Articles | Volume 16, issue 2
https://doi.org/10.5194/os-16-451-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-451-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Barotropic vorticity balance of the North Atlantic subpolar gyre in an eddy-resolving model
Mathieu Le Corre
CORRESPONDING AUTHOR
Laboratoire d'Océanographie Physique et Spatiale (LOPS), Univ. Brest, CNRS, IRD, Ifremer, IUEM, Brest, France
Jonathan Gula
Laboratoire d'Océanographie Physique et Spatiale (LOPS), Univ. Brest, CNRS, IRD, Ifremer, IUEM, Brest, France
Anne-Marie Tréguier
Laboratoire d'Océanographie Physique et Spatiale (LOPS), Univ. Brest, CNRS, IRD, Ifremer, IUEM, Brest, France
Related authors
Sébastien Masson, Swen Jullien, Eric Maisonnave, David Gill, Guillaume Samson, Mathieu Le Corre, and Lionel Renault
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-140, https://doi.org/10.5194/gmd-2024-140, 2024
Revised manuscript under review for GMD
Short summary
Short summary
This article details a new feature we implemented in the most popular regional atmospheric model (WRF). This feature allows data to be exchanged between WRF and any other model (e.g. an ocean model) using the coupling library Ocean-Atmosphere-Sea-Ice-Soil – Model Coupling Toolkit (OASIS3-MCT). This coupling interface is designed to be non-intrusive, flexible and modular. It also offers the possibility of taking into account the nested zooms used in WRF or in the models with which it is coupled.
Sofia Allende, Anne Marie Treguier, Camille Lique, Clément de Boyer Montégut, François Massonnet, Thierry Fichefet, and Antoine Barthélemy
Geosci. Model Dev., 17, 7445–7466, https://doi.org/10.5194/gmd-17-7445-2024, https://doi.org/10.5194/gmd-17-7445-2024, 2024
Short summary
Short summary
We study the parameters of the turbulent-kinetic-energy mixed-layer-penetration scheme in the NEMO model with regard to sea-ice-covered regions of the Arctic Ocean. This evaluation reveals the impact of these parameters on mixed-layer depth, sea surface temperature and salinity, and ocean stratification. Our findings demonstrate significant impacts on sea ice thickness and sea ice concentration, emphasizing the need for accurately representing ocean mixing to understand Arctic climate dynamics.
Théo Picard, Jonathan Gula, Ronan Fablet, Jeremy Collin, and Laurent Mémery
Ocean Sci., 20, 1149–1165, https://doi.org/10.5194/os-20-1149-2024, https://doi.org/10.5194/os-20-1149-2024, 2024
Short summary
Short summary
The biological carbon pump plays a key role in the climate system. Plankton absorb and transform CO2 into organic carbon, forming particles that sink to the ocean floor. Sediment traps catch these particles and measure the carbon stored in the abyss. However, the particles' surface origin is unknown as ocean currents alter their paths. Here, we train an AI model to predict the origin of these particles. This new tool enables a better link between deep-ocean observations and satellite images.
Sébastien Masson, Swen Jullien, Eric Maisonnave, David Gill, Guillaume Samson, Mathieu Le Corre, and Lionel Renault
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2024-140, https://doi.org/10.5194/gmd-2024-140, 2024
Revised manuscript under review for GMD
Short summary
Short summary
This article details a new feature we implemented in the most popular regional atmospheric model (WRF). This feature allows data to be exchanged between WRF and any other model (e.g. an ocean model) using the coupling library Ocean-Atmosphere-Sea-Ice-Soil – Model Coupling Toolkit (OASIS3-MCT). This coupling interface is designed to be non-intrusive, flexible and modular. It also offers the possibility of taking into account the nested zooms used in WRF or in the models with which it is coupled.
Malcolm John Roberts, Kevin A. Reed, Qing Bao, Joseph J. Barsugli, Suzana J. Camargo, Louis-Philippe Caron, Ping Chang, Cheng-Ta Chen, Hannah M. Christensen, Gokhan Danabasoglu, Ivy Frenger, Neven S. Fučkar, Shabeh ul Hasson, Helene T. Hewitt, Huanping Huang, Daehyun Kim, Chihiro Kodama, Michael Lai, Lai-Yung Ruby Leung, Ryo Mizuta, Paulo Nobre, Pablo Ortega, Dominique Paquin, Christopher D. Roberts, Enrico Scoccimarro, Jon Seddon, Anne Marie Treguier, Chia-Ying Tu, Paul A. Ullrich, Pier Luigi Vidale, Michael F. Wehner, Colin M. Zarzycki, Bosong Zhang, Wei Zhang, and Ming Zhao
EGUsphere, https://doi.org/10.5194/egusphere-2024-2582, https://doi.org/10.5194/egusphere-2024-2582, 2024
Short summary
Short summary
HighResMIP2 is a model intercomparison project focussing on high resolution global climate models, that is those with grid spacings of 25 km or less in atmosphere and ocean, using simulations of decades to a century or so in length. We are proposing an update of our simulation protocol to make the models more applicable to key questions for climate variability and hazard in present day and future projections, and to build links with other communities to provide more robust climate information.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Etienne Pauthenet, Loïc Bachelot, Kevin Balem, Guillaume Maze, Anne-Marie Tréguier, Fabien Roquet, Ronan Fablet, and Pierre Tandeo
Ocean Sci., 18, 1221–1244, https://doi.org/10.5194/os-18-1221-2022, https://doi.org/10.5194/os-18-1221-2022, 2022
Short summary
Short summary
Temperature and salinity profiles are essential for studying the ocean’s stratification, but there are not enough of these data. Satellites are able to measure daily maps of the surface ocean. We train a machine to learn the link between the satellite data and the profiles in the Gulf Stream region. We can then use this link to predict profiles at the high resolution of the satellite maps. Our prediction is fast to compute and allows us to get profiles at any locations only from surface data.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Mathieu Morvan, Pierre L'Hégaret, Xavier Carton, Jonathan Gula, Clément Vic, Charly de Marez, Mikhail Sokolovskiy, and Konstantin Koshel
Ocean Sci., 15, 1531–1543, https://doi.org/10.5194/os-15-1531-2019, https://doi.org/10.5194/os-15-1531-2019, 2019
Short summary
Short summary
The Persian Gulf Water and Red Sea Water are salty and dense waters recirculating in the Gulf of Oman and the Gulf of Aden, in the form of small features. We study the life cycle of intense and small vortices and their impact on the spread of Persian Gulf Water and Red Sea Water by using idealized numerical simulations. Small vortices are generated along the continental slopes, drift away, merge and form larger vortices. They can travel across the domain and participate in the tracer diffusion.
Stephen M. Griffies, Gokhan Danabasoglu, Paul J. Durack, Alistair J. Adcroft, V. Balaji, Claus W. Böning, Eric P. Chassignet, Enrique Curchitser, Julie Deshayes, Helge Drange, Baylor Fox-Kemper, Peter J. Gleckler, Jonathan M. Gregory, Helmuth Haak, Robert W. Hallberg, Patrick Heimbach, Helene T. Hewitt, David M. Holland, Tatiana Ilyina, Johann H. Jungclaus, Yoshiki Komuro, John P. Krasting, William G. Large, Simon J. Marsland, Simona Masina, Trevor J. McDougall, A. J. George Nurser, James C. Orr, Anna Pirani, Fangli Qiao, Ronald J. Stouffer, Karl E. Taylor, Anne Marie Treguier, Hiroyuki Tsujino, Petteri Uotila, Maria Valdivieso, Qiang Wang, Michael Winton, and Stephen G. Yeager
Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, https://doi.org/10.5194/gmd-9-3231-2016, 2016
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) aims to provide a framework for evaluating, understanding, and improving the ocean and sea-ice components of global climate and earth system models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). This document defines OMIP and details a protocol both for simulating global ocean/sea-ice models and for analysing their output.
M. S. Mallard, C. G. Nolte, T. L. Spero, O. R. Bullock, K. Alapaty, J. A. Herwehe, J. Gula, and J. H. Bowden
Geosci. Model Dev., 8, 1085–1096, https://doi.org/10.5194/gmd-8-1085-2015, https://doi.org/10.5194/gmd-8-1085-2015, 2015
Short summary
Short summary
Because global climate models (GCMs) are typically run at coarse spatial resolution, lakes are often poorly resolved in their global fields. When downscaling such GCMs using the Weather Research & Forecasting (WRF) model, use of WRF’s default interpolation methods can result in unrealistic lake temperatures and ice cover, which can impact simulated air temperatures and precipitation. Here, alternative methods for setting lake variables in WRF downscaling applications are presented and compared.
A. M. Treguier, J. Deshayes, J. Le Sommer, C. Lique, G. Madec, T. Penduff, J.-M. Molines, B. Barnier, R. Bourdalle-Badie, and C. Talandier
Ocean Sci., 10, 243–255, https://doi.org/10.5194/os-10-243-2014, https://doi.org/10.5194/os-10-243-2014, 2014
Related subject area
Approach: Numerical Models | Depth range: All Depths | Geographical range: Deep Seas: North Atlantic | Phenomena: Current Field
Seasonal and regional variations of sinking in the subpolar North Atlantic from a high-resolution ocean model
The role of subpolar deep water formation and Nordic Seas overflows in simulated multidecadal variability of the Atlantic meridional overturning circulation
The circulation of Icelandic waters – a modelling study
An operational model for the West Iberian coast: products and services
Particle aggregation at the edges of anticyclonic eddies and implications for distribution of biomass
A multi-decadal meridional displacement of the Subpolar Front in the Newfoundland Basin
Observed and simulated estimates of the meridional overturning circulation at 26.5° N in the Atlantic
Juan-Manuel Sayol, Henk Dijkstra, and Caroline Katsman
Ocean Sci., 15, 1033–1053, https://doi.org/10.5194/os-15-1033-2019, https://doi.org/10.5194/os-15-1033-2019, 2019
Short summary
Short summary
This work uses high-resolution ocean model data to quantify the sinking of waters in the subpolar North Atlantic. The largest amount of sinking is found at the depth of maximum AMOC at 45° N below the mixed layer depth, and 90 % of the sinking occurs near the boundaries in the first 250 km off the shelf. The characteristics of the sinking (total amount, seasonal variability, and vertical structure) vary largely according to the region considered, revealing a complex picture for the sinking.
K. Lohmann, J. H. Jungclaus, D. Matei, J. Mignot, M. Menary, H. R. Langehaug, J. Ba, Y. Gao, O. H. Otterå, W. Park, and S. Lorenz
Ocean Sci., 10, 227–241, https://doi.org/10.5194/os-10-227-2014, https://doi.org/10.5194/os-10-227-2014, 2014
K. Logemann, J. Ólafsson, Á. Snorrason, H. Valdimarsson, and G. Marteinsdóttir
Ocean Sci., 9, 931–955, https://doi.org/10.5194/os-9-931-2013, https://doi.org/10.5194/os-9-931-2013, 2013
M. Mateus, G. Riflet, P. Chambel, L. Fernandes, R. Fernandes, M. Juliano, F. Campuzano, H. de Pablo, and R. Neves
Ocean Sci., 8, 713–732, https://doi.org/10.5194/os-8-713-2012, https://doi.org/10.5194/os-8-713-2012, 2012
A. Samuelsen, S. S. Hjøllo, J. A. Johannessen, and R. Patel
Ocean Sci., 8, 389–400, https://doi.org/10.5194/os-8-389-2012, https://doi.org/10.5194/os-8-389-2012, 2012
I. Núñez-Riboni, M. Bersch, H. Haak, J. H. Jungclaus, and K. Lohmann
Ocean Sci., 8, 91–102, https://doi.org/10.5194/os-8-91-2012, https://doi.org/10.5194/os-8-91-2012, 2012
J. Baehr, S. Cunnningham, H. Haak, P. Heimbach, T. Kanzow, and J. Marotzke
Ocean Sci., 5, 575–589, https://doi.org/10.5194/os-5-575-2009, https://doi.org/10.5194/os-5-575-2009, 2009
Cited articles
Beckmann, A. and Haidvogel, D. B.: Numerical Simulation of Flow around a
Tall Isolated Seamount. Part I: Problem Formulation and Model
Accuracy, J. Phys. Oceanogr., 23, 1736–1753,
https://doi.org/10.1175/1520-0485(1993)023<1736:NSOFAA>2.0.CO;2, 1993. a
Bower, A. S.: Interannual Variability in the Pathways of the North
Atlantic Current over the Mid-Atlantic Ridge and the Impact of
Topography, J. Phys. Oceanogr., 38, 104–120, https://doi.org/10.1175/2007JPO3686.1, 2008. a
Bower, A. S., Le Cann, B., Rossby, T., Zenk, W., Gould, J., Speer, K.,
Richardson, P. L., Prater, M. D., and Zhang, H.-M.: Directly measured
mid-depth circulation in the northeastern North Atlantic Ocean, Nature,
419, 603–607, https://doi.org/10.1038/nature01078, 2002. a
Brandt, P.: Seasonal to interannual variability of the eddy field in the
Labrador Sea from satellite altimetry, J. Geophys. Res.,
109, C02028, https://doi.org/10.1029/2002JC001551, 2004. a
Bryan, F. O., Hecht, M. W., and Smith, R. D.: Resolution convergence and
sensitivity studies with North Atlantic circulation models. Part I:
The western boundary current system, Ocean Model., 16, 141–159,
https://doi.org/10.1016/j.ocemod.2006.08.005, 2007. a
Carton, J. A. and Giese, B. S.: A Reanalysis of Ocean Climate Using
Simple Ocean Data Assimilation (SODA), Mon. Weather Rev., 136,
2999–3017, https://doi.org/10.1175/2007MWR1978.1, 2008. a
Chapman, D. C. and Beardsley, R. C.: On the Origin of Shelf Water in the
Middle Atlantic Bight, J. Phys. Oceanogr., 19, 384–391,
https://doi.org/10.1175/1520-0485(1989)019<0384:OTOOSW>2.0.CO;2, 1989. a
Chapman, D. C., Barth, J. A., Beardsley, R. C., and Fairbanks, R. G.: On the
Continuity of Mean Flow between the Scotian Shelf and the Middle
Atlantic Bight, J. Phys. Oceanogr., 16, 758–772,
https://doi.org/10.1175/1520-0485(1986)016<0758:OTCOMF>2.0.CO;2, 1986. a
Chelton, D. B., Deszoeke, R. A., Schlax, M. G., Naggar, K. E., and Siwertz, N.:
Geographical Variability of the First Baroclinic Rossby Radius of
Deformation, J. Phys. Oceanogr., 28, 433–460,
https://doi.org/10.1175/1520-0485(1998)028<0433:GVOTFB>2.0.CO;2, 1998. a
Csanady, G. T.: The Arrested Topographic Wave, J. Phys. Oceanogr., 8, 47–62, https://doi.org/10.1175/1520-0485(1978)008<0047:TATW>2.0.CO;2,
1978. a
Csanady, G.: On the theories that underlie our understanding of continental shelf circulation,
J. Oceanogr., 53, 207–229, 1997. a
Cuny, J., Rhines, P. B., Niiler, P. P., and Bacon, S.: Labrador Sea
Boundary Currents and the Fate of the Irminger Sea Water, J. Phys. Oceanogr., 32, 627–647,
https://doi.org/10.1175/1520-0485(2002)032<0627:LSBCAT>2.0.CO;2, 2002. a, b
Danek, C.: Effects of high resolution and spinup time on modeled North
Atlantic, J. Phys. Oceanogr., 49, 1159–1181, https://doi.org/10.1175/JPO-D-18-0141.1,
2019. a
Daniault, N., Mercier, H., Lherminier, P., Sarafanov, A., Falina, A., Zunino,
P., Pérez, F. F., Ríos, A. F., Ferron, B., Huck, T., Thierry, V., and
Gladyshev, S.: The northern North Atlantic Ocean mean circulation in
the early 21st century, Prog. Oceanogr., 146, 142–158,
https://doi.org/10.1016/j.pocean.2016.06.007, 2016. a, b
Debreu, L., Marchesiello, P., Penven, P., and Cambon, G.: Two-way nesting in
split-explicit ocean models: Algorithms, implementation and validation,
Ocean Model., 49–50, 1–21, https://doi.org/10.1016/j.ocemod.2012.03.003, 2012. a
de Jong, M. F., Bower, A. S., and Furey, H. H.: Seasonal and Interannual
Variations of Irminger Ring Formation and Boundary–Interior
Heat Exchange in FLAME, J. Phys. Oceanogr., 46,
1717–1734, https://doi.org/10.1175/JPO-D-15-0124.1, 2016. a
Deshayes, J., Frankignoul, C., and Drange, H.: Formation and export of deep
water in the Labrador and Irminger Seas in a GCM, Deep-Sea Res. Pt. I, 54, 510–532,
https://doi.org/10.1016/j.dsr.2006.12.014, 2007. a
Drews, A. and Greatbatch, R. J.: Evolution of the Atlantic Multidecadal
Variability in a Model with an Improved North Atlantic Current,
J. Climate, 30, 5491–5512, https://doi.org/10.1175/JCLI-D-16-0790.1, 2017. a
Drews, A., Greatbatch, R. J., Ding, H., Latif, M., and Park, W.: The use of a
flow field correction technique for alleviating the North Atlantic cold
bias with application to the Kiel Climate Model, Ocean Dynam., 65,
1079–1093, https://doi.org/10.1007/s10236-015-0853-7, 2015. a, b
Ezer, T.: Revisiting the problem of the Gulf Stream separation: on the
representation of topography in ocean models with different types of vertical
grids, Ocean Model., 104, 15–27, https://doi.org/10.1016/j.ocemod.2016.05.008,
2016. a
Ezer, T. and Mellor, G. L.: A generalized coordinate ocean model and a
comparison of the bottom boundary layer dynamics in terrain-following and in
z-level grids, Ocean Model., 6, 379–403,
https://doi.org/10.1016/S1463-5003(03)00026-X, 2004. a
Fischer, J., Karstensen, J., Oltmanns, M., and Schmidtko, S.: Mean circulation and EKE distribution in the Labrador Sea Water level of the subpolar North Atlantic, Ocean Sci., 14, 1167–1183, https://doi.org/10.5194/os-14-1167-2018, 2018. a, b
Fischer, J. R., Schott, F. A., and Dengler, M.: Boundary Circulation at the
Exit of the Labrador Sea, J. Phys. Oceanogr., 34, 23,
2004. a
Flatau, M. K., Talley, L., and Niiler, P. P.: The North Atlantic
Oscillation, Surface Current Velocities, and SST Changes in the
Subpolar North Atlantic, J. Climate, 16, 2355–2369,
https://doi.org/10.1175/2787.1, 2003. a, b
Greatbatch, R. J., Fanning, A. F., Goulding, A. D., and Levitus, S.: A
diagnosis of interpentadal circulation changes in the North Atlantic,
J. Geophys. Res., 96, 22009, https://doi.org/10.1029/91JC02423, 1991. a
Griffies, S. M., Biastoch, A., Böning, C., Bryan, F., Danabasoglu, G.,
Chassignet, E. P., England, M. H., Gerdes, R., Haak, H., Hallberg, R. W.,
Hazeleger, W., Jungclaus, J., Large, W. G., Madec, G., Pirani, A., Samuels,
B. L., Scheinert, M., Gupta, A. S., Severijns, C. A., Simmons, H. L.,
Treguier, A. M., Winton, M., Yeager, S., and Yin, J.: Coordinated Ocean-ice
Reference Experiments (COREs), Ocean Model., 26, 1–46,
https://doi.org/10.1016/j.ocemod.2008.08.007, 2009. a
Gula, J., Molemaker, M. J., and McWilliams, J. C.: Gulf Stream Dynamics
along the Southeastern U.S. Seaboard, J. Phys. Oceanogr., 45, 690–715, https://doi.org/10.1175/JPO-D-14-0154.1, 2015. a, b, c
Hansen, B., Húsgarð Larsen, K. M., Hátún, H., and Østerhus, S.: A stable Faroe Bank Channel overflow 1995–2015, Ocean Sci., 12, 1205–1220, https://doi.org/10.5194/os-12-1205-2016, 2016. a
Hecht, M. W. and Smith, R. D.: Towards a Physical Understanding of the
North Atlantic: A Review of Model Studies in an Eddying
Regime, American Geophysical Union (AGU), Ocean Modeling in an Edddying Regime, 177, 213–239, https://doi.org/10.1029/177GM15, 2008. a
Holliday, N. P., Bacon, S., Allen, J., and McDonagh, E. L.: Circulation and
Transport in the Western Boundary Currents at Cape Farewell,
Greenland, J. Phys. Oceanogr., 39, 1854–1870,
https://doi.org/10.1175/2009JPO4160.1, 2009. a
Hughes, C. W.: A theoretical reason to expect inviscid western boundary
currents in realistic oceans, Ocean Model., 2, 73–83,
https://doi.org/10.1016/S1463-5003(00)00011-1, 2000. a
Jackson, L., Hughes, C. W., and Williams, R. G.: Topographic Control of
Basin and Channel Flows: The Role of Bottom Pressure Torques
and Friction, J. Phys. Oceanogr., 36, 1786–1805,
https://doi.org/10.1175/JPO2936.1, 2006. a
Kanzow, T. and Zenk, W.: Structure and transport of the Iceland Scotland
Overflow plume along the Reykjanes Ridge in the Iceland Basin, Deep-Sea Res. Pt. I, 86, 82–93,
https://doi.org/10.1016/j.dsr.2013.11.003, 2014. a
Käse, R. H., Biastoch, A., and Stammer, D. B.: On the mid-depth circulation in
the Labrador and Irminger Seas, Geophys. Res. Lett., 28,
3433–3436, https://doi.org/10.1029/2001GL013192, 2001. a
Laurindo, L. C., Mariano, A. J., and Lumpkin, R.: An improved near-surface
velocity climatology for the global ocean from drifter observations, Deep-Sea
Res. Pt. I, 124, 73–92,
https://doi.org/10.1016/j.dsr.2017.04.009, 2017. a, b
Lavender, K. L., Davis, R. E., and Owens, W. B.: Mid-depth recirculation
observed in the interior Labrador and Irminger seas by direct velocity
measurements, Nature, 407, 66–69, https://doi.org/10.1038/35024048, 2000. a, b
Lavender, K. L., Brechner Owens, W., and Davis, R. E.: The mid-depth
circulation of the subpolar North Atlantic Ocean as measured by
subsurface floats, Deep-Sea Res. Pt. I,
52, 767–785, https://doi.org/10.1016/j.dsr.2004.12.007, 2005. a
Lazier, J. R.: Observations in the Nortwest Corner of the North
Atlantic Current, J. Phys. Oceanogr., 24, 1449–1463,
https://doi.org/10.1175/1520-0485(1994)024<1449:OITNCO>2.0.CO;2, 1994. a
Lebedev, K. V., Yoshinari, H., Maximenko, N. A., and Hacker, P. W.:
YoMaHa'07: Velocity data assessed from trajectories of Argo floats at
parking level and at the sea surface, Technical report, IPRC Tech. Note 4 (2), 16 pp., https://doi.org/10.13140/RG.2.2.12820.71041,
2007. a
Le Bras, I. A.-A., Sonnewald, M., and Toole, J. M.: A barotropic vorticity
budget for the subtropical North Atlantic based on observations, J. Phys. Oceanogr., 49, 2781–2797, https://doi.org/10.1175/JPO-D-19-0111.1, 2019. a
Le Corre, M., Gula, J., Smilenova, A., and Houpert, L.: On the dynamics of a
deep quasi-permanent anticylonic eddy in the Rockall Trough, p. 12,
Association Français de Mécanique, Brest, France, 2019. a
Lemarié, F., Kurian, J., Shchepetkin, A. F., Jeroen Molemaker, M., Colas, F.,
and McWilliams, J. C.: Are there inescapable issues prohibiting the use of
terrain-following coordinates in climate models?, Ocean Model., 42,
57–79, https://doi.org/10.1016/j.ocemod.2011.11.007, 2012. a
Lorenz, E. N.: Available Potential Energy and the Maintenance of the
General Circulation, Tellus, 7, 157–167,
https://doi.org/10.1111/j.2153-3490.1955.tb01148.x, 1955. a
Luyten, J., Stommel, H., and Wunsch, C.: A Diagnostic Study of the
Northern Atlantic Subpolar Gyre, J. Phys. Oceanogr.,
15, 1344–1348,
https://doi.org/10.1175/1520-0485(1985)015<1344:ADSOTN>2.0.CO;2, 1985. a
Marzocchi, A.: The North Atlantic subpolar circulation in an eddy-resolving
global ocean model, J. Marine Syst., 142, 126–143,
https://doi.org/10.1016/j.jmarsys.2014.10.007, 2015. a
McWilliams, J. C.: The Nature and Consequences of Oceanic Eddies, in: Ocean
Modeling in an Eddying Regime, edited by: Hecht, M. and Hasumi, H., AGU,
Washington, D.C., https://doi.org/10.1029/177GM03, 2008. a
Mertz, G. and Wright, D. G.: Interpretations of the JEBAR Term, J.
Phys. Oceanogr., 22, 301–305,
https://doi.org/10.1175/1520-0485(1992)022<0301:IOTJT>2.0.CO;2, 1992. a
Munk, W. H.: On the wind-driven ocean circulation, J. Meteorol., 7,
80–93, https://doi.org/10.1175/1520-0469(1950)007<0080:OTWDOC>2.0.CO;2, 1950. a
Ollitrault, M. and Rannou, J.-P.: ANDRO: An Argo-Based Deep
Displacement Dataset, J. Atmos. Ocean. Tech., 30,
759–788, https://doi.org/10.1175/JTECH-D-12-00073.1, 2013. a
Ollitrault, M., Rannou, P., Brion, E., Cabanes, C., Piron, A., Reverdin,
G., and Kolodziejczyk, N.: ANDRO: An Argo-based deep displacement dataset,
SEANOE, https://doi.org/10.17882/47077, 2019. a
Pacanowski, R. C. and Gnanadesikan, A.: Transient Response in a Z-Level
Ocean Model That Resolves Topography with Partial Cells,
Mon. Weather Rev., 126, 3248–3270,
https://doi.org/10.1175/1520-0493(1998)126<3248:TRIAZL>2.0.CO;2, 1998. a
Paillet, J. and Mercier, H.: An inverse model of the eastern North Atlantic
general circulation and thermocline ventilation, Deep-Sea Res. Pt. I, 44, 1293–1328,
https://doi.org/10.1016/S0967-0637(97)00019-8, 1997. a
Palter, J. B., Caron, C.-A., Law, K. L., Willis, J. K., Trossman, D. S.,
Yashayaev, I. M., and Gilbert, D.: Variability of the directly observed,
middepth subpolar North Atlantic circulation, Geophys. Res. Lett., 43, 2700–2708, https://doi.org/10.1002/2015GL067235, 2016. a
Petit, T., Mercier, H., and Thierry, V.: First Direct Estimates of Volume
and Water Mass Transports Across the Reykjanes Ridge, J.
Geophys. Res.-Oceans, 123, 6703–6719, https://doi.org/10.1029/2018JC013999,
2018. a, b
Renault, L., Molemaker, M. J., Gula, J., Masson, S., and McWilliams, J. C.:
Control and Stabilization of the Gulf Stream by Oceanic Current
Interaction with the Atmosphere, J. Phys. Oceanogr., 46,
3439–3453, https://doi.org/10.1175/JPO-D-16-0115.1, 2016. a
Reverdin, G.: North Atlantic Ocean surface currents, J. Geophys.
Res., 108, 3002, https://doi.org/10.1029/2001JC001020, 2003. a
Rossby, T. and Flagg, C. N.: Direct measurement of volume flux in the
Faroe-Shetland Channel and over the Iceland-Faroe Ridge: DIRECT
MEASUREMENT OF CURRENTS, Geophys. Res. Lett., 39, L07602,
https://doi.org/10.1029/2012GL051269, 2012. a
Roullet, G., Capet, X., and Maze, G.: Global interior eddy available potential
energy diagnosed from Argo floats, Geophys. Res. Lett., 41,
1651–1656, https://doi.org/10.1002/2013GL059004, 2014. a, b, c
Sandwell, D. T. and Smith, W. H. F.: Marine gravity anomaly from Geosat and
ERS 1 satellite altimetry, J. Geophys. Res.-Sol. Ea.,
102, 10039–10054, https://doi.org/10.1029/96JB03223, 1997. a
Schoonover, J., Dewar, W., Wienders, N., Gula, J., McWilliams, J. C.,
Molemaker, M. J., Bates, S. C., Danabasoglu, G., and Yeager, S.: North
Atlantic Barotropic Vorticity Balances in Numerical Models,
J. Phys. Oceanogr., 46, 289–303,
https://doi.org/10.1175/JPO-D-15-0133.1, 2016. a, b, c, d, e, f, g
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system
(ROMS): a split-explicit, free-surface, topography-following-coordinate
oceanic model, Ocean Model., 9, 347–404,
https://doi.org/10.1016/j.ocemod.2004.08.002, 2005. a
Shchepetkin, A. F. and McWilliams, J. C.: Computational Kernel Algorithms
for Fine-Scale, Multiprocess, Longtime Oceanic Simulations, in:
Handbook of Numerical Analysis, Elsevier, 14, 121–183,
https://doi.org/10.1016/S1570-8659(08)01202-0, 2009. a
Shchepetkin, A. F. and McWilliams, J. C.: Accurate Boussinesq oceanic
modeling with a practical, “Stiffened” Equation of State, Ocean
Model., 38, 41–70, https://doi.org/10.1016/j.ocemod.2011.01.010, 2011.
a
Smilenova, A., Gula, J., Le Corre, M., and Houpert, L.: On the vertical
structure and generation mechanism of a deep anticyclonic vortex in the
central Rockall Trough, northeast North Atlantic, J. Geophys. Res.-Oceans, in review, 2020. a
Sonnewald, M., Wunsch, C., and Heimbach, P.: Unsupervised Learning Reveals
Geography of Global Ocean Dynamical Regions, Earth Space
Sci., https://doi.org/10.1029/2018EA000519, 2019. a, b, c
Spall, M. A. and Pickart, R. S.: Wind-Driven Recirculations and Exchange
in the Labrador and Irminger Seas, J. Phys. Oceanogr.,
33, 1829–1845,
https://doi.org/10.1175/2384.1, 2003. a
Stommel, H.: The westward intensification of wind-driven ocean currents,
Transactions, American Geophysical Union, 29, 202,
https://doi.org/10.1029/TR029i002p00202, 1948. a
Thomas, M. D., De Boer, A. M., Johnson, H. L., and Stevens, D. P.: Spatial and
Temporal Scales of Sverdrup Balance, J. Phys. Oceanogr., 44,
2644–2660, https://doi.org/10.1175/JPO-D-13-0192.1, 2014. a
Treguier, A. M., Theetten, S., Chassignet, E. P., Penduff, T., Smith, R.,
Talley, L., Beismann, J. O., and Böning, C.: The North Atlantic
Subpolar Gyre in Four High-Resolution Models, J. Phys.
Oceanogr., 35, 757–774, https://doi.org/10.1175/JPO2720.1, 2005. a, b, c, d
Umlauf, L. and Burchard, H.: A generic length-scale equation for geophysical
turbulence models, J. Marine Res., 61, 235–265,
https://doi.org/10.1357/002224003322005087, 2003. a
Van Aken, H. M.: Mean currents and current variability in the iceland basin,
Netherlands J. Sea Res., 33, 135–145,
https://doi.org/10.1016/0077-7579(95)90001-2, 1995. a
Wunsch, C.: Is the North Atlantic in Sverdrup Balance?, J. Phys. Oceanogr., 15, 1876–1880,
https://doi.org/10.1175/1520-0485(1985)015<1876:ITNAIS>2.0.CO;2, 1985. a
Zhao, J., Bower, A., Yang, J., Lin, X., and Penny Holliday, N.: Meridional heat
transport variability induced by mesoscale processes in the subpolar North
Atlantic, Nat. Commun., 9, 1124, https://doi.org/10.1038/s41467-018-03134-x,
2018. a
Short summary
The ocean circulation is crucial for the climate, and the North Atlantic subpolar gyre is a key component of the meridional heat transport. In this study we use a high-resolution simulation with bottom-following coordinates to investigate the gyre dynamics. We show that nonlinear processes, underestimated in most climate models, control the circulation in the gyre interior. This result contrasts with the classical theory putting forward wind effects on the large-scale circulation.
The ocean circulation is crucial for the climate, and the North Atlantic subpolar gyre is a key...