by means of Mössbauer spectroscopy in
combination with chemical leachings, J. Oceanogr., 52, 705–715,
https://doi.org/10.1007/BF02239461, 1996.
Cossa, D., Heimbu, L., Lannuzel, D., Rintoul, S. R., Butler, E. C. V, Bowie,
A. R., Averty, B., Watson, R. J., and Remenyi, T.: Mercury in the Southern
Ocean, Geochim. Cosmochim. Acta, 75, 4037–4052,
https://doi.org/10.1016/j.gca.2011.05.001, 2011.
Crosta, X., Romero, O., Armand, L. K., and Pichon, J.-J.: The biogeography of
major diatom taxa in Southern Ocean sediments: 2. Open ocean related
species, Palaeogeogr. Palaeocl. Palaeoecol., 223, 66–92,
https://doi.org/10.1016/j.palaeo.2005.02.015, 2005.
Crosta, X., Debret, M., Denis, D., Courty, M., and Ther, O.: Holocene
long-and short-term climate changes off Adélie Land, East Antarctica,
Geochem. Geophy. Geosy., 8, 1–15,
https://doi.org/10.1029/2007GC001718, 2007.
Croudace, I. W. and Rothwell, R. G.: Micro-XRF Studies of Sediment Cores:
Applications of a non-destructive tool for the environmental sciences,
Springer, Dordrecht, https://doi.org/10.1007/978-94-017-9849-5, 2015.
Denis, D., Crosta, X., Zaragosi, S., Romero, O., Martin, B., and Mas, V.:
Seasonal and subseasonal climate changes recorded in laminated diatom ooze
sediments, Adelie Land, East Antarctica, The Holocene, 16, 1137–1147, https://doi.org/10.1177/0959683606069414, 2006.
Driscoll, C. T., Mason, R. P., Chan, H. M., Jacob, D. J., and Pirrone, N.:
Mercury as a global pollutant: Sources, pathways, and effects, Environ. Sci.
Technol., 47, 4967–4983, https://doi.org/10.1021/es305071v, 2013.
Escutia, C., Brinkhuis, H., Klaus, A., and Expedition 318 Scientists: Site U1357,
Proc. Integr. Ocean Drill. Programprogr., 318, 12,
https://doi.org/10.2204/iodp.proc.318.105.2011, 2011.
Fitzgerald, W. F., Gill, G. A., and Kim, J. P.: An equatorial Pacific Ocean
source of atmospheric mercury, Science, 224, 597–599,
https://doi.org/10.1126/science.224.4649.597, 1984.
Fitzgerald, W. F., Lamborg, C. H., and Hammerschmidt, C. R.: Marine
biogeochemical cycling of mercury, Chem. Rev., 107, 641–662,
https://doi.org/10.1021/cr050353m, 2007.
Fowler, S. W. and Knauer, G. A.: Role of large particles in the transport of
elements and organic compounds through the oceanic water column, Prog.
Oceanogr., 16, 147–194, https://doi.org/10.1016/0079-6611(86)90032-7, 1986.
Fütterer, D. K.: The solid phase of marine sediments, in: Marine
geochemistry, edited by: Schulz, H. D. and Zabel, M., 1–25, Springer,
Berlin, Heidelberg, https://doi.org/10.1007/978-3-662-04242-7_1, 2006.
Horowitz, H. M., Jacob, D. J., Zhang, Y., Dibble, T. S., Slemr, F., Amos, H. M., Schmidt, J. A., Corbitt, E. S., Marais, E. A., and Sunderland, E. M.: A new mechanism for atmospheric mercury redox chemistry: implications for the global mercury budget, Atmos. Chem. Phys., 17, 6353–6371, https://doi.org/10.5194/acp-17-6353-2017, 2017.
Jansen, J., Hill, N. A., Dunstan, P. K., McKinlay, J., Sumner, M. D., Post,
A. L., Eléaume, M. P., Armand, L. K., Warnock, J. P., Galton-Fenzi, B.
K., and Johnson, C. R.: Abundance and richness of key Antarctic seafloor
fauna correlates with modelled food availability, Nat. Ecol. Evol., 2,
71–80, https://doi.org/10.1038/s41559-017-0392-3, 2018.
Kita, I., Kojima, M., Hasegawa, H., Chiyonobu, S., and Sato, T.: Mercury
content as a new indicator of ocean stratification and primary productivity
in Quaternary sediments off Bahama Bank in the Caribbean Sea, Quat. Res.,
80, 606–613, https://doi.org/10.1016/j.yqres.2013.08.006, 2013.
Lamborg, C., Bowman, K., Hammerschmidt, C., Gilmour, C., Munson, K., Selin,
N., and Tseng, C.-M.: Mercury in the Anthropocene Ocean, Oceanography, 27,
76–87, https://doi.org/10.5670/oceanog.2014.11, 2014a.
Lamborg, C. H., Hammerschmidt, C. R., Bowman, K. L., Swarr, G. J., Munson,
K. M., Ohnemus, D. C., Lam, P. J., Heimbürger, L., Rijkenberg, M. J. A., and Saito, M. A.: A global ocean inventory of anthropogenic mercury based on
water column measurements, Nature, 512, 65–68,
https://doi.org/10.1038/nature13563, 2014b.
Lamborg, C. H., Hammerschmidt, C. R., and Bowman, K. L.: An examination of
the role of particles in oceanic mercury cycling, Philos. T. Roy. Soc. A, 374, 20150297,
https://doi.org/10.1098/rsta.2015.0297, 2016.
Le Faucheur, S., Campbell, P. G., Fortin, C., and Slaveykova, V. I.:
Interactions between mercury and phytoplankton: speciation, bioavailability,
and internal handling, Environ. Toxicol. Chem., 33, 1211–1224,
https://doi.org/10.1002/etc.2424, 2014.
Leri, A. C., Mayer, L. M., Thornton, K. R., Northrup, P. A., Dunigan, M. R.,
Ness, K. J., and Gellis, A. B.: A marine sink for chlorine in natural organic
matter, Nat. Geosci., 8, 620–624, https://doi.org/10.1038/ngeo2481, 2015.
Lohan, M. C. and Tagliabue, A.: Oceanic micronutrients: trace metals that
are essential for marine life, Elements, 14, 385–390,
https://doi.org/10.2138/gselements.14.6.385, 2018.
Mason, R. and Fitzgerald, W. F.: The distribution and biogeochemical cycling
of mercury in the equatorial Pacific Ocean, Deep-Sea Res. Pt. I, 40, 1897–1924, https://doi.org/10.1016/0967-0637(93)90037-4, 1993.
Mason, R. and Sheu, G.-R.: Role of the ocean in the global mercury cycle,
Global Biogeochem. Cy., 16, 1–14, https://doi.org/10.1029/2001GB001440,
2002.
Mason, R., Rolfhus, K. R., and Fitzgerald, W. F.: Methylated and elemental
mercury cycling in surface and deep ocean waters of the North Atlantic,
Water Air Soil Poll., 80, 665–677, https://doi.org/10.1007/BF01189719, 1995.
Mason, R., Lawson, N. M., and Sheu, G. R.: Mercury in the atlantic ocean:
Factors controlling air-sea exchange of mercury and its distribution in the
upper waters, Deep-Sea Res. Pt. II, 48, 2829–2853,
https://doi.org/10.1016/S0967-0645(01)00020-0, 2001.
Mason, R. P., Fitzgerald, W. F., and Morel, F. M.: The biogeochemical cycling
of elemental mercury: anthropogenic influences, Geochim. Cosmochim. Acta,
58, 3191–3198, https://doi.org/10.1016/0016-7037(94)90046-9, 1994.
Mason, R. P., Reinfelder, J. R., and Morel, F. M.: Uptake, Toxicity, and
Trophic Transfer of Mercury in a Coastal Diatom, Environ. Sci. Technol., 30,
1835–1845, https://doi.org/10.1021/es950373d, 1996.
Mason, R. P., Choi, A. L., Fitzgerald, W. F., Hammerschmidt, C. R., Lamborg,
C. H., Soerensen, A. L., and Sunderland, E. M.: Mercury biogeochemical
cycling in the ocean and policy implications, Environ. Res., 119, 101–117,
https://doi.org/10.1016/j.envres.2012.03.013, 2012.
Michel, C., Gosselin, M., and Nozais, C.: Preferential sinking export of
biogenic silica during the spring and summer in the North Water Polynya
(northern Baffin Bay): Temperature or biological control?, J. Geophys. Res.-Ocean., 107, 1–1, https://doi.org/10.1029/2000jc000408, 2002.
Moran, S. and Moore, R.: Kinetics of the removal of dissolved aluminum by
diatoms in seawater: A comparison with thorium, Geochim. Cosmochim. Acta,
56, 3365–3374, https://doi.org/10.1016/0016-7037(92)90384-U, 1992.
Morel, F. M. and Price, N.: The biogeochemical cycles of trace metals in the
oceans, Science, 300, 944–947, https://doi.org/10.1126/science.1083545,
2003.
Morel, F. M. M., Reinfelder, J. R., Roberts, S. B., Chamberlain, C. P., Lee,
J. G., and Yee, D.: Zinc and carbon co-limitation of marine phytoplankton,
Nature, 369, 740–742, https://doi.org/10.1038/369740a0, 1994.
Nerentorp Mastromonaco, M. G., Gårdfeldt, K., and Langer, S.: Mercury
flux over West Antarctic Seas during winter, spring and summer, Mar. Chem.,
193, 44–54, https://doi.org/10.1016/j.marchem.2016.08.005, 2017a.
Nerentorp Mastromonaco, M. G., Gårdfeldt, K., Assmann, K. M., Langer,
S., Delali, T., Shlyapnikov, Y. M., Zivkovic, I., and Horvat, M.: Speciation
of mercury in the waters of the Weddell, Amundsen and Ross Seas (Southern
Ocean), Mar. Chem., 193, 20–33, https://doi.org/10.1016/j.marchem.2017.03.001, 2017b.
O'Driscoll, N. J., Siciliano, S. D., Lean, D. R. S., and Amyot, M.: Gross
photoreduction kinetics of mercury in temperate freshwater lakes and rivers:
Application to a general model of DGM dynamics, Environ. Sci. Technol.,
40, 837–843, https://doi.org/10.1021/es051062y, 2006.
Pilskaln, C. H., Manganini, S. J., Trull, T. W., Armand, L., Howard, W.,
Asper, V. L., and Massom, R.: Geochemical particle fluxes in the Southern
Indian Ocean seasonal ice zone: Prydz Bay region, East Antarctica, Deep-Sea Res. Pt. I, 51, 307–332,
https://doi.org/10.1016/j.dsr.2003.10.010, 2004.
Qureshi, A., O'Driscoll, N. J., Macleod, M., Neuhold, Y. M., and
Hungerbühler, K.: Photoreactions of mercury in surface ocean water:
Gross reaction kinetics and possible pathways, Environ. Sci. Technol.,
44, 644–649, https://doi.org/10.1021/es9012728, 2010.
Rolfhus, K. R. and Fitzgerald, W. F.: Mechanisms and temporal variability of
dissolved gaseous mercury production in coastal seawater, Mar. Chem., 90, 125–136, https://doi.org/10.1016/j.marchem.2004.03.012, 2004.
Sachs, O., Sauter, E. J., Schlüter, M., Rutgers van der Loeff, M. M.,
Jerosch, K., and Holby, O.: Benthic organic carbon flux and oxygen
penetration reflect different plankton provinces in the Southern Ocean,
Deep-Sea Res. Pt. I, 56, 1319–1335,
https://doi.org/10.1016/j.dsr.2009.02.003, 2009.
Schartup, A. T., Thackray, C. P., Qureshi, A., Dassuncao, C., Gillespie, K.,
Hanke, A., and Sunderland, E. M.: Climate change and overfishing increase
neurotoxicant in marine predators, Nature, 572, 648–650,
https://doi.org/10.1038/s41586-019-1468-9, 2019.
Schlesinger, W. H. and Bernhardt, E. S.: The Oceans, in: Biogeochemistry: an
analysis of global change, 341–395, Academic Press, 2013.
Selin, N. E.: Global biogeochemical cycling of mercury: a review, Annu. Rev.
Environ. Resour., 34, 43–63,
https://doi.org/10.1146/annurev.environ.051308.084314, 2009.
Shanks, A. L. and Trent, J. D.: Marine snow: microscale nutrient patches 1,
Limnol. Oceanogr., 24, 850–854, https://doi.org/10.4319/lo.1979.24.5.0850,
1979.
Smetacek, V., Klaas, C., Strass, V. H., Assmy, P., Montresor, M., Cisewski,
B., Savoye, N., Webb, A., D'Ovidio, F., Arrieta, J. M., Bathmann, U.,
Bellerby, R., Berg, G. M., Croot, P., Gonzalez, S., Henjes, J., Herndl, G.
J., Hoffmann, L. J., Leach, H., Losch, M., Mills, M. M., Neill, C., Peeken,
I., Röttgers, R., Sachs, O., Sauter, E., Schmidt, M. M., Schwarz, J.,
Terbrüggen, A., and Wolf-Gladrow, D.: Deep carbon export from a Southern
Ocean iron-fertilized diatom bloom, Nature, 487, 313–319,
https://doi.org/10.1038/nature11229, 2012.
Soerensen, A. L., Mason, R., Balcom, P. H., and Sunderland, E. M.: Drivers of
surface ocean mercury concentrations and air-sea exchange in the West
Atlantic Ocean, Environ. Sci. Technol., 47, 7757–7765,
https://doi.org/10.1021/es401354q, 2013.
Soerensen, A. L., Mason, R., Balcom, P. H., Jacob, D. J., Zhang, Y., Kuss,
J., and Sunderland, E. M.: Elemental mercury concentrations and fluxes in the
tropical atmosphere and Ocean, Environ. Sci. Technol., 48, 11312–11319,
https://doi.org/10.1021/es503109p, 2014.
Soerensen, A. L., Schartup, A. T., Gustafsson, E., Gustafsson, B. G.,
Undeman, E., and Björn, E.: Eutrophication increases
phytoplankton methylmercury concentrations in a coastal sea – A Baltic sea
case study, Environ. Sci. Technol., 50, 11787–11796,
https://doi.org/10.1021/acs.est.6b02717, 2016.
Sunderland, E. M. and Mason, R. P.: Human impacts on open ocean mercury
concentrations, Global Biogeochem. Cy., 21, 1–15,
https://doi.org/10.1029/2006GB002876, 2007.
Turner, J. T.: Zooplankton fecal pellets, marine snow, phytodetritus and the
ocean's biological pump, Prog. Oceanogr., 130, 205–248,
https://doi.org/10.1016/j.pocean.2014.08.005, 2015.
Vandal, G. M., Fitzgerald, W. F., Boutron, C. F., and Candelone, J.-P.:
Variations in mercury deposition to Antarctica over the past 34 000 years,
Nature, 362, 621–623, https://doi.org/10.1038/362621a0, 1993.
Wang, J., Xie, Z., Wang, F., and Kang, H.: Gaseous elemental mercury in the
marine boundary layer and air-sea flux in the Southern Ocean in austral
summer, Sci. Total Environ., 603, 510–518,
https://doi.org/10.1016/j.scitotenv.2017.06.120, 2017.
Whalin, L., Kim, E. H., and Mason, R.: Factors influencing the oxidation,
reduction, methylation and demethylation of mercury species in coastal
waters, Mar. Chem., 107, 278–294, https://doi.org/10.1016/j.marchem.2007.04.002,
2007.
Williams, G. D., Bindoff, N. L., Marsland, S. J., and Rintoul, S. R.:
Formation and export of dense shelf water from the Adélie depression,
East Antarctica, J. Geophys. Res.-Ocean., 113, 1–12,
https://doi.org/10.1029/2007JC004346, 2008.
Yamane, M., Yokoyama, Y., Miyairi, Y., Suga, H., Matsuzaki, H., Dunbar, R.
B., and Ohkouchi, N.: Compound-specific 14C dating of IODP Expedition 318
core U1357A obtained off the Wilkes Land Coast, Antarctica, Radiocarbon,
56, 1009–1017, https://doi.org/10.2458/56.17773, 2014.
Zaferani, S., Pérez-rodríguez, M., and Biester, H.: Diatom ooze – A
large marine mercury sink, Science, 361, 797–800,
https://doi.org/10.1126/science.aat2735, 2018.
Short summary
Mercury is a metal of environmental concern due to its toxic nature and its high potential for biomagnification. The role of oceans in the global mercury cycle is poorly understood. Investigation of biogenic sediments revealed that biological production and related scavenging of water-phase mercury by rapidly sinking algae or algae-derived organic matter after intense algae blooms controlled preindustrial mercury accumulation in Adélie Basin, East Antarctica.
Mercury is a metal of environmental concern due to its toxic nature and its high potential for...