Articles | Volume 16, issue 2
https://doi.org/10.5194/os-16-337-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-337-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Impact of tidal dynamics on diel vertical migration of zooplankton in Hudson Bay
Vladislav Y. Petrusevich
CORRESPONDING AUTHOR
University of Manitoba, Centre for Earth Observation Science,
Winnipeg, Canada
Igor A. Dmitrenko
University of Manitoba, Centre for Earth Observation Science,
Winnipeg, Canada
Andrea Niemi
Fisheries and Oceans Canada, Winnipeg, Manitoba, Canada
Sergey A. Kirillov
University of Manitoba, Centre for Earth Observation Science,
Winnipeg, Canada
Christina Michelle Kamula
University of Manitoba, Centre for Earth Observation Science,
Winnipeg, Canada
Zou Zou A. Kuzyk
University of Manitoba, Centre for Earth Observation Science,
Winnipeg, Canada
David G. Barber
University of Manitoba, Centre for Earth Observation Science,
Winnipeg, Canada
Jens K. Ehn
University of Manitoba, Centre for Earth Observation Science,
Winnipeg, Canada
Related authors
Igor Dmitrenko, Vladislav Petrusevich, Andreas Preußer, Ksenia Kosobokova, Caroline Bouchard, Maxime Geoffroy, Alexander Komarov, David Babb, Sergei Kirillov, and David Barber
EGUsphere, https://doi.org/10.5194/egusphere-2024-1637, https://doi.org/10.5194/egusphere-2024-1637, 2024
Short summary
Short summary
The diel vertical migration (DVM) of zooplankton is one of the largest species migrations to occur globally and is a key driver of regional ecosystems. Here, time series of acoustic data collected at the circumpolar Arctic polynya system were used to examine the annual cycle of DVM. We revealed that the formation of polynya open water disrupts DVM. This disruption is attributed to a predator avoidance behavior of zooplankton in response to higher polar cod abundance attracted by the polynya.
Igor A. Dmitrenko, Vladislav Petrusevich, Gérald Darnis, Sergei A. Kirillov, Alexander S. Komarov, Jens K. Ehn, Alexandre Forest, Louis Fortier, Søren Rysgaard, and David G. Barber
Ocean Sci., 16, 1261–1283, https://doi.org/10.5194/os-16-1261-2020, https://doi.org/10.5194/os-16-1261-2020, 2020
Short summary
Short summary
Diel vertical migration (DVM) of zooplankton is the largest nonhuman migration on the Earth. DVM in the eastern Beaufort Sea was assessed using a 2-year-long time series of currents and acoustic signal from a bottom-anchored oceanographic mooring. Our results show that DVM is deviated by the (i) seasonal and interannual variability in sea ice and (ii) wind-driven water dynamics. We also observed the midnight-sun DVM during summer 2004, a signal masked by suspended particles in summer 2005.
Igor Dmitrenko, Vladislav Petrusevich, Andreas Preußer, Ksenia Kosobokova, Caroline Bouchard, Maxime Geoffroy, Alexander Komarov, David Babb, Sergei Kirillov, and David Barber
EGUsphere, https://doi.org/10.5194/egusphere-2024-1637, https://doi.org/10.5194/egusphere-2024-1637, 2024
Short summary
Short summary
The diel vertical migration (DVM) of zooplankton is one of the largest species migrations to occur globally and is a key driver of regional ecosystems. Here, time series of acoustic data collected at the circumpolar Arctic polynya system were used to examine the annual cycle of DVM. We revealed that the formation of polynya open water disrupts DVM. This disruption is attributed to a predator avoidance behavior of zooplankton in response to higher polar cod abundance attracted by the polynya.
Sergei Kirillov, Igor Dmitrenko, David G. Babb, Jens K. Ehn, Nikolay Koldunov, Søren Rysgaard, David Jensen, and David G. Barber
Ocean Sci., 18, 1535–1557, https://doi.org/10.5194/os-18-1535-2022, https://doi.org/10.5194/os-18-1535-2022, 2022
Short summary
Short summary
The sea ice bridge usually forms during winter in Nares Strait and prevents ice drifting south. However, this bridge has recently become unstable, and in this study we investigate the role of oceanic heat flux in this decline. Using satellite data, we identify areas where sea ice is relatively thin and further attribute those areas to the heat fluxes from the warm subsurface water masses. We also discuss the potential role of such an impact on ice bridge instability and earlier ice break up.
Igor A. Dmitrenko, Denis L. Volkov, Tricia A. Stadnyk, Andrew Tefs, David G. Babb, Sergey A. Kirillov, Alex Crawford, Kevin Sydor, and David G. Barber
Ocean Sci., 17, 1367–1384, https://doi.org/10.5194/os-17-1367-2021, https://doi.org/10.5194/os-17-1367-2021, 2021
Short summary
Short summary
Significant trends of sea ice in Hudson Bay have led to a considerable increase in shipping activity. Therefore, understanding sea level variability is an urgent issue crucial for safe navigation and coastal infrastructure. Using the sea level, atmospheric and river discharge data, we assess environmental factors impacting variability of sea level at Churchill. We find that it is dominated by wind forcing, with the seasonal cycle generated by the seasonal cycle in atmospheric circulation.
Philippe Massicotte, Rainer M. W. Amon, David Antoine, Philippe Archambault, Sergio Balzano, Simon Bélanger, Ronald Benner, Dominique Boeuf, Annick Bricaud, Flavienne Bruyant, Gwenaëlle Chaillou, Malik Chami, Bruno Charrière, Jing Chen, Hervé Claustre, Pierre Coupel, Nicole Delsaut, David Doxaran, Jens Ehn, Cédric Fichot, Marie-Hélène Forget, Pingqing Fu, Jonathan Gagnon, Nicole Garcia, Beat Gasser, Jean-François Ghiglione, Gaby Gorsky, Michel Gosselin, Priscillia Gourvil, Yves Gratton, Pascal Guillot, Hermann J. Heipieper, Serge Heussner, Stanford B. Hooker, Yannick Huot, Christian Jeanthon, Wade Jeffrey, Fabien Joux, Kimitaka Kawamura, Bruno Lansard, Edouard Leymarie, Heike Link, Connie Lovejoy, Claudie Marec, Dominique Marie, Johannie Martin, Jacobo Martín, Guillaume Massé, Atsushi Matsuoka, Vanessa McKague, Alexandre Mignot, William L. Miller, Juan-Carlos Miquel, Alfonso Mucci, Kaori Ono, Eva Ortega-Retuerta, Christos Panagiotopoulos, Tim Papakyriakou, Marc Picheral, Louis Prieur, Patrick Raimbault, Joséphine Ras, Rick A. Reynolds, André Rochon, Jean-François Rontani, Catherine Schmechtig, Sabine Schmidt, Richard Sempéré, Yuan Shen, Guisheng Song, Dariusz Stramski, Eri Tachibana, Alexandre Thirouard, Imma Tolosa, Jean-Éric Tremblay, Mickael Vaïtilingom, Daniel Vaulot, Frédéric Vaultier, John K. Volkman, Huixiang Xie, Guangming Zheng, and Marcel Babin
Earth Syst. Sci. Data, 13, 1561–1592, https://doi.org/10.5194/essd-13-1561-2021, https://doi.org/10.5194/essd-13-1561-2021, 2021
Short summary
Short summary
The MALINA oceanographic expedition was conducted in the Mackenzie River and the Beaufort Sea systems. The sampling was performed across seven shelf–basin transects to capture the meridional gradient between the estuary and the open ocean. The main goal of this research program was to better understand how processes such as primary production are influencing the fate of organic matter originating from the surrounding terrestrial landscape during its transition toward the Arctic Ocean.
Igor A. Dmitrenko, Vladislav Petrusevich, Gérald Darnis, Sergei A. Kirillov, Alexander S. Komarov, Jens K. Ehn, Alexandre Forest, Louis Fortier, Søren Rysgaard, and David G. Barber
Ocean Sci., 16, 1261–1283, https://doi.org/10.5194/os-16-1261-2020, https://doi.org/10.5194/os-16-1261-2020, 2020
Short summary
Short summary
Diel vertical migration (DVM) of zooplankton is the largest nonhuman migration on the Earth. DVM in the eastern Beaufort Sea was assessed using a 2-year-long time series of currents and acoustic signal from a bottom-anchored oceanographic mooring. Our results show that DVM is deviated by the (i) seasonal and interannual variability in sea ice and (ii) wind-driven water dynamics. We also observed the midnight-sun DVM during summer 2004, a signal masked by suspended particles in summer 2005.
Jens K. Ehn, Rick A. Reynolds, Dariusz Stramski, David Doxaran, Bruno Lansard, and Marcel Babin
Biogeosciences, 16, 1583–1605, https://doi.org/10.5194/bg-16-1583-2019, https://doi.org/10.5194/bg-16-1583-2019, 2019
Short summary
Short summary
Beam attenuation at 660 nm and suspended particle matter (SPM) relationships were determined during the MALINA cruise in August 2009 to the Canadian Beaufort Sea in order to expand our knowledge of particle distributions in Arctic shelf seas. The relationship was then used to determine SPM distributions for four other expeditions to the region. SPM patterns on the shelf were explained by an interplay between wind forcing, river discharge, and melting sea ice that controls the circulation.
Igor A. Dmitrenko, Sergey A. Kirillov, Bert Rudels, David G. Babb, Leif Toudal Pedersen, Søren Rysgaard, Yngve Kristoffersen, and David G. Barber
Ocean Sci., 13, 1045–1060, https://doi.org/10.5194/os-13-1045-2017, https://doi.org/10.5194/os-13-1045-2017, 2017
Sergei Kirillov, Igor Dmitrenko, Søren Rysgaard, David Babb, Leif Toudal Pedersen, Jens Ehn, Jørgen Bendtsen, and David Barber
Ocean Sci., 13, 947–959, https://doi.org/10.5194/os-13-947-2017, https://doi.org/10.5194/os-13-947-2017, 2017
Short summary
Short summary
This paper reports the analysis of 3-week oceanographic data obtained in the front of Flade Isblink Glacier in northeast Greenland. The major focus of research is considering the changes of water dynamics and the altering of temperature and salinity vertical distribution occurring during the storm event. We discuss the mechanisms that are responsible for the formation of two-layer circulation cell and release of cold and relatively fresh sub-glacial waters into the ocean.
Jennifer V. Lukovich, Cathleen A. Geiger, and David G. Barber
The Cryosphere, 11, 1707–1731, https://doi.org/10.5194/tc-11-1707-2017, https://doi.org/10.5194/tc-11-1707-2017, 2017
Short summary
Short summary
In this study we develop a framework to characterize directional changes in sea ice drift and associated deformation in response to atmospheric forcing. Lagrangian dispersion statistics applied to ice beacons deployed in a triangular configuration in the Beaufort Sea capture a shift in ice dynamical regimes and local differences in deformation. This framework contributes to diagnostic development relevant for ice hazard assessments and forecasting required by indigenous communities and industry.
J. Sievers, L. L. Sørensen, T. Papakyriakou, B. Else, M. K. Sejr, D. Haubjerg Søgaard, D. Barber, and S. Rysgaard
The Cryosphere, 9, 1701–1713, https://doi.org/10.5194/tc-9-1701-2015, https://doi.org/10.5194/tc-9-1701-2015, 2015
R. K. Scharien, J. Landy, and D. G. Barber
The Cryosphere, 8, 2147–2162, https://doi.org/10.5194/tc-8-2147-2014, https://doi.org/10.5194/tc-8-2147-2014, 2014
R. K. Scharien, K. Hochheim, J. Landy, and D. G. Barber
The Cryosphere, 8, 2163–2176, https://doi.org/10.5194/tc-8-2163-2014, https://doi.org/10.5194/tc-8-2163-2014, 2014
I. A. Dmitrenko, S. A. Kirillov, N. Serra, N. V. Koldunov, V. V. Ivanov, U. Schauer, I. V. Polyakov, D. Barber, M. Janout, V. S. Lien, M. Makhotin, and Y. Aksenov
Ocean Sci., 10, 719–730, https://doi.org/10.5194/os-10-719-2014, https://doi.org/10.5194/os-10-719-2014, 2014
J. V. Lukovich, D. G. Babb, R. J. Galley, R. L. Raddatz, and D. G. Barber
The Cryosphere Discuss., https://doi.org/10.5194/tcd-8-4281-2014, https://doi.org/10.5194/tcd-8-4281-2014, 2014
Revised manuscript not accepted
S. Bélanger, S. A. Cizmeli, J. Ehn, A. Matsuoka, D. Doxaran, S. Hooker, and M. Babin
Biogeosciences, 10, 6433–6452, https://doi.org/10.5194/bg-10-6433-2013, https://doi.org/10.5194/bg-10-6433-2013, 2013
S. Rysgaard, D. H. Søgaard, M. Cooper, M. Pućko, K. Lennert, T. N. Papakyriakou, F. Wang, N. X. Geilfus, R. N. Glud, J. Ehn, D. F. McGinnis, K. Attard, J. Sievers, J. W. Deming, and D. Barber
The Cryosphere, 7, 707–718, https://doi.org/10.5194/tc-7-707-2013, https://doi.org/10.5194/tc-7-707-2013, 2013
Cited articles
Baker, E. T. and Milburn, H. B.: An instrument system for the investigation
of particle fluxes, Cont. Shelf Res., 1, 425–435,
https://doi.org/10.1016/0278-4343(83)90006-7, 1983.
Bandara, K., Varpe, Ø., J. E. S., Wallenschus, J., Berge, J., and Eiane, K.:
Seasonal vertical strategies in a high-Arctic coastal zooplankton community,
Mar. Ecol. Prog. Ser., 555, 49–64, https://doi.org/10.3354/meps11831, 2016.
Banks, C. J., Brandon, M. A., and Garthwaite, P. H.: Measurement of Sea-ice
draft using upward-looking ADCP on an autonomous underwater vehicle, Ann.
Glaciol., 44, 211–216, https://doi.org/10.3189/172756406781811871, 2006.
Båtnes, A. S., Miljeteig, C., Berge, J., Greenacre, M., and Johnsen, G.:
Quantifying the light sensitivity of Calanus spp. during the polar night:
potential for orchestrated migrations conducted by ambient light from the
sun, moon, or aurora borealis?, Polar Biol., 38, 51–65,
https://doi.org/10.1007/s00300-013-1415-4, 2015.
Benoit, D., Simard, Y., and Fortier, L.: Hydroacoustic detection of large
winter aggregations of Arctic cod (Boreogadus saida) at depth in
ice-covered Franklin Bay (Beaufort Sea), J. Geophys. Res., 113, C06S90,
https://doi.org/10.1029/2007JC004276, 2008.
Benoit, D., Simard, Y., Gagné, J., Geoffroy, M., and Fortier, L.: From
polar night to midnight sun: photoperiod, seal predation, and the diel
vertical migrations of polar cod (Boreogadus saida) under landfast ice in
the Arctic Ocean, Polar Biol., 33, 1505–1520,
https://doi.org/10.1007/s00300-010-0840-x, 2010.
Berge, J., Cottier, F., Last, K. S., Varpe, Ø., Leu, E., Søreide, J.,
Eiane, K., Falk-Petersen, S., Willis, K., Nygård, H., Vogedes, D.,
Griffiths, C., Johnsen, G., Lorentzen, D., and Brierley, A. S.: Diel vertical
migration of Arctic zooplankton during the polar night, Biol. Lett., 5,
69–72, https://doi.org/10.1098/rsbl.2008.0484, 2009.
Berge, J., Båtnes, A. S., Johnsen, G., Blackwell, S. M., and Moline, M.
A.: Bioluminescence in the high Arctic during the polar night, Mar. Biol.,
159, 231–237, https://doi.org/10.1007/s00227-011-1798-0, 2012.
Berge, J., Cottier, F., Varpe, O., Renaud, P. E., Falk-Petersen, S.,
Kwasniewski, S., Griffiths, C., Søreide, J. E., Johnsen, G., Aubert, A.,
Bjærke, O., Hovinen, J., Jung-Madsen, S., Tveit, M., and Majaneva, S.:
Arctic complexity: a case study on diel vertical migration of zooplankton.,
J. Plankton Res., 36, 1279–1297, https://doi.org/10.1093/plankt/fbu059, 2014.
Berge, J., Daase, M., Renaud, P. E., Ambrose, W. G., Darnis, G., Last, K.
S., Leu, E., Cohen, J. H., Johnsen, G., Moline, M. A., Cottier, F., Varpe,
Ø., Shunatova, N., Bałazy, P., Morata, N., Massabuau, J.-C.,
Falk-Petersen, S., Kosobokova, K., Hoppe, C. J. M., Węsławski, J. M.,
Kukliński, P., Legeżyńska, J., Nikishina, D., Cusa, M.,
Kędra, M., Włodarska-Kowalczuk, M., Vogedes, D., Camus, L., Tran, D.,
Michaud, E., Gabrielsen, T. M., Granovitch, A., Gonchar, A., Krapp, R., and
Callesen, T. A.: Unexpected Levels of Biological Activity during the Polar
Night Offer New Perspectives on a Warming Arctic, Curr. Biol., 25,
2555–2561, https://doi.org/10.1016/j.cub.2015.08.024, 2015b.
Berge, J., Renaud, P. E., Darnis, G., Cottier, F., Last, K., Gabrielsen, T.
M., Johnsen, G., Seuthe, L., Weslawski, J. M., Leu, E., Moline, M.,
Nahrgang, J., Søreide, J. E., Varpe, Ø., Lønne, O. J., Daase, M.,
and Falk-Petersen, S.: In the dark: A review of ecosystem processes during
the Arctic polar night, Prog. Oceanogr., 139, 258–271,
https://doi.org/10.1016/j.pocean.2015.08.005, 2015a.
Björk, G., Nohr, C., Gustafsson, B. G., and Lindberg, A. E. B.: Ice
dynamics in the Bothnian Bay inferred from ADCP measurements, Tellus A, 60, 178–188, https://doi.org/10.1111/j.1600-0870.2007.00282.x,
2008.
Blachowiak-Samolyk, K., Kwasniewski, S., Richardson, K., Dmoch, K., Hansen,
E., Hop, H., Falk-Petersen, S., and Mouritsen, L. T.: Arctic zooplankton do
not perform diel vertical migration (DVM) during periods of midnight sun,
Mar. Ecol. Prog. Ser., 308, 101–116, https://doi.org/10.3354/meps308101, 2006.
Bourke, R. H. and Paquette, R. G.: Estimating the thickness of sea ice, J.
Geophys. Res.-Ocean., 94, 919–923, https://doi.org/10.1029/JC094iC01p00919, 1989.
Bozzano, R., Fanelli, E., Pensieri, S., Picco, P., and Schiano, M. E.: Temporal variations of zooplankton biomass in the Ligurian Sea inferred from long time series of ADCP data, Ocean Sci., 10, 93–105, https://doi.org/10.5194/os-10-93-2014, 2014.
Brierley, A. S.: Diel vertical migration, Curr. Biol., 24, R1074–R1076,
https://doi.org/10.1016/j.cub.2014.08.054, 2014.
Brierley, A. S., Brandon, M. A., and Watkins, J. L.: An assessment of the
utility of an acoustic Doppler current profiler for biomass estimation, Deep-Sea Res. Pt. I, 45, 1555–1573,
https://doi.org/10.1016/S0967-0637(98)00012-0, 1998.
Brierley, A. S., Saunders, R. A., Bone, D. G., Murphy, E. J., Enderlein, P.,
Conti, S. G., and Demer, D. A.: Use of moored acoustic instruments to measure
short-term variability in abundance of Antarctic krill, Limnol. Oceanogr.
Methods, 4, 18–29, https://doi.org/10.4319/lom.2006.4.18, 2006.
Brodeur, R. D. and Terazaki, M.: Springtime abundance of chaetognaths in the
shelf region of the northern Gulf of Alaska, with observations on the
vertical distribution and feeding of Sagitta elegans, Fish. Oceanogr., 8,
93–103, https://doi.org/10.1046/j.1365-2419.1999.00099.x, 1999.
Burt, W. J., Thomas, H., Miller, L. A., Granskog, M. A., Papakyriakou, T. N., and Pengelly, L.: Inorganic carbon cycling and biogeochemical processes in an Arctic inland sea (Hudson Bay), Biogeosciences, 13, 4659–4671, https://doi.org/10.5194/bg-13-4659-2016, 2016.
Carmack, E. and Wassmann, P.: Food webs and physical-biological coupling on
pan-Arctic shelves: Unifying concepts and comprehensive perspectives, Prog.
Oceanogr., 71, 446–477, https://doi.org/10.1016/j.pocean.2006.10.004, 2006.
Cisewski, B. and Strass, V. H.: Acoustic insights into the zooplankton
dynamics of the eastern Weddell Sea, Prog. Oceanogr., 144, 62–92,
https://doi.org/10.1016/j.pocean.2016.03.005, 2016.
Cisewski, B., Strass, V. H., Rhein, M., and Krägefsky, S.: Seasonal
variation of diel vertical migration of zooplankton from ADCP backscatter
time series data in the Lazarev Sea, Antarctica, Deep-Sea Res. Pt. I, 57, 78–94, https://doi.org/10.1016/j.dsr.2009.10.005, 2010.
Cohen, J. H. and Forward, R. B.: Spectral sensitivity of vertically
migrating marine copepods, Biol. Bull., 203, 307–314, https://doi.org/10.2307/1543573, 2002.
Cohen, J. H. and Forward, R. B.: Diel vertical migration of the marine
copepod Calanopia americana. I. Twilight DVM and its relationship to the
diel light cycle, Mar. Biol., 147, 387–398, https://doi.org/10.1007/s00227-005-1569-x, 2005.
Cohen, J. H., Berge, J., Moline, M. A., Sørensen, A. J., Last, K.,
Falk-Petersen, S., Renaud, P. E., Leu, E. S., Grenvald, J., Cottier, F.,
Cronin, H., Menze, S., Norgren, P., Varpe, Ø., Daase, M., Darnis, G., and
Johnsen, G.: Is Ambient Light during the High Arctic Polar Night Sufficient
to Act as a Visual Cue for Zooplankton?, PLoS One, 10, e0126247,
https://doi.org/10.1371/journal.pone.0126247, 2015.
Conover, R. J. and Huntley, M.: Copepods in ice-covered seas – Distribution,
adaptations to seasonally limited food, metabolism, growth patterns and life
cycle strategies in polar seas, J. Mar. Syst., 2, 1–41,
https://doi.org/10.1016/0924-7963(91)90011-I, 1991.
Cottier, F. R., Tarling, G. A., Wold, A., and Falk-Petersen, S.:
Unsynchronized and synchronized vertical migration of zooplankton in a high
arctic fjord, Limnol. Oceanogr., 51, 2586–2599,
https://doi.org/10.4319/lo.2006.51.6.2586, 2006.
Darnis, G., Hobbs, L., Geoffroy, M., Grenvald, J. C., Renaud, P. E., Berge,
J., Cottier, F., Kristiansen, S., Daase, M., E. Søreide, J., Wold, A.,
Morata, N., and Gabrielsen, T.: From polar night to midnight sun: Diel
vertical migration, metabolism and biogeochemical role of zooplankton in a
high Arctic fjord (Kongsfjorden, Svalbard), Limnol. Oceanogr., 62,
1586–1605, https://doi.org/10.1002/lno.10519, 2017.
Deines, K. L.: Backscatter estimation using Broadband acoustic Doppler
current profilers, in: Proceedings of the IEEE Sixth Working Conference on
Current Measurement, Cat. No. 99CH36331, pp. 249–253, IEEE, San Diego, CA, https://doi.org/10.1109/CCM.1999.755249, 1999.
Dmitrenko, I. A., Petrusevich, V., Darnis, G., Kirillov, S. A., Komarov, A.
S., Ehn, J. K., Forest, A., Fortier, L., Rysgaard, S., and Barber, D. G.:
Sea-ice and water dynamics and moonlight impact the acoustic backscatter
diurnal signal over the eastern Beaufort Sea continental slope, J. Geophys. Res.-Oceans, in review, 2019.
Doney, S. C. and Steinberg, D. K.: Marine biogeochemistry: The ups and downs
of ocean oxygen, Nat. Geosci., 6, 515–516, https://doi.org/10.1038/ngeo1872, 2013.
Estrada, R., Harvey, M., Gosselin, M., Starr, M., Galbraith, P. S., and
Straneo, F.: Late-summer zooplankton community structure, abundance, and
distribution in the Hudson Bay system (Canada) and their relationships with
environmental conditions, 2003–2006, Prog. Oceanogr., 101, 121–145,
https://doi.org/10.1016/j.pocean.2012.02.003, 2012.
Falk-Petersen, S., Leu, E., Berge, J., Kwasniewski, S., Nygård, H.,
Røstad, A., Keskinen, E., Thormar, J., von Quillfeldt, C., Wold, A., and
Gulliksen, B.: Vertical migration in high Arctic waters during autumn 2004,
Deep-Sea Res. Pt. II, 55, 2275–2284,
https://doi.org/10.1016/j.dsr2.2008.05.010, 2008.
Ferland, J., Gosselin, M., and Starr, M.: Environmental control of summer
primary production in the Hudson Bay system: The role of stratification, J.
Mar. Syst., 88, 385–400,
https://doi.org/10.1016/j.jmarsys.2011.03.015, 2011.
Fielding, S., Griffiths, G., and Roe, H. S. J.: The biological validation of
ADCP acoustic backscatter through direct comparison with net samples and
model predictions based on acoustic-scattering models, ICES J. Mar. Sci. J.
du Cons., 61, 184–200, https://doi.org/10.1016/j.icesjms.2003.10.011, 2004.
Forbes, J. R., Macdonald, R. W., Carmack, E. C., Iseki, K., and O'Brien, M.
C.: Zooplankton Retained in Sequential Sediment Traps along the Beaufort Sea
Shelf Break during Winter, Can. J. Fish. Aquat. Sci., 49, 663–670,
https://doi.org/10.1139/f92-075, 1992.
Fortier, M., Fortier, L., Hattori, H., Saito, H., and Legendre, L.: Visual
predators and the diel vertical migration of copepods under Arctic sea ice
during the midnight sun, J. Plankton Res., 23, 1263–1278,
https://doi.org/10.1093/plankt/23.11.1263, 2001.
Gagnon, A. S. and Gough, W. A.: Trends in the dates of ice freeze-up and
breakup over Hudson Bay, Canada, Arctic, 58, 370–382,
https://doi.org/10.14430/arctic451, 2005.
Gagnon, A. S. and Gough, W. A.: East-west asymmetry in long-term trends of
landfast ice thickness in the Hudson Bay region, Canada, Clim. Res., 32,
177–186, https://doi.org/10.3354/cr032177, 2006.
Geoffroy, M., Majewski, A., LeBlanc, M., Gauthier, S., Walkusz, W., Reist,
J. D. and Fortier, L.: Vertical segregation of age-0 and age-1+ polar cod
(Boreogadus saida) over the annual cycle in the Canadian Beaufort Sea, Polar
Biol., 39, 1023–1037, https://doi.org/10.1007/s00300-015-1811-z, 2016.
Grenfell, C. G. and Maykut, G. A.: The optical properties of ice and snow in
the Arctic Basin, J. Glaciol., 18, 445–463, https://doi.org/10.3189/S0022143000021122, 1977.
Guerra, D., Schroeder, K., Borghini, M., Camatti, E., Pansera, M., Schroeder, A., Sparnocchia, S., and Chiggiato, J.: Zooplankton diel vertical migration in the Corsica Channel (north-western Mediterranean Sea) detected by a moored acoustic Doppler current profiler, Ocean Sci., 15, 631–649, https://doi.org/10.5194/os-15-631-2019, 2019.
Hays, G. C.: A review of the adaptive significance and ecosystem
consequences of zooplankton diel vertical migrations, Hydrobiologia,
503, 163–170, https://doi.org/10.1023/B:HYDR.0000008476.23617.b0, 2003.
Heywood, K. J.: Diel vertical migration of zooplankton in the Northeast
Atlantic, J. Plankton Res., 18, 163–184, https://doi.org/10.1093/plankt/18.2.163,
1996.
Hill, A. E.: Vertical migration in tidal currents, Mar. Ecol. Prog. Ser.,
75, 39–54, https://doi.org/10.3354/meps075039, 1991.
Hill, A. E.: Horizontal zooplankton dispersal by diel vertical migration in
S2 tidal currents on the northwest European continental shelf, Cont. Shelf
Res., 14, 491–506, https://doi.org/10.1016/0278-4343(94)90100-7, 1994.
Hobbs, L., Cottier, F. R., Last, K. S., and Berge, J.: Pan-Arctic diel
vertical migration during the polar night, Mar. Ecol. Prog. Ser., 605,
61–72, https://doi.org/10.3354/meps12753, 2018.
Hochheim, K. P. and Barber, D. G.: An Update on the Ice Climatology of the
Hudson Bay System, Arctic, Antarct. Alp. Res., 46, 66–83,
https://doi.org/10.1657/1938-4246-46.1.66, 2014.
Ingram, R. G. and Prinseberg, S.: Coastal oceanography of Hudson Bay and
surrounding eastern canadian Arctic waters coastal segment, in: The Sea, vol.
11, edited by: Robinson, A. R. and Brink, K. H., ISBN 0-471-11545-2, John Wiley & Sons, Inc., NY, 1998.
Jones, E. P., Swift, J. H., Anderson, L. G., Lipizer, M., Civitarese, G.,
Falkner, K. K., Kattner, G., and McLaughlin, F.: Tracing Pacific water in the
North Atlantic Ocean, J. Geophys. Res.-Ocean., 108, 3116,
https://doi.org/10.1029/2001JC001141, 2003.
Josenhans, H. W. and Zevenhuizen, J.: Dynamics of the Laurentide Ice Sheet
in Hudson Bay, Canada, Mar. Geol., 92, 1–26,
https://doi.org/10.1016/0025-3227(90)90024-E, 1990.
Jourdin, F., Tessier, C., Le Hir, P., Verney, R., Lunven, M., Loyer, S.,
Lusven, A., Filipot, J.-F. F., Lepesqueur, J., Hir, P. Le, Verney, R.,
Lunven, M., Loyer, S., Lusven, A., Filipot, J.-F. F., and Lepesqueur, J.:
Dual-frequency ADCPs measuring turbidity, Geo-Marine Lett., 34, 381–397,
https://doi.org/10.1007/s00367-014-0366-2, 2014.
Kosobokova, K. N.: Diurnal Vertical Distribution Of Calanus Hyperboreus
Kroyer And Calanus Glacialis Jaschnov In Central Polar Basin, Okeanologiya,
18, 722–728, 1978.
Krishfield, R. A., Proshutinsky, A., Tateyama, K., Williams, W. J., Carmack,
E. C., MaLaughlin, F. A., and Timmermans, M.-L.: Deterioration of perennial
sea ice in the Beaufort Gyre from 2003 to 2012 and its impact on the oceanic
freshwater cycle, J. Geophys. Res.-Ocean., 119, 1271–1305,
https://doi.org/10.1002/2013JC008999, 2014.
Lampert, W.: The Adaptive Significance of Diel Vertical Migration of
Zooplankton, Funct. Ecol., 3, 21–27, https://doi.org/10.2307/2389671, 1989.
Landy, J. C., Ehn, J. K., Babb, D. G., Thériault, N., and Barber, D. G.:
Sea ice thickness in the Eastern Canadian Arctic: Hudson Bay Complex &
Baffin Bay, Remote Sens. Environ., 200, 281–294,
https://doi.org/10.1016/j.rse.2017.08.019, 2017.
Last, K. S., Hobbs, L., Berge, J., Brierley, A. S., and Cottier, F.:
Moonlight Drives Ocean-Scale Mass Vertical Migration of Zooplankton during
the Arctic Winter, Curr. Biol., 26, 244–251,
https://doi.org/10.1016/j.cub.2015.11.038, 2016.
Lavery, A. C., Wiebe, P. H., Stanton, T. K., Lawson, G. L., Benfield, M. C.,
and Copley, N.: Determining dominant scatterers of sound in mixed
zooplankton populations, J. Acoust. Soc. Am., 122, 3304–3326,
https://doi.org/10.1121/1.2793613, 2007.
LeBlanc, M., Gauthier, S., Garbus, S. E., Mosbech, A., and Fortier, L.: The
co-distribution of Arctic cod and its seabird predators across the marginal
ice zone in Baffin Bay, Elem. Sci. Anth., 7, 1, https://doi.org/10.1525/elementa.339,
2019.
Lemon, D., Johnston, P., Buermans, J., Loos, E., Borstad, G., and Brown, L.: Multiple-frequency moored sonar for continuous observations of zooplankton and fish, Oceans, Hampton Roads, VA, 1–6, https://doi.org/10.1109/OCEANS.2012.6404918, 2012.
Lemon, D. D., Gower, J. F. R., and Clarke, M. R.: The acoustic water column
profiler: a tool for long-term monitoring of zooplankton populations, in:
MTS/IEEE Oceans 2001. An Ocean Odyssey, Conference Proceedings (IEEE Cat.
No.01CH37295), 3, 1904–1909, https://doi.org/10.1109/OCEANS.2001.968137, 2001.
Lemon, D. D., Billenness, D., and Buermans, J.: Comparison of acoustic
measurements of zooplankton populations using an Acoustic Water Column
Profiler and an ADCP, in: OCEANS 2008, pp. 1–8, IEEE Oceanic Engineering
Society, Quebec City, QC., https://doi.org/10.1109/OCEANS.2001.968137, 2008.
Lilly, J. M.: Element analysis: a wavelet-based method for analysing
time-localized events in noisy time series, Proc. R. Soc. A Math. Phys. Eng.
Sci., 473, 20160776, https://doi.org/10.1098/rspa.2016.0776, 2017.
Lilly, J. M.: jLab: A data analysis package for Matlab, available
at: http://www.jmlilly.net/jmlsoft.html (last access: 6 March 2020), 2019.
Lilly, J. M. and Gascard, J.-C.: Wavelet ridge diagnosis of time-varying elliptical signals with application to an oceanic eddy, Nonlin. Processes Geophys., 13, 467–483, https://doi.org/10.5194/npg-13-467-2006, 2006.
Lilly, J. M. and Olhede, S. C.: Higher-Order Properties of Analytic
Wavelets, IEEE Trans. Signal Process., 57, 146–160,
https://doi.org/10.1109/TSP.2008.2007607, 2009.
Macdonald, R. W. and Kuzyk, Z. Z. A: The Hudson Bay system: A northern
inland sea in transition, J. Mar. Syst., 88, 337–340,
https://doi.org/10.1016/j.jmarsys.2011.06.003, 2011.
Makabe, R., Hattori, H., Sampei, M., Darnis, G., Fortier, L., and Sasaki, H.:
Can sediment trap-collected zooplankton be used for ecological studies?,
Polar Biol., 39, 2335–2346, https://doi.org/10.1007/s00300-016-1900-7, 2016.
Ofek, E. O.: MATLAB package for astronomy and astrophysics, Astrophys.
Source Code Libr. Rec. ascl1407.005, 2014.
Pascual, M., Acuña, J. L., Sabatés, A., Raya, V., and Fuentes, V.:
Contrasting diel vertical migration patterns in Salpa fusiformis
populations, J. Plankton Res., 39, 836–842, https://doi.org/10.1093/plankt/fbx043,
2017.
Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic
analysis including error estimates in MATLAB using T_TIDE,
Comput. Geosci., 28, 929–937, https://doi.org/10.1016/S0098-3004(02)00013-4, 2002.
Perovich, D. K.: The Optical Properties of Sea Ice, CRREL Monogr., 96–1, 1–25,
1996.
Petrusevich, V., Dmitrenko, I. A., Kirillov, S. A., Rysgaard, S.,
Falk-Petersen, S., Barber, D. G., Boone, W., and Ehn, J. K.: Wintertime water
dynamics and moonlight disruption of the acoustic backscatter diurnal signal
in an ice-covered Northeast Greenland fjord, J. Geophys. Res.-Ocean.,
121, 4804–4818, https://doi.org/10.1002/2016JC011703, 2016.
Petrusevich, V. Y., Dmitrenko, I. A., Kozlov, I. E., Kirillov, S. A., Kuzyk,
Z. Z. A., Komarov, A. S., Heath, J. P., Barber, D. G., and Ehn, J. K.:
Tidally-generated internal waves in Southeast Hudson Bay, Cont. Shelf Res.,
167, 65–76, https://doi.org/10.1016/j.csr.2018.08.002, 2018.
Pinot, J. M. and Jansá, J.: Time variability of acoustic backscatter
from zooplankton in the Ibiza Channel (western Mediterranean), Deep-Sea Res.
Pt. I, 48, 1651–1670,
https://doi.org/10.1016/S0967-0637(00)00095-9, 2001.
Pospelova, V., Esenkulova, S., Johannessen, S. C., O'Brien, M. C., and
Macdonald, R. W.: Organic-walled dinoflagellate cyst production, composition
and flux from 1996 to 1998 in the central Strait of Georgia (BC, Canada): A
sediment trap study, Mar. Micropaleontol., 75, 17–37,
https://doi.org/10.1016/j.marmicro.2010.02.003, 2010.
Potiris, E., Frangoulis, C., Kalampokis, A., Ntoumas, M., Pettas, M., Petihakis, G., and Zervakis, V.: Acoustic Doppler current profiler observations of migration patternsof zooplankton in the Cretan Sea, Ocean Sci., 14, 783–800, https://doi.org/10.5194/os-14-783-2018, 2018.
Prinsenberg, S. J.: Seasonal current variations observed in western Hudson
Bay, J. Geophys. Res.-Ocean., 92, 756–766,
https://doi.org/10.1029/JC092iC10p10756, 1987.
Prinsenberg, S. J. and Freeman, N. G.: Tidal heights and currents in Hudson
Bay and James Bay, in: Canadian Inland Seas, edited by:
Martini, I. P., 44, 205–216, Elsevier Science, Amsterdam, the Netherlands, 1986.
Rabindranath, A., Daase, M., Falk-Petersen, S., Wold, A., Wallace, M. I.,
Berge, J., and Brierley, A. S.: Seasonal and diel vertical migration of
zooplankton in the High Arctic during the autumn midnight sun of 2008, Mar.
Biodivers., 41, 365–382, https://doi.org/10.1007/s12526-010-0067-7, 2010.
Ray, R. D.: On Measurements of the Tide at Churchill, Hudson Bay,
Atmosphere-Ocean, 54, 108–116, https://doi.org/10.1080/07055900.2016.1139540, 2016.
Ringelberg, J.: Migrations in the Marine Environment, in: Diel Vertical
Migration of Zooplankton in Lakes and Oceans: Causal Explanations and
Adaptive Significances, pp. 217–249, Springer, the Netherlands, 2010.
Runge, J. A. and Ingram, R. G.: Under-ice feeding and diel migration by the
planktonic copepods Calanus glacialis and Pseudocalanus minutus in relation
to the ice algal production cycle in southeastern Hudson Bay, Canada, Mar.
Biol., 108, 217–225, https://doi.org/10.1007/BF01344336, 1991.
Sato, M., Dower, J. F., Kunze, E., and Dewey, R.: Second-order seasonal
variability in diel vertical migration timing of euphausiids in a coastal
inlet, Mar. Ecol. Prog. Ser., 480, 39–56, https://doi.org/10.3354/meps10215, 2013.
Saucier, F. J., Senneville, S., Prinsenberg, S., Roy, F., Smith, G., Gachon,
P., Caya, D., and Laprise, R.: Modelling the sea ice-ocean seasonal cycle in
Hudson Bay, Foxe Basin and Hudson Strait, Canada, Clim. Dynam., 23,
303–326, https://doi.org/10.1007/s00382-004-0445-6, 2004.
Shcherbina, A. Y., Rudnick, D. L., and Talley, L. D.: Ice-draft profiling
from bottom-mounted ADCP data, J. Atmos. Ocean. Technol., 22, 1249–1266,
https://doi.org/10.1175/JTECH1776.1, 2005.
Stanton, T. K., Wiebe, P. H., Chu, D., Benfield, M. C., Scanlon, L., Martin,
L., and Eastwood, R. L.: On acoustic estimates of zooplankton biomass, ICES
J. Mar. Sci. J. du Cons., 51, 505–512, https://doi.org/10.1006/jmsc.1994.1051, 1994.
Stanton, T. K., Chu, D. Z., and Wiebe, P. H.: Sound scattering by several
zooplankton groups. II. Scattering models, J. Acoust. Soc. Am., 103,
236–253, https://doi.org/10.1121/1.421110, 1998a.
Stanton, T. K., Chu, D. Z., Wiebe, P. H., Martin, L. V., and Eastwood, R. L.:
Sound scattering by several zooplankton groups. I. Experimental
determination of dominant scattering mechanisms, J. Acoust. Soc. Am.,
103, 225–235, https://doi.org/10.1121/1.421469, 1998b.
St-Laurent, P., Saucier, F. J., and Dumais, J. F.: On the modification of
tides in a seasonally ice-covered sea, J. Geophys. Res.-Ocean., 113,
1–11, https://doi.org/10.1029/2007JC004614, 2008.
Straneo, F. and Saucier, F.: The outflow from Hudson Strait and its
contribution to the Labrador Current, Deep-Sea Res. Pt. I, 55, 926–946,
https://doi.org/10.1016/j.dsr.2008.03.012, 2008.
Torgersen, T.: Proximate causes for anti-predatory feeding suppression by
zooplankton during the day: reduction of contrast or motion–ingestion or
clearance?, J. Plankton Res., 25, 565–571, https://doi.org/10.1093/plankt/25.5.565,
2003.
Tran, D., Sow, M., Camus, L., Ciret, P., Berge, J., and Massabuau, J.-C.: In
the darkness of the polar night, scallops keep on a steady rhythm, Sci.
Rep.-UK, 6, 32435, https://doi.org/10.1038/srep32435,
2016.
Valle-Levinson, A., Castro, L., Cáceres, M., and Pizarro, O.: Twilight
vertical migrations of zooplankton in a Chilean fjord, Prog. Oceanogr., 129,
114–124, https://doi.org/10.1016/j.pocean.2014.03.008, 2014.
Varpe, Ø.: Fitness and phenology: Annual routines and zooplankton
adaptations to seasonal cycles, J. Plankton Res., 34, 267–276,
https://doi.org/10.1093/plankt/fbr108, 2012.
Venditti, J. G., Church, M., Attard, M. E., and Haught, D.: Use of ADCPs for
suspended sediment transport monitoring: An empirical approach, Water
Resour. Res., 52, 2715–2736, https://doi.org/10.1002/2015WR017348, 2016.
Vestheim, H., Røstad, A., Klevjer, T. A., Solberg, I., and Kaartvedt, S.:
Vertical distribution and diel vertical migration of krill beneath
snow-covered ice and in ice-free waters., J. Plankton Res., 36, 503–512,
https://doi.org/10.1093/plankt/fbt112, 2014.
Visbeck, M. and Fischer, J.: Sea Surface Conditions Remotely Sensed by
Upward-Looking ADCPs, J. Atmos. Ocean. Technol., 12, 141–149,
https://doi.org/10.1175/1520-0426(1995)012<0141:SSCRSB>2.0.CO;2,
1995.
Wallace, M. I., Cottier, F. R., Berge, J., Tarling, G. A., Griffiths, C., and
Brierley, A. S.: Comparison of zooplankton vertical migration in an ice-free
and a seasonally ice-covered Arctic fjord: An insight into the influence of
sea ice cover on zooplankton behaviour, Limnol. Oceanogr., 55, 831–845,
https://doi.org/10.4319/lo.2009.55.2.0831, 2010.
Wang, H., Chen, H., Xue, L., Liu, N., and Liu, Y.: Zooplankton diel vertical
migration and influence of upwelling on the biomass in the Chukchi Sea
during summer, Acta Oceanol. Sin., 34, 68–74,
https://doi.org/10.1007/s13131-015-0668-x, 2015.
Warren, J. D. and Wiebe, P. H.: Accounting for biological and physical
sources of acoustic backscatter improves estimates of zooplankton biomass,
Can. J. Fish. Aquat. Sci., 65, 1321–1333, https://doi.org/10.1139/F08-047, 2008.
Willis, K., Cottier, F., Kwasniewski, S., Wold, A., and Falk-Petersen, S.:
The influence of advection on zooplankton community composition in an Arctic
fjord (Kongsfjorden, Svalbard), J. Mar. Syst., 61, 39–54,
https://doi.org/10.1016/j.jmarsys.2005.11.013, 2006.
Willis, K. J., Cottier, F. R., and Kwaśniewski, S.: Impact of warm water
advection on the winter zooplankton community in an Arctic fjord, Polar
Biol., 31, 475–481, https://doi.org/10.1007/s00300-007-0373-0, 2008.
Witman, J. D., Cusson, M., Archambault, P., Pershing, A. J., and Mieszkowska,
N.: The relation between productivity and species diversity in
temperate-arctic marine ecosystems, Ecology, 89, S66–S80, https://doi.org/10.1890/07-1201.1, 2008.
Wood, T. M. and Gartner, J. W.: Use of acoustic backscatter and vertical
velocity to estimate concentration and dynamics of suspended solids in Upper
Klamath Lake, south-central Oregon: Implications for Aphanizomenon
flos-aquae, available at: http://pubs.usgs.gov/sir/2010/5203/
(last access: 27 June 2013), 2010.
Short summary
The diel vertical migration of zooplankton is considered the largest daily migration of biomass on Earth. This study investigates zooplankton distribution, dynamics, and factors controlling them during open-water and ice cover periods in Hudson Bay, a large seasonally ice-covered Canadian inland sea. The presented data constitute the first-ever observed diel vertical migration of zooplankton in Hudson Bay during winter and its interaction with the tidal dynamics.
The diel vertical migration of zooplankton is considered the largest daily migration of biomass...