Articles | Volume 16, issue 2
https://doi.org/10.5194/os-16-307-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-307-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Effects of sea-level rise on tides and sediment dynamics in a Dutch tidal bay
College of Oceanography, Hohai University, Nanjing, China
NIOZ Royal Netherlands Institute for Sea Research, Department of
Estuarine and Delta Systems, and Utrecht University, P.O. Box 140, 4400 AC
Yerseke, the Netherlands
Theo Gerkema
NIOZ Royal Netherlands Institute for Sea Research, Department of
Estuarine and Delta Systems, and Utrecht University, P.O. Box 140, 4400 AC
Yerseke, the Netherlands
Déborah Idier
BRGM, 3, avenue C. Guillemin, 45060 Orléans CEDEX 2, France
Aimée B. A. Slangen
NIOZ Royal Netherlands Institute for Sea Research, Department of
Estuarine and Delta Systems, and Utrecht University, P.O. Box 140, 4400 AC
Yerseke, the Netherlands
Karline Soetaert
NIOZ Royal Netherlands Institute for Sea Research, Department of
Estuarine and Delta Systems, and Utrecht University, P.O. Box 140, 4400 AC
Yerseke, the Netherlands
Related authors
Long Jiang, Theo Gerkema, Jacco C. Kromkamp, Daphne van der Wal, Pedro Manuel Carrasco De La Cruz, and Karline Soetaert
Biogeosciences, 17, 4135–4152, https://doi.org/10.5194/bg-17-4135-2020, https://doi.org/10.5194/bg-17-4135-2020, 2020
Short summary
Short summary
A seaward increasing chlorophyll-a gradient is observed during the spring bloom in a Dutch tidal bay. Biophysical model runs indicate the roles of bivalve grazing and tidal import in shaping the gradient. Five common spatial phytoplankton patterns are summarized in global estuarine–coastal ecosystems: seaward increasing, seaward decreasing, concave with a chlorophyll maximum, weak spatial gradients, and irregular patterns.
Anna-Selma van der Kaaden, Dick van Oevelen, Christian Mohn, Karline Soetaert, Max Rietkerk, Johan van de Koppel, and Theo Gerkema
Ocean Sci., 20, 569–587, https://doi.org/10.5194/os-20-569-2024, https://doi.org/10.5194/os-20-569-2024, 2024
Short summary
Short summary
Cold-water corals (CWCs) and tidal waves in the interior of the ocean have been connected in case studies. We demonstrate this connection globally using hydrodynamic simulations and a CWC database. Internal-tide generation shows a similar depth pattern with slope steepness and latitude as CWCs. Our results suggest that internal-tide generation can be a useful predictor of CWC habitat and that current CWC habitats might change following climate-change-related shoaling of internal-tide generation.
Anna-Selma van der Kaaden, Sandra R. Maier, Siluo Chen, Laurence H. De Clippele, Evert de Froe, Theo Gerkema, Johan van de Koppel, Furu Mienis, Christian Mohn, Max Rietkerk, Karline Soetaert, and Dick van Oevelen
Biogeosciences, 21, 973–992, https://doi.org/10.5194/bg-21-973-2024, https://doi.org/10.5194/bg-21-973-2024, 2024
Short summary
Short summary
Combining hydrodynamic simulations and annotated videos, we separated which hydrodynamic variables that determine reef cover are engineered by cold-water corals and which are not. Around coral mounds, hydrodynamic zones seem to create a typical reef zonation, restricting corals from moving deeper (the expected response to climate warming). But non-engineered downward velocities in winter (e.g. deep winter mixing) seem more important for coral reef growth than coral engineering.
Robert E. Kopp, Gregory G. Garner, Tim H. J. Hermans, Shantenu Jha, Praveen Kumar, Alexander Reedy, Aimée B. A. Slangen, Matteo Turilli, Tamsin L. Edwards, Jonathan M. Gregory, George Koubbe, Anders Levermann, Andre Merzky, Sophie Nowicki, Matthew D. Palmer, and Chris Smith
Geosci. Model Dev., 16, 7461–7489, https://doi.org/10.5194/gmd-16-7461-2023, https://doi.org/10.5194/gmd-16-7461-2023, 2023
Short summary
Short summary
Future sea-level rise projections exhibit multiple forms of uncertainty, all of which must be considered by scientific assessments intended to inform decision-making. The Framework for Assessing Changes To Sea-level (FACTS) is a new software package intended to support assessments of global mean, regional, and extreme sea-level rise. An early version of FACTS supported the development of the IPCC Sixth Assessment Report sea-level projections.
Angélique Melet, Roderik van de Wal, Angel Amores, Arne Arns, Alisée A. Chaigneau, Irina Dinu, Ivan D. Haigh, Tim H. J. Hermans, Piero Lionello, Marta Marcos, H. E. Markus Meier, Benoit Meyssignac, Matthew D. Palmer, Ronja Reese, Matthew J. R. Simpson, and Aimée Slangen
State Planet Discuss., https://doi.org/10.5194/sp-2023-36, https://doi.org/10.5194/sp-2023-36, 2023
Revised manuscript accepted for SP
Short summary
Short summary
The EU Knowledge Hub on Sea Level Rise’s Assessment Report strives to synthesize the current scientific knowledge on sea level rise and its impacts across local, national, and EU scale, to support evidence-based policy and decision making primarily targeting coastal areas. This paper complements IPCC reports by documenting the state of knowledge of observed and 21st century projected changes in mean and extreme sea levels with more regional information for EU seas as scoped with stakeholders.
Caroline Ulses, Claude Estournel, Patrick Marsaleix, Karline Soetaert, Marine Fourrier, Laurent Coppola, Dominique Lefèvre, Franck Touratier, Catherine Goyet, Véronique Guglielmi, Fayçal Kessouri, Pierre Testor, and Xavier Durrieu de Madron
Biogeosciences, 20, 4683–4710, https://doi.org/10.5194/bg-20-4683-2023, https://doi.org/10.5194/bg-20-4683-2023, 2023
Short summary
Short summary
Deep convection plays a key role in the circulation, thermodynamics, and biogeochemical cycles in the Mediterranean Sea, considered to be a hotspot of biodiversity and climate change. In this study, we investigate the seasonal and annual budget of dissolved inorganic carbon in the deep-convection area of the northwestern Mediterranean Sea.
Víctor Malagón-Santos, Aimée B. A. Slangen, Tim H. J. Hermans, Sönke Dangendorf, Marta Marcos, and Nicola Maher
Ocean Sci., 19, 499–515, https://doi.org/10.5194/os-19-499-2023, https://doi.org/10.5194/os-19-499-2023, 2023
Short summary
Short summary
Climate change will alter heat and freshwater fluxes as well as ocean circulation, driving local changes in sea level. This sea-level change component is known as ocean dynamic sea level (DSL), and it is usually projected using computationally expensive global climate models. Statistical models are a cheaper alternative for projecting DSL but may contain significant errors. Here, we partly remove those errors (driven by internal climate variability) by using pattern recognition techniques.
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, Eike M. Schütt, Marta Marcos, Ismael Hernandez-Carrasco, and Aimée B. A. Slangen
Ocean Sci., 19, 17–41, https://doi.org/10.5194/os-19-17-2023, https://doi.org/10.5194/os-19-17-2023, 2023
Short summary
Short summary
Sea-level change is mainly caused by variations in the ocean’s temperature and salinity and land ice melting. Here, we quantify the contribution of the different drivers to the regional sea-level change. We apply machine learning techniques to identify regions that have similar sea-level variability. These regions reduce the observational uncertainty that has limited the regional sea-level budget so far and highlight how large-scale ocean circulation controls regional sea-level change.
Dirk S. van Maren, Christian Maushake, Jan-Willem Mol, Daan van Keulen, Jens Jürges, Julia Vroom, Henk Schuttelaars, Theo Gerkema, Kirstin Schulz, Thomas H. Badewien, Michaela Gerriets, Andreas Engels, Andreas Wurpts, Dennis Oberrecht, Andrew J. Manning, Taylor Bailey, Lauren Ross, Volker Mohrholz, Dante M. L. Horemans, Marius Becker, Dirk Post, Charlotte Schmidt, and Petra J. T. Dankers
Earth Syst. Sci. Data, 15, 53–73, https://doi.org/10.5194/essd-15-53-2023, https://doi.org/10.5194/essd-15-53-2023, 2023
Short summary
Short summary
This paper reports on the main findings of a large measurement campaign aiming to better understand how an exposed estuary (the Ems Estuary on the Dutch–German border) interacts with a tidal river (the lower Ems River). Eight simultaneously deployed ships measuring a tidal cycle and 10 moorings collecting data throughout a spring–neap tidal cycle have produced a dataset providing valuable insight into processes determining exchange of water and sediment between the two systems.
Jeremy Rohmer, Deborah Idier, Remi Thieblemont, Goneri Le Cozannet, and François Bachoc
Nat. Hazards Earth Syst. Sci., 22, 3167–3182, https://doi.org/10.5194/nhess-22-3167-2022, https://doi.org/10.5194/nhess-22-3167-2022, 2022
Short summary
Short summary
We quantify the influence of wave–wind characteristics, offshore water level and sea level rise (projected up to 2200) on the occurrence of flooding events at Gâvres, French Atlantic coast. Our results outline the overwhelming influence of sea level rise over time compared to the others. By showing the robustness of our conclusions to the errors in the estimation procedure, our approach proves to be valuable for exploring and characterizing uncertainties in assessments of future flooding.
Stanley I. Nmor, Eric Viollier, Lucie Pastor, Bruno Lansard, Christophe Rabouille, and Karline Soetaert
Geosci. Model Dev., 15, 7325–7351, https://doi.org/10.5194/gmd-15-7325-2022, https://doi.org/10.5194/gmd-15-7325-2022, 2022
Short summary
Short summary
The coastal marine environment serves as a transition zone in the land–ocean continuum and is susceptible to episodic phenomena such as flash floods, which cause massive organic matter deposition. Here, we present a model of sediment early diagenesis that explicitly describes this type of deposition while also incorporating unique flood deposit characteristics. This model can be used to investigate the temporal evolution of marine sediments following abrupt changes in environmental conditions.
Carolina M. L. Camargo, Riccardo E. M. Riva, Tim H. J. Hermans, and Aimée B. A. Slangen
Earth Syst. Dynam., 13, 1351–1375, https://doi.org/10.5194/esd-13-1351-2022, https://doi.org/10.5194/esd-13-1351-2022, 2022
Short summary
Short summary
The mass loss from Antarctica, Greenland and glaciers and variations in land water storage cause sea-level changes. Here, we characterize the regional trends within these sea-level contributions, taking into account mass variations since 1993. We take a comprehensive approach to determining the uncertainties of these sea-level changes, considering different types of errors. Our study reveals the importance of clearly quantifying the uncertainties of sea-level change trends.
Justin C. Tiano, Jochen Depestele, Gert Van Hoey, João Fernandes, Pieter van Rijswijk, and Karline Soetaert
Biogeosciences, 19, 2583–2598, https://doi.org/10.5194/bg-19-2583-2022, https://doi.org/10.5194/bg-19-2583-2022, 2022
Short summary
Short summary
This study gives an assessment of bottom trawling on physical, chemical, and biological characteristics in a location known for its strong currents and variable habitats. Although trawl gears only removed the top 1 cm of the seabed surface, impacts on reef-building tubeworms significantly decreased carbon and nutrient cycling. Lighter trawls slightly reduced the impact on fauna and nutrients. Tubeworms were strongly linked to biogeochemical and faunal aspects before but not after trawling.
Alice E. Webb, Didier M. de Bakker, Karline Soetaert, Tamara da Costa, Steven M. A. C. van Heuven, Fleur C. van Duyl, Gert-Jan Reichart, and Lennart J. de Nooijer
Biogeosciences, 18, 6501–6516, https://doi.org/10.5194/bg-18-6501-2021, https://doi.org/10.5194/bg-18-6501-2021, 2021
Short summary
Short summary
The biogeochemical behaviour of shallow reef communities is quantified to better understand the impact of habitat degradation and species composition shifts on reef functioning. The reef communities investigated barely support reef functions that are usually ascribed to conventional coral reefs, and the overall biogeochemical behaviour is found to be similar regardless of substrate type. This suggests a decrease in functional diversity which may therefore limit services provided by this reef.
Chiu H. Cheng, Jaco C. de Smit, Greg S. Fivash, Suzanne J. M. H. Hulscher, Bas W. Borsje, and Karline Soetaert
Earth Surf. Dynam., 9, 1335–1346, https://doi.org/10.5194/esurf-9-1335-2021, https://doi.org/10.5194/esurf-9-1335-2021, 2021
Short summary
Short summary
Shells are biogenic particles that are widespread throughout natural sandy environments and can affect the bed roughness and seabed erodibility. As studies are presently lacking, we experimentally measured ripple formation and migration using natural sand with increasing volumes of shell material under unidirectional flow in a racetrack flume. We show that shells expedite the onset of sediment transport, reduce ripple dimensions and slow their migration rate.
Emil De Borger, Justin Tiano, Ulrike Braeckman, Adriaan D. Rijnsdorp, and Karline Soetaert
Biogeosciences, 18, 2539–2557, https://doi.org/10.5194/bg-18-2539-2021, https://doi.org/10.5194/bg-18-2539-2021, 2021
Short summary
Short summary
Bottom trawling alters benthic mineralization: the recycling of organic material (OM) to free nutrients. To better understand how this occurs, trawling events were added to a model of seafloor OM recycling. Results show that bottom trawling reduces OM and free nutrients in sediments through direct removal thereof and of fauna which transport OM to deeper sediment layers protected from fishing. Our results support temporospatial trawl restrictions to allow key sediment functions to recover.
Gonéri Le Cozannet, Déborah Idier, Marcello de Michele, Yoann Legendre, Manuel Moisan, Rodrigo Pedreros, Rémi Thiéblemont, Giorgio Spada, Daniel Raucoules, and Ywenn de la Torre
Nat. Hazards Earth Syst. Sci., 21, 703–722, https://doi.org/10.5194/nhess-21-703-2021, https://doi.org/10.5194/nhess-21-703-2021, 2021
Short summary
Short summary
Chronic flooding occurring at high tides under calm weather conditions is an early impact of sea-level rise. This hazard is a reason for concern on tropical islands, where coastal infrastructure is commonly located in low-lying areas. We focus here on the Guadeloupe archipelago, in the French Antilles, where chronic flood events have been reported for about 10 years. We show that the number of such events will increase drastically over the 21st century under continued growth of CO2 emissions.
Long Jiang, Theo Gerkema, Jacco C. Kromkamp, Daphne van der Wal, Pedro Manuel Carrasco De La Cruz, and Karline Soetaert
Biogeosciences, 17, 4135–4152, https://doi.org/10.5194/bg-17-4135-2020, https://doi.org/10.5194/bg-17-4135-2020, 2020
Short summary
Short summary
A seaward increasing chlorophyll-a gradient is observed during the spring bloom in a Dutch tidal bay. Biophysical model runs indicate the roles of bivalve grazing and tidal import in shaping the gradient. Five common spatial phytoplankton patterns are summarized in global estuarine–coastal ecosystems: seaward increasing, seaward decreasing, concave with a chlorophyll maximum, weak spatial gradients, and irregular patterns.
Emil De Borger, Justin Tiano, Ulrike Braeckman, Tom Ysebaert, and Karline Soetaert
Biogeosciences, 17, 1701–1715, https://doi.org/10.5194/bg-17-1701-2020, https://doi.org/10.5194/bg-17-1701-2020, 2020
Short summary
Short summary
By applying a novel technique to quantify organism-induced sediment–water column fluid exchange (bioirrigation), we show that organisms in subtidal (permanently submerged) areas have similar bioirrigation rates as those that inhabit intertidal areas (not permanently submerged), but organisms in the latter irrigate deeper burrows in this study. Our results expand on traditional methods to quantify bioirrigation rates and broaden the pool of field measurements of bioirrigation rates.
Thomas Frederikse and Theo Gerkema
Ocean Sci., 14, 1491–1501, https://doi.org/10.5194/os-14-1491-2018, https://doi.org/10.5194/os-14-1491-2018, 2018
Renske C. de Winter, Thomas J. Reerink, Aimée B. A. Slangen, Hylke de Vries, Tamsin Edwards, and Roderik S. W. van de Wal
Nat. Hazards Earth Syst. Sci., 17, 2125–2141, https://doi.org/10.5194/nhess-17-2125-2017, https://doi.org/10.5194/nhess-17-2125-2017, 2017
Short summary
Short summary
This paper provides a full range of possible future sea levels on a regional scale, since it includes extreme, but possible, contributions to sea level change from dynamical mass loss from the Greenland and Antarctica ice sheets. In contrast to the symmetric distribution used in the IPCC report, it is found that an asymmetric distribution toward high sea level change values locally can increase the mean sea level by 1.8 m this century.
Tom J. S. Cox, Justus E. E. van Beusekom, and Karline Soetaert
Biogeosciences, 14, 5271–5280, https://doi.org/10.5194/bg-14-5271-2017, https://doi.org/10.5194/bg-14-5271-2017, 2017
Short summary
Short summary
Photosynthesis by phytoplankton is a key source of oxygen (O2) in aquatic systems. We have developed a mathematical technique to calculate the rate of photosynthesis from time series of O2. Additionally, the approach leads to a better understanding of the influence on O2 measurements of the tides in coasts and estuaries. The results are important for correctly interpreting the data that are gathered by a growing set of continuous O2 sensors that are deployed around the world.
Tony E. Wong, Alexander M. R. Bakker, Kelsey Ruckert, Patrick Applegate, Aimée B. A. Slangen, and Klaus Keller
Geosci. Model Dev., 10, 2741–2760, https://doi.org/10.5194/gmd-10-2741-2017, https://doi.org/10.5194/gmd-10-2741-2017, 2017
Short summary
Short summary
We present the Building blocks for Relevant Ice and Climate Knowledge (BRICK) model v0.2. BRICK is a model for hindcasting past and projecting future surface temperature and sea-level rise, resolving the sea-level contributions from glaciers and ice caps, the Greenland and Antarctic ice sheets, and thermal expansion. BRICK is specifically designed to support decision analyses through its transparency, and includes functionality to scale global sea-level estimates to regional projections.
Borja Aguiar-González and Theo Gerkema
Nonlin. Processes Geophys., 23, 285–305, https://doi.org/10.5194/npg-23-285-2016, https://doi.org/10.5194/npg-23-285-2016, 2016
Short summary
Short summary
We derive a new two-fluid layer model consisting of forced rotation-modified Boussinesq equations for studying the limiting amplitudes of tidally generated fully nonlinear, weakly nonhydrostatic dispersive interfacial tides and solitons. Numerical solutions show that solitons attain in some cases a limiting table-shaped form, but may also be limited well below that state by saturation of the underlying quasi-linear internal tide under increasing barotropic forcing.
J. P. Naulin, D. Moncoulon, S. Le Roy, R. Pedreros, D. Idier, and C. Oliveros
Nat. Hazards Earth Syst. Sci., 16, 195–207, https://doi.org/10.5194/nhess-16-195-2016, https://doi.org/10.5194/nhess-16-195-2016, 2016
Short summary
Short summary
A model has been developed in order to estimate insurance-related losses caused by coastal flooding in France. It aims to identify the potential flood-impacted sectors and the subsequent insured losses a few days after the occurrence of a storm surge event on any part of the French coast. This system shows satisfactory results in the estimation of the losses related to Xynthia storm surge, which was used for the model's calibration.
T. Bulteau, D. Idier, J. Lambert, and M. Garcin
Nat. Hazards Earth Syst. Sci., 15, 1135–1147, https://doi.org/10.5194/nhess-15-1135-2015, https://doi.org/10.5194/nhess-15-1135-2015, 2015
Short summary
Short summary
Extreme value analyses of sea-level using tide-gauge measurements usually suffer from limited effective duration of observation which can result in large uncertainties, especially when outliers are present. To tackle this issue, a Bayesian MCMC method is developed integrating historical data in extreme sea-level analyses. A real case study shows a significant improvement in return values estimation and the usefulness of the Bayesian framework to predict future annual exceedance probabilities.
L. Meire, D. H. Søgaard, J. Mortensen, F. J. R. Meysman, K. Soetaert, K. E. Arendt, T. Juul-Pedersen, M. E. Blicher, and S. Rysgaard
Biogeosciences, 12, 2347–2363, https://doi.org/10.5194/bg-12-2347-2015, https://doi.org/10.5194/bg-12-2347-2015, 2015
Short summary
Short summary
The Greenland Ice Sheet releases large amounts of freshwater, which strongly influences the biogeochemistry of the adjacent fjord systems and continental shelves. Here we present seasonal observations of the carbonate system in the surface waters of a west Greenland tidewater outlet glacier fjord. Our data reveal a permanent undersaturation of CO2 in the surface layer of the entire fjord and adjacent shelf, creating a high annual uptake of 65gCm-2yr-1.
M. Duran-Matute, T. Gerkema, G. J. de Boer, J. J. Nauw, and U. Gräwe
Ocean Sci., 10, 611–632, https://doi.org/10.5194/os-10-611-2014, https://doi.org/10.5194/os-10-611-2014, 2014
A. B. A. Slangen, R. S. W. van de Wal, Y. Wada, and L. L. A. Vermeersen
Earth Syst. Dynam., 5, 243–255, https://doi.org/10.5194/esd-5-243-2014, https://doi.org/10.5194/esd-5-243-2014, 2014
M. C. H. Tiessen, L. Fernard, T. Gerkema, J. van der Molen, P. Ruardij, and H. W. van der Veer
Ocean Sci., 10, 357–376, https://doi.org/10.5194/os-10-357-2014, https://doi.org/10.5194/os-10-357-2014, 2014
D. Idier and A. Falqués
Adv. Geosci., 39, 55–60, https://doi.org/10.5194/adgeo-39-55-2014, https://doi.org/10.5194/adgeo-39-55-2014, 2014
L. Pozzato, D. Van Oevelen, L. Moodley, K. Soetaert, and J. J. Middelburg
Biogeosciences, 10, 6879–6891, https://doi.org/10.5194/bg-10-6879-2013, https://doi.org/10.5194/bg-10-6879-2013, 2013
G. Le Cozannet, M. Garcin, T. Bulteau, C. Mirgon, M. L. Yates, M. Méndez, A. Baills, D. Idier, and C. Oliveros
Nat. Hazards Earth Syst. Sci., 13, 1209–1227, https://doi.org/10.5194/nhess-13-1209-2013, https://doi.org/10.5194/nhess-13-1209-2013, 2013
L. Meire, K. E. R. Soetaert, and F. J. R. Meysman
Biogeosciences, 10, 2633–2653, https://doi.org/10.5194/bg-10-2633-2013, https://doi.org/10.5194/bg-10-2633-2013, 2013
A. de Kluijver, K. Soetaert, J. Czerny, K. G. Schulz, T. Boxhammer, U. Riebesell, and J. J. Middelburg
Biogeosciences, 10, 1425–1440, https://doi.org/10.5194/bg-10-1425-2013, https://doi.org/10.5194/bg-10-1425-2013, 2013
K. Soetaert, D. van Oevelen, and S. Sommer
Biogeosciences, 9, 5341–5352, https://doi.org/10.5194/bg-9-5341-2012, https://doi.org/10.5194/bg-9-5341-2012, 2012
A. B. A. Slangen and R. S. W. van de Wal
The Cryosphere, 5, 673–686, https://doi.org/10.5194/tc-5-673-2011, https://doi.org/10.5194/tc-5-673-2011, 2011
Related subject area
Approach: Numerical Models | Depth range: Shelf-sea depth | Geographical range: Shelf Seas | Phenomena: Tides
Non-linear aspects of the tidal dynamics in the Sylt-Rømø Bight, south-eastern North Sea
On the shelf resonances of the English Channel and Irish Sea
On the shelf resonances of the Gulf of Carpentaria and the Arafura Sea
Vera Fofonova, Alexey Androsov, Lasse Sander, Ivan Kuznetsov, Felipe Amorim, H. Christian Hass, and Karen H. Wiltshire
Ocean Sci., 15, 1761–1782, https://doi.org/10.5194/os-15-1761-2019, https://doi.org/10.5194/os-15-1761-2019, 2019
Short summary
Short summary
This study is dedicated to tidally induced dynamics in the Sylt-Rømø Bight with a focus on the non-linear component. The tidal residual circulation and asymmetric tidal cycles largely define the circulation pattern, transport and accumulation of sediment, and the distribution of bedforms. The newly obtained high-quality bathymetric data supported the use of high-resolution grids (up to 2 m in the intertidal zone) and elaboration of the details of tidal energy transformation in the domain.
D. J. Webb
Ocean Sci., 9, 731–744, https://doi.org/10.5194/os-9-731-2013, https://doi.org/10.5194/os-9-731-2013, 2013
D. J. Webb
Ocean Sci., 8, 733–750, https://doi.org/10.5194/os-8-733-2012, https://doi.org/10.5194/os-8-733-2012, 2012
Cited articles
4TU.Research Data: https://data.4tu.nl/, last access: 2 March 2020.
Arbic, B. K. and Garrett, C.: A coupled oscillator model of shelf and ocean
tides, Cont. Shelf Res., 30, 564–574, https://doi.org/10.1016/j.csr.2009.07.008, 2010.
Arns, A., Wahl, T., Dangendorf, S., and Jensen, J.: The impact of sea level
rise on storm surge water levels in the northern part of the German Bight,
Coast. Eng., 96, 118–131, https://doi.org/10.1016/j.coastaleng.2014.12.002, 2015.
Bhuiyan, M. J. A. N. and Dutta, D.: Assessing impacts of sea level rise on
river salinity in the Gorai river network, Bangladesh, Estuar. Coast. Shelf
S., 96, 219–227, https://doi.org/10.1016/j.ecss.2011.11.005, 2012.
Brown, J. M. and Davies, A. G.: Flood/ebb tidal asymmetry in a shallow
sandy estuary and the impact on net sand transport, Geomorphology, 114,
431–439, https://doi.org/10.1016/j.geomorph.2009.08.006, 2010.
Burchard, H., Schuttelaars, H. M., and Geyer, W. R.: Residual sediment
fluxes in weakly-to-periodically stratified estuaries and tidal inlets, J.
Phys. Oceanogr., 43, 1841–1861, https://doi.org/10.1175/JPO-D-12-0231.1, 2013.
Burchard, H., Schuttelaars, H. M., and Ralston, D. K.: Sediment trapping in
estuaries, Annu. Rev. Mar. Sci., 10, 371–395,
https://doi.org/10.1146/annurev-marine-010816-060535, 2018.
Carless, S. J., Green, J. M., Pelling, H. E., and Wilmes, S. B.: Effects of
future sea-level rise on tidal processes on the Patagonian Shelf, J. Marine Syst., 163, 113–124, https://doi.org/10.1016/j.jmarsys.2016.07.007, 2016.
Chant, R. J., Sommerfield, C. K., and Talke, S. A.: Impact of channel
deepening on tidal and gravitational circulation in a highly engineered
estuarine basin, Estuaries Coasts, 41, 1587–1600,
https://doi.org/10.1007/s12237-018-0379-6, 2018.
Cheng, R. T., Ling, C. H., Gartner, J. W., and Wang, P. F.: Estimates of
bottom roughness length and bottom shear stress in South San Francisco Bay,
California, J. Geophys. Res., 104, 7715–7728, https://doi.org/10.1029/1998JC900126, 1999.
Chernetsky, A. S., Schuttelaars, H. M., and Talke, S. A.: The effect of
tidal asymmetry and temporal settling lag on sediment trapping in tidal
estuaries, Ocean Dynam., 60, 1219–1241, https://doi.org/10.1007/s10236-010-0329-8, 2010.
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S., Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D., Payne, A. J. Pfeffer, W. T., Stammer D., and Unnikrishnan, A. S.: Sea Level Change, in: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA, 2013.
Cox, T. J. S., Maris, T., Van Engeland, T., Soetaert, K., and Meire, P.:
Critical transitions in suspended sediment dynamics in a temperate
meso-tidal estuary, Scientific Reports, 9, 12745 ,
https://doi.org/10.1038/s41598-019-48978-5, 2019.
de Jonge, V. N., Schuttelaars, H. M., van Beusekom, J. E., Talke, S. A., and
de Swart, H. E.: The influence of channel deepening on estuarine turbidity
levels and dynamics, as exemplified by the Ems estuary, Estuar. Coast. Shelf
S., 139, 46–59, https://doi.org/10.1016/j.ecss.2013.12.030, 2014.
de Pater, P. D.: Effect of removal of the Oosterschelde storm surge barrier,
MSc thesis, Delft University of Technology, Delft, the Netherlands, 2012.
Devlin, A. T., Jay, D. A., Talke, S. A., Zaron, E. D., Pan, J., and Lin, H.:
Coupling of sea level and tidal range changes, with implications for future
water levels, Scientific Reports, 7, 17021, https://doi.org/10.1038/s41598-017-17056-z, 2017.
Dijkstra, Y. M., Schuttelaars, H. M., and Burchard, H.: Generation of
exchange flows in estuaries by tidal and gravitational eddy viscosity-shear
covariance (ESCO), J. Geophys. Res.-Oceans, 122, 4217–4237, https://doi.org/10.1002/2016JC012379, 2017.
Dijkstra, Y. M., Schuttelaars, H. M., and Schramkowski, G. P.: Can the
Scheldt River Estuary become hyperturbid?, Ocean Dynam., 69, 809–827,
https://doi.org/10.1007/s10236-019-01277-z, 2019a.
Dijkstra, Y. M., Schuttelaars, H. M., Schramkowski, G. P., and Brouwer, R.
L.: Modeling the transition to high sediment concentrations as a response to
channel deepening in the Ems River Estuary, J. Geophys. Res.-Oceans, 124,
1578–1594. https://doi.org/10.1029/2018JC014367, 2019b.
Du, J., Shen, J., Zhang, Y. J., Ye, F., Liu, Z., Wang, Z., Wang, Y. P., Yu,
X., Sisson, M., and Wang, H. V.: Tidal response to sea-level rise in
different types of estuaries: The importance of length, bathymetry, and
geometry, Geophys. Res. Lett., 45, 227–235, https://doi.org/10.1002/2017GL075963, 2018.
Duran-Matute, M., Gerkema, T., de Boer, G. J., Nauw, J. J., and Gräwe, U.: Residual circulation and freshwater transport in the Dutch Wadden Sea: a numerical modelling study, Ocean Sci., 10, 611–632, https://doi.org/10.5194/os-10-611-2014, 2014.
Eelkema, M., Wang, Z. B., and Stive, M. J.: Impact of back-barrier dams on
the development of the ebb-tidal delta of the Eastern Scheldt, J. Coast.
Res., 28, 1591–1605, https://doi.org/10.2112/JCOASTRES-D-11-00003.1, 2012.
Elmilady, H., van der Wegen, M., Roelvink, D., and Jaffe, B. E.: Intertidal
area disappears under sea level rise: 250 years of morphodynamic modelling
in San Pablo Bay, California, J. Geophys. Res.-Earth, 124, 38–59,
https://doi.org/10.1029/2018JF004857, 2019.
Ensing, E., de Swart, H. E., and Schuttelaars, H. M.: Sensitivity of tidal
motion in well-mixed estuaries to cross-sectional shape, deepening, and sea
level rise, Ocean Dynam., 65, 933–950, https://doi.org/10.1007/s10236-015-0844-8, 2015.
Familkhalili, R. and Talke, S. A.: The effect of channel deepening on tides
and storm surge: A case study of Wilmington, NC, Geophys. Res. Lett., 43,
9138–9147, https://doi.org/10.1002/2016GL069494, 2016.
Feng, X., Feng, H., Li, H., Zhang, F., Feng, W., Zhang, W., and Yuan, J.:
Tidal responses to future sea level trends on the Yellow Sea shelf, J.
Geophys. Res.-Oceans, 124, 7285–7306, https://doi.org/10.1029/2019JC015150, 2019.
FitzGerald, D. M., Fenster, M. S., Argow, B. A., and Buynevich, I. V.:
Coastal impacts due to sea-level rise, Annu. Rev. Earth Pl. Sc., 36, 601–647, https://doi.org/10.1146/annurev.earth.35.031306.140139, 2008.
Flather, R. A.: A numerical model investigation of tides and diurnal-period
continental shelf waves along Vancouver Island, J. Phys. Oceanogr., 18, 115–139, https://doi.org/10.1175/1520-0485(1988)018<0115:ANMIOT>2.0.CO;2, 1988.
Friedrichs, C. T. and Aubrey, D. G.: Non-linear tidal distortion in shallow
well-mixed estuaries: a synthesis, Estuar. Coast. Shelf S., 27, 521–545, https://doi.org/10.1016/0272-7714(88)90082-0, 1988.
Friedrichs, C. T. and Aubrey, D. G.: Tidal propagation in strongly
convergent channels, J. Geophys. Res., 99, 3321–3336,
https://doi.org/10.1029/93JC03219, 1994.
Friedrichs, C. T., Aubrey, D. G., and Speer, P. E.: Impacts of relative
sea-level rise on evolution of shallow estuaries, in: Residual Currents and
Long-term Transport, edited by: Cheng, R. T., Springer, New York, 105–122, https://doi.org/10.1007/978-1-4613-9061-9, 1990.
Ganju, N. K. and Schoellhamer, D. H.: Decadal-timescale estuarine
geomorphic change under future scenarios of climate and sediment supply,
Estuar. Coast., 33, 15–29, https://doi.org/10.1007/s12237-009-9244-y, 2010.
Gerkema, T.: An Introduction to Tides, Cambridge University Press,
Cambridge, United Kingdom, 2019.
Gerkema, T. and Duran-Matute, M.: Interannual variability of mean sea level and its sensitivity to wind climate in an inter-tidal basin, Earth Syst. Dynam., 8, 1223–1235, https://doi.org/10.5194/esd-8-1223-2017, 2017.
GETM: A 3D hydrodynamic model for coastal oceans, available at: https://getm.eu/, last access: 2 March 2020.
Geyer, W. R. and MacCready, P.: The estuarine circulation, Annu. Rev. Fluid
Mech., 46, 175–197, https://doi.org/10.1146/annurev-fluid-010313-141302, 2014.
Gräwe, U., Burchard, H., Müller, M., and Schuttelaars, H. M.:
Seasonal variability in M2 and M4 tidal constituents and its implications
for the coastal residual sediment transport, Geophys. Res. Lett., 41,
5563–5570, https://doi.org/10.1002/2014GL060517, 2014.
Haasnoot, M., Kwadijk, J., Van Alphen, J., Le Bars, D., van den Hurk, B.,
Diermanse, F., van der Spek, A., Oude Essink, G., Delsman, J., and Mens, M.: Adaptation to uncertain sea-level rise; how uncertainty in Antarctic
mass-loss impacts the coastal adaptation strategy of the Netherlands,
Environ. Res. Lett., 15, 034007, https://doi.org/10.1088/1748-9326/ab666c, 2019.
Haigh I. D., Pickering M. D., Green J. A. M., Arbic B. K., Arns A.,
Dangendorf, S., Hill, D., Horsburgh, K., Howard, T., Idier, D., Jay, D. A., Jänicke, L., Lee, S. B., Müller, M., Schindelegger, M., Talke, S. A., Wilmes, S.‐B., and Woodworth, P. L.: The tides they are a changin', Rev. Geophys., 57, https://doi.org/10.1029/2018RG000636, 2019.
Haigh, I. D., Wahl, T., Rohling, E. J., Price, R. M., Pattiaratchi, C. B.,
Calafat, F. M., and Dangendorf, S.: Timescales for detecting a significant
acceleration in sea level rise, Nat. Commun., 5, 3635, https://doi.org/10.1038/ncomms4635, 2014.
Hoitink, A. J. F., Hoekstra, P., and Van Maren, D. S.: Flow asymmetry
associated with astronomical tides: Implications for the residual transport
of sediment, J. Geophys. Res., 108, 3315, https://doi.org/10.1029/2002JC001539, 2003.
Hollebrandse, F. A.: Temporal development of the tidal range in the southern
North Sea, MSc thesis, Delft University of Technology, Delft, the
Netherlands, available at:
https://pdfs.semanticscholar.org/dfb2/742f3009b87125d8e9df7d421a9162e9bcfe.pdf (last access: 2 March 2020), 2005.
Holleman, R. C. and Stacey, M. T.: Coupling of sea level rise, tidal
amplification, and inundation, J. Phys. Oceanogr., 44, 1439–1455, https://doi.org/10.1175/JPO-D-13-0214.1, 2014.
Hong, B. and Shen, J.: Responses of estuarine salinity and transport
processes to potential future sea-level rise in the Chesapeake Bay, Estuar.
Coast. Shelf S., 104, 33–45, https://doi.org/10.1016/j.ecss.2012.03.014, 2012.
Hunt J. N.: Tidal oscillations in estuaries, Geophys. J. Int., 440–455, https://doi.org/10.1111/j.1365-246X.1964.tb03863.x, 1964.
Idier, D., Paris, F., Le Cozannet, G., Boulahya, F., and Dumas, F.:
Sea-level rise impacts on the tides of the European Shelf, Cont. Shelf Res.,
137, 56–71, https://doi.org/10.1016/j.csr.2017.01.007, 2017.
IFREMER: MARS, available at: https://wwz.ifremer.fr/mars3d/, last access: 2 March 2020.
Jay, D. A.: Green's law revisited: Tidal long-wave propagation in channels
with strong topography, J. Geophys. Res., 96, 20585–20598, https://doi.org/10.1029/91JC01633, 1991.
Jay, D. A., Leffler, K., and Degens, S.: Long-term evolution of Columbia River tides, J. Waterway Port Coast., 137, 182–191, https://doi.org/10.1061/(ASCE)WW.1943-5460.0000082, 2010.
Jiang, L., Gerkema, T., Wijsman, J. W., and Soetaert, K.: Comparing physical
and biological impacts on seston renewal in a tidal bay with extensive
shellfish culture, J. Marine Syst., 194, 102–110, https://doi.org/10.1016/j.jmarsys.2019.03.003, 2019a.
Jiang, L., Gerkema, T., Idier, D., Slangen, A. B. A., and Soetaert, K. E.: Downscaling sea-level rise effects on tides and sediment dynamics in tidal bays, 4TU, Centre for Research Data, Dataset, https://doi.org/10.4121/uuid:c6753aa0-d501-4cbe-9476-a2833d47bfc6, 2019b.
Jiang, L., Soetaert, K., and Gerkema, T.: Decomposing the intra-annual
variability of flushing characteristics in a tidal bay along the North Sea,
J. Sea Res., 101821, https://doi.org/10.1016/j.seares.2019.101821, 2020.
Katsman, C. A., Sterl, A., Beersma, J. J., van den Brink, H. W., Church, J.
A., Hazeleger, W., Kopp, R. E., Kroon, D., Kwadijk, J., Lammersen, R., Lowe
J., Oppenheimer, M., Plag, H.-P., Ridley J., von Storch, H., Vaughan, D. G.,
Vellinga P., Vermeersen, L. L. A., van de Wal, R. S. W., and Weisse, R.:
Exploring high-end scenarios for local sea level rise to develop flood
protection strategies for a low-lying delta–the Netherlands as an example,
Clim. Change, 109, 617–645, https://doi.org/10.1007/s10584-011-0037-5, 2011.
Lanzoni, S. and Seminara, G.: On tide propagation in convergent estuaries.
J. Geophys. Res., 103, 30793–30812, https://doi.org/10.1029/1998JC900015, 1998.
Lazure, P. and Dumas, F.: An external–internal mode coupling for a 3D
hydrodynamical model for applications at regional scale (MARS), Adv. Water
Resour., 31, 233–250, https://doi.org/10.1016/j.advwatres.2007.06.010, 2008.
Lee, S. B., Li, M., and Zhang, F.: Impact of sea level rise on tidal range in
Chesapeake and Delaware Bays, J. Geophys. Res.-Oceans, 122, 3917–3938,
https://doi.org/10.1002/2016JC012597, 2017.
Lodder, Q. J., Wang, Z. B., Elias, E. P., van der Spek, A. J., de Looff, H.,
and Townend, I. H.: Future Response of the Wadden Sea Tidal Basins to
Relative Sea-Level rise–An Aggregated Modelling Approach, Water, 11, 2198,
https://doi.org/10.3390/w11102198, 2019.
Lopes, C. L. and Dias, J. M.: Tidal dynamics in a changing lagoon: Flooding or not flooding the marginal regions, Estuar. Coast. Shelf S., 167, 14–24, https://doi.org/10.1016/j.ecss.2015.05.043, 2015.
Lyard, F., Lefevre, F., Letellier, T., and Francis, O.: Modelling the global
ocean tides: modern insights from FES2004, Ocean Dynam., 56, 394–415, https://doi.org/10.1007/s10236-006-0086-x, 2006.
Nnafie, A., De Swart, H. E., Calvete, D., and Garnier, R.: Effects of sea
level rise on the formation and drowning of shoreface-connected sand ridges,
a model study, Cont. Shelf Res., 80, 32–48, https://doi.org/10.1016/j.csr.2014.02.017, 2014.
Nienhuis, P. H. and Smaal, A. C.: The Oosterschelde estuary, a case-study
of a changing ecosystem: an introduction, Hydrobiologia, 282, 1–14,
https://doi.org/10.1007/BF00024616, 1994.
Oppenheimer, M., Glavovic, B. C., Hinkel, J., van de Wal, R., Magnan, A. K., Abd-Elgawad, A., Cai, R., Cifuentes-Jara, M., DeConto, R. M., Ghosh, T., Hay, J., Isla, F., Marzeion, B., Meyssignac, B., and Sebesvari, Z.: Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities, chap. 4, in: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, edited by: Pörtner, H.-O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., in press, available at: https://www.ipcc.ch/srocc/ (last access: 2 March 2020), 2019.
Passeri, D. L.,, Hagen, S. C.Plant, N. G., Bilskie, M. V., Medeiros, S. C., and Alizad, K.: Tidal hydrodynamics under future sea level rise and coastal
morphology in the Northern Gulf of Mexico, Earths Future, 4, 159–176,
https://doi.org/10.1002/2015EF000332, 2016.
Pawlowicz, R., Beardsley, B., and Lentz, S.: Classical tidal harmonic
analysis including error estimates in MATLAB using T_TIDE, Comput. Geosci., 28, 929–937, https://doi.org/10.1016/S0098-3004(02)00013-4, 2002.
Pelling, H. E. and Green, J. M.: Impact of flood defences and sea-level
rise on the European Shelf tidal regime, Cont. Shelf Res., 85, 96–105, https://doi.org/10.1016/j.csr.2014.04.011, 2014.
Pelling, H. E., Green, J. M., and Ward, S. L.: Modelling tides and sea-level
rise: To flood or not to flood, Ocean Model., 63, 21–29, https://doi.org/10.1016/j.ocemod.2012.12.004, 2013a.
Pelling, H. E., Uehara, K., and Green, J. A. M.: The impact of rapid
coastline changes and sea level rise on the tides in the Bohai Sea, China,
J. Geophys. Res.-Oceans, 118, 3462–3472, https://doi.org/10.1002/jgrc.20258, 2013b.
Pickering, M. D., Wells, N. C., Horsburgh, K. J., and Green, J. A. M.: The impact of future sea-level rise on the European Shelf tides, Cont. Shelf Res., 35, 1–15, https://doi.org/10.1016/j.csr.2011.11.011, 2012.
Pickering, M. D., Horsburgh, K. J., Blundell, J. R., Hirschi, J. M., Nicholls, R. J., Verlaan, M., and Wells, N. C.: The impact of future
sea-level rise on the global tides, Cont. Shelf Res., 142, 50–68, https://doi.org/10.1016/j.csr.2017.02.004, 2017.
Prandle, D.: How tides and river flows determine estuarine bathymetries,
Prog. Oceanogr., 61, 1–26, https://doi.org/10.1016/j.pocean.2004.03.001,
2004.
Ralston, D. K., Talke, S., Geyer, W. R., Al-Zubaidi, H. A. M., and
Sommerfield, C. K.: Bigger tides, less flooding: Effects of dredging on
barotropic dynamics in a highly modified estuary, J. Geophys. Res.-Oceans,
124, 196–211, https://doi.org/10.1029/2018JC014313, 2019.
Rasquin, C., Seiffert, R., Wachler, B., and Winkel, N.: The significance of coastal bathymetry representation for modelling the tidal response to mean sea level rise in the German Bight, Ocean Sci., 16, 31–44, https://doi.org/10.5194/os-16-31-2020, 2020.
Ray, R. D.: Secular changes of the M2 tide in the Gulf of Maine, Cont.
Shelf Res., 26, 422–427, https://doi.org/10.1016/j.csr.2005.12.005, 2006.
Ross, A. C., Najjar, R. G., Li, M., Lee, S. B., Zhang, F., and Liu, W.:
Fingerprints of sea level rise on changing tides in the Chesapeake and
Delaware Bays, J. Geophys. Res.-Oceans, 122, 8102–8125, https://doi.org/10.1002/2017JC012887, 2017.
Savenije, H. H. G. and Veling, E. J. M.: Relation between tidal damping and
wave celerity in estuaries, J. Geophys. Res., 110, C04007, https://doi.org/10.1029/2004JC002278, 2005.
Schulz, K. and Gerkema, T.: An inversion of the estuarine circulation by
sluice water discharge and its impact on suspended sediment transport,
Estuar. Coast. Shelf S., 200, 31–40, https://doi.org/10.1016/j.ecss.2017.09.031, 2018.
Slangen, A. B. A., Carson, M., Katsman, C. A., Van de Wal, R. S. W.,
Köhl, A., Vermeersen, L. L. A., and Stammer, D.: Projecting twenty-first
century regional sea-level changes, Clim. Change, 124, 317–332,
https://doi.org/10.1007/s10584-014-1080-9, 2014.
Speer, P. E. and Aubrey, D. G.: A study of non-linear tidal propagation in
shallow inlet/estuarine systems Part II: Theory, Estuar. Coast. Shelf S., 21, 207–224, https://doi.org/10.1016/0272-7714(85)90097-6, 1985.
Sutherland, G., Garrett, C., and Foreman, M.: Tidal resonance in Juan de
Fuca Strait and the Strait of Georgia, J. Phys. Oceanogr., 35, 1279–1286,
https://doi.org/10.1175/JPO2738.1, 2005.
Talke, S. A. and Jay, D. A.: Changing Tides: The Role of Natural and
Anthropogenic Factors, Annu. Rev. Mar. Sci., 12, 14.1–14.31, https://doi.org/10.1146/annurev-marine-010419-010727, 2020.
Talke, S. A., de Swart, H. E., and De Jonge, V. N.: An idealized model and
systematic process study of oxygen depletion in highly turbid estuaries,
Estuar. Coast., 32, 602–620, https://doi.org/10.1007/s12237-009-9171-y, 2009.
Taylor, K. E.: Summarizing multiple aspects of model performance in a single
diagram, J. Geophys. Res., 106, 7183–7192, https://doi.org/10.1029/2000JD900719, 2001.
ten Brinke, W. B. M., Dronkers, J., and Mulder, J. P. M.: Fine sediments in the Oosterschelde tidal basin before and after partial closure, Hydrobiologia, 282, 41–56, https://doi.org/10.1007/BF00024620, 1994.
van der Wegen, M.: Numerical modeling of the impact of sea level rise on
tidal basin morphodynamics, J. Geophys. Res.-Earth, 118, 447–460, https://doi.org/10.1002/jgrf.20034, 2013.
van der Wegen, M., Dastgheib, A., Jaffe, B. E., and Roelvink, D.: Bed
composition generation for morphodynamic modeling: case study of San Pablo
Bay in California, USA, Ocean Dynam., 61, 173–186,
https://doi.org/10.1007/s10236-010-0314-2, 2011.
van der Wegen, M., Jaffe, B., Foxgrover, A., and Roelvink, D.: Mudflat
morphodynamics and the impact of sea level rise in South San Francisco Bay,
Estuar. Coast., 40, 37–49, https://doi.org/10.1007/s12237-016-0129-6, 2017.
van Goor, M. A., Zitman, T. J., Wang, Z. B., and Stive, M. J. F.: Impact of
sea-level rise on the morphological equilibrium state of tidal inlets, Mar.
Geol., 202, 211–227, https://doi.org/10.1016/S0025-3227(03)00262-7, 2003.
van Maren, D. S., Hoekstra, P., and Hoitink, A. J. F.: Tidal flow asymmetry
in the diurnal regime: bed-load transport and morphologic changes around the
Red River Delta, Ocean Dynam., 54, 424–434, https://doi.org/10.1007/s10236-003-0085-0, 2004.
van Rijn, L. C.: Analytical and numerical analysis of tides and salinities
in estuaries; part I: tidal wave propagation in convergent estuaries, Ocean
Dynam., 61, 1719–1741, https://doi.org/10.1007/s10236-011-0453-0, 2011.
van Rijn, L., Grasmeijer, B., and Perk, L.: Effect of channel deepening on
tidal flow and sediment transport: part I—sandy channels, Ocean Dynam.,
68, 1457–1479, https://doi.org/10.1007/s10236-018-1204-2, 2018.
Vermeersen, B. L. A., Slangen, A. B. A., Gerkema, T., Baart, F., Cohen, K.
M., Dangendorf, S., Duran-Matute, M., Frederikse, T., Grinsted, A., Hijma,
M. P., Jevrejeva, S., Kiden, P., Kleinherenbrink, M., Meijles, E. W.,
Palmer, M. D., Rietbroek, R., Riva, R. E. M., Schulz, E., Slobbe, D. C.,
Simpson, M. J. R., Sterlini, P., Stocchi, P., van de Wal R. S. W., and van
der Wegen, M.: Sea-level change in the Dutch Wadden Sea, Neth. J. Geosci.,
97, 79–127, https://doi.org/10.1017/njg.2018.7, 2018.
Vroon, J.: Hydrodynamic characteristics of the Oosterschelde in recent
decades, Hydrobiologia, 282, 17–27, https://doi.org/10.1007/BF00024618, 1994.
Winterwerp, J. C. and Wang, Z. B.: Man-induced regime shifts in small
estuaries–I: theory. Ocean Dynam., 63, 1279–1292, https://doi.org/10.1007/s10236-013-0662-9, 2013.
Winterwerp, J. C., Wang, Z. B., van Braeckel, A., van Holland, G., and
Kösters, F.: Man-induced regime shifts in small estuaries–II: a comparison of rivers, Ocean Dynam., 63, 1293–1306,
https://doi.org/10.1007/s10236-013-0663-8, 2013.
Zhang, W., Ruan, X., Zheng, J., Zhu, Y., and Wu, H.: Long-term change in
tidal dynamics and its cause in the Pearl River Delta, China, Geomorphology,
120, 209–223, https://doi.org/10.1016/j.geomorph.2010.03.031, 2010.
Zhao, C., Ge, J., and Ding, P.: Impact of sea level rise on storm surges
around the Changjiang Estuary, J. Coastal Res., 68, 27–34,
https://doi.org/10.2112/SI68-004.1, 2014.
Zhou, X., Zheng, J., Doong, D.-J., and Demirbilek, Z.: Sea level rise along
the East Asia and Chinese coasts and its role on the morphodynamic response
of the Yangtze River estuary, Ocean Eng., 71, 40–50, https://doi.org/10.1016/j.oceaneng.2013.03.014, 2013.
Short summary
A model downscaling approach is used to investigate the effects of sea-level rise (SLR) on local tides. Results indicate that SLR induces larger increases in tidal amplitude and stronger nonlinear tidal distortion in the bay compared to the adjacent shelf sea. SLR can also change shallow-water tidal asymmetry and influence the direction and magnitude of bed-load sediment transport. The model downscaling approach is widely applicable for local SLR projections in estuaries and coastal bays.
A model downscaling approach is used to investigate the effects of sea-level rise (SLR) on local...