Articles | Volume 16, issue 1
https://doi.org/10.5194/os-16-167-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-167-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The impact of meltwater discharge from the Greenland ice sheet on the Atlantic nutrient supply to the northwest European shelf
Moritz Mathis
CORRESPONDING AUTHOR
Ocean Department, Max-Planck-Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany
Institute of Coastal Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Str. 1, 21502 Geesthacht, Germany
Uwe Mikolajewicz
Ocean Department, Max-Planck-Institute for Meteorology, Bundesstr. 53, 20146 Hamburg, Germany
Related authors
No articles found.
Malena Andernach, Marie-Luise Kapsch, and Uwe Mikolajewicz
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-24, https://doi.org/10.5194/esd-2024-24, 2024
Revised manuscript under review for ESD
Short summary
Short summary
Using a comprehensive set of simulations with the Max Planck Institute for Meteorology Earth System Model, we disentangle and quantify the impacts of a disintegrated Greenland Ice Sheet on the global climate, including the deep ocean. We find that most of the climate response is driven by Greenland’s lower elevation and enhanced by changed surface-properties, although regional differences exist. The altered climate conditions constrain a potential ice-sheet regrowth to high-bedrock elevations.
Katharina D. Six, Uwe Mikolajewicz, and Gerhard Schmiedl
Clim. Past, 20, 1785–1816, https://doi.org/10.5194/cp-20-1785-2024, https://doi.org/10.5194/cp-20-1785-2024, 2024
Short summary
Short summary
We use a physical and biogeochemical ocean model of the Mediterranean Sea to obtain a picture of the Last Glacial Maximum. The shallowing of the Strait of Gibraltar leads to a shallower pycnocline and more efficient nutrient export. Consistent with the sediment data, an increase in organic matter deposition is simulated, although this is based on lower biological production. This unexpected but plausible result resolves the apparent contradiction between planktonic and benthic proxy data.
Uwe Mikolajewicz, Marie-Luise Kapsch, Clemens Schannwell, Katharina D. Six, Florian A. Ziemen, Meike Bagge, Jean-Philippe Baudouin, Olga Erokhina, Veronika Gayler, Volker Klemann, Virna L. Meccia, Anne Mouchet, and Thomas Riddick
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-55, https://doi.org/10.5194/cp-2024-55, 2024
Revised manuscript under review for CP
Short summary
Short summary
A fully coupled atmosphere-ocean-ice sheet-solid earth model was applied to simulate the time from the last glacial maximum to the preindustrial. The model simulations are compared to proxy data. During the glacial and deglaciation the model simulates several abrupt changes in North Atlantic climate. The underlying meachanisms are analysed and described.
Elisa Ziegler, Nils Weitzel, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lauren Gregoire, Ruza Ivanovic, Paul J. Valdes, Christian Wirths, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2024-1396, https://doi.org/10.5194/egusphere-2024-1396, 2024
Short summary
Short summary
During the Last Deglaciation global surface temperature rose by about 4–7 degrees over several millennia. We show that changes of year-to-year up to century-to-century fluctuations of temperature and precipitation during the Deglaciation were mostly larger than during either the preceding or succeeding more stable periods in fifteen climate model simulations. The analysis demonstrates how ice sheets, meltwater and volcanism influence simulated variability to inform future simulation protocols.
Nils Weitzel, Heather Andres, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lukas Jonkers, Oliver Bothe, Elisa Ziegler, Thomas Kleinen, André Paul, and Kira Rehfeld
Clim. Past, 20, 865–890, https://doi.org/10.5194/cp-20-865-2024, https://doi.org/10.5194/cp-20-865-2024, 2024
Short summary
Short summary
The ability of climate models to faithfully reproduce past warming episodes is a valuable test considering potentially large future warming. We develop a new method to compare simulations of the last deglaciation with temperature reconstructions. We find that reconstructions differ more between regions than simulations, potentially due to deficiencies in the simulation design, models, or reconstructions. Our work is a promising step towards benchmarking simulations of past climate transitions.
Brooke Snoll, Ruza Ivanovic, Lauren Gregoire, Sam Sherriff-Tadano, Laurie Menviel, Takashi Obase, Ayako Abe-Ouchi, Nathaelle Bouttes, Chengfei He, Feng He, Marie Kapsch, Uwe Mikolajewicz, Juan Muglia, and Paul Valdes
Clim. Past, 20, 789–815, https://doi.org/10.5194/cp-20-789-2024, https://doi.org/10.5194/cp-20-789-2024, 2024
Short summary
Short summary
Geological records show rapid climate change throughout the recent deglaciation. The drivers of these changes are still misunderstood but are often attributed to shifts in the Atlantic Ocean circulation from meltwater input. A cumulative effort to understand these processes prompted numerous simulations of this period. We use these to explain the chain of events and our collective ability to simulate them. The results demonstrate the importance of the meltwater amount used in the simulation.
Takashi Obase, Laurie Menviel, Ayako Abe-Ouchi, Tristan Vadsaria, Ruza Ivanovic, Brooke Snoll, Sam Sherriff-Tadano, Paul Valdes, Lauren Gregoire, Marie-Luise Kapsch, Uwe Mikolajewicz, Nathaelle Bouttes, Didier Roche, Fanny Lhardy, Chengfei He, Bette Otto-Bliesner, Zhengyu Liu, and Wing-Le Chan
Clim. Past Discuss., https://doi.org/10.5194/cp-2023-86, https://doi.org/10.5194/cp-2023-86, 2023
Revised manuscript under review for CP
Short summary
Short summary
This study analyses transient simulations of the last deglaciation performed by six climate models to understand the processes driving southern high latitude temperature changes. We find that atmospheric CO2 changes and AMOC changes are the primary drivers of the major warming and cooling during the middle stage of the deglaciation. The multi-model analysis highlights the model’s sensitivity of CO2, AMOC to meltwater, and the meltwater history on temperature changes in southern high latitudes.
Clemens Schannwell, Uwe Mikolajewicz, Florian Ziemen, and Marie-Luise Kapsch
Clim. Past, 19, 179–198, https://doi.org/10.5194/cp-19-179-2023, https://doi.org/10.5194/cp-19-179-2023, 2023
Short summary
Short summary
Heinrich-type ice-sheet surges are recurring events over the course of the last glacial cycle during which large numbers of icebergs are discharged from the Laurentide ice sheet into the ocean. These events alter the evolution of the global climate. Here, we use model simulations of the Laurentide ice sheet to identify and quantify the importance of various climate and ice-sheet parameters for the simulated surge cycle.
Katharina Dorothea Six and Uwe Mikolajewicz
Biogeosciences Discuss., https://doi.org/10.5194/bg-2022-27, https://doi.org/10.5194/bg-2022-27, 2022
Preprint withdrawn
Short summary
Short summary
We developed a global ocean biogeochemical model with a zoom on the Benguela upwelling system. We show that the high spatial resolution is necessary to capture long-term trends of oxygen of the recent past. The regional anthropogenic carbon uptake over the last century is lower than compared to a coarser resolution ocean model as used in Earth system models. This suggests that, at least for some regions, the changes projected by these Earth system models are associated with high uncertainty.
Masa Kageyama, Sandy P. Harrison, Marie-L. Kapsch, Marcus Lofverstrom, Juan M. Lora, Uwe Mikolajewicz, Sam Sherriff-Tadano, Tristan Vadsaria, Ayako Abe-Ouchi, Nathaelle Bouttes, Deepak Chandan, Lauren J. Gregoire, Ruza F. Ivanovic, Kenji Izumi, Allegra N. LeGrande, Fanny Lhardy, Gerrit Lohmann, Polina A. Morozova, Rumi Ohgaito, André Paul, W. Richard Peltier, Christopher J. Poulsen, Aurélien Quiquet, Didier M. Roche, Xiaoxu Shi, Jessica E. Tierney, Paul J. Valdes, Evgeny Volodin, and Jiang Zhu
Clim. Past, 17, 1065–1089, https://doi.org/10.5194/cp-17-1065-2021, https://doi.org/10.5194/cp-17-1065-2021, 2021
Short summary
Short summary
The Last Glacial Maximum (LGM; ~21 000 years ago) is a major focus for evaluating how well climate models simulate climate changes as large as those expected in the future. Here, we compare the latest climate model (CMIP6-PMIP4) to the previous one (CMIP5-PMIP3) and to reconstructions. Large-scale climate features (e.g. land–sea contrast, polar amplification) are well captured by all models, while regional changes (e.g. winter extratropical cooling, precipitations) are still poorly represented.
Marie-Luise Kapsch, Uwe Mikolajewicz, Florian A. Ziemen, Christian B. Rodehacke, and Clemens Schannwell
The Cryosphere, 15, 1131–1156, https://doi.org/10.5194/tc-15-1131-2021, https://doi.org/10.5194/tc-15-1131-2021, 2021
Xavier Fettweis, Stefan Hofer, Uta Krebs-Kanzow, Charles Amory, Teruo Aoki, Constantijn J. Berends, Andreas Born, Jason E. Box, Alison Delhasse, Koji Fujita, Paul Gierz, Heiko Goelzer, Edward Hanna, Akihiro Hashimoto, Philippe Huybrechts, Marie-Luise Kapsch, Michalea D. King, Christoph Kittel, Charlotte Lang, Peter L. Langen, Jan T. M. Lenaerts, Glen E. Liston, Gerrit Lohmann, Sebastian H. Mernild, Uwe Mikolajewicz, Kameswarrao Modali, Ruth H. Mottram, Masashi Niwano, Brice Noël, Jonathan C. Ryan, Amy Smith, Jan Streffing, Marco Tedesco, Willem Jan van de Berg, Michiel van den Broeke, Roderik S. W. van de Wal, Leo van Kampenhout, David Wilton, Bert Wouters, Florian Ziemen, and Tobias Zolles
The Cryosphere, 14, 3935–3958, https://doi.org/10.5194/tc-14-3935-2020, https://doi.org/10.5194/tc-14-3935-2020, 2020
Short summary
Short summary
We evaluated simulated Greenland Ice Sheet surface mass balance from 5 kinds of models. While the most complex (but expensive to compute) models remain the best, the faster/simpler models also compare reliably with observations and have biases of the same order as the regional models. Discrepancies in the trend over 2000–2012, however, suggest that large uncertainties remain in the modelled future SMB changes as they are highly impacted by the meltwater runoff biases over the current climate.
Suzanne Alice Ghislaine Leroy, Klaus Arpe, Uwe Mikolajewicz, and Jing Wu
Clim. Past, 16, 2039–2054, https://doi.org/10.5194/cp-16-2039-2020, https://doi.org/10.5194/cp-16-2039-2020, 2020
Short summary
Short summary
The biodiversity of temperate deciduous trees in eastern Asia is greater than in Europe. During the peak of the last ice age, their distribution was obtained based on pollen data literature. A climate model, after validation on the present, was used to calculate the potential distribution of such trees in the past. It shows that the shift of the tree belt was only 2° latitude to the south. Moreover, greater population connectivity was shown for the Yellow Sea and southern Himalayas.
Martin Renoult, James Douglas Annan, Julia Catherine Hargreaves, Navjit Sagoo, Clare Flynn, Marie-Luise Kapsch, Qiang Li, Gerrit Lohmann, Uwe Mikolajewicz, Rumi Ohgaito, Xiaoxu Shi, Qiong Zhang, and Thorsten Mauritsen
Clim. Past, 16, 1715–1735, https://doi.org/10.5194/cp-16-1715-2020, https://doi.org/10.5194/cp-16-1715-2020, 2020
Short summary
Short summary
Interest in past climates as sources of information for the climate system has grown in recent years. In particular, studies of the warm mid-Pliocene and cold Last Glacial Maximum showed relationships between the tropical surface temperature of the Earth and its sensitivity to an abrupt doubling of atmospheric CO2. In this study, we develop a new and promising statistical method and obtain similar results as previously observed, wherein the sensitivity does not seem to exceed extreme values.
Andreas Lang and Uwe Mikolajewicz
Ocean Sci., 15, 651–668, https://doi.org/10.5194/os-15-651-2019, https://doi.org/10.5194/os-15-651-2019, 2019
Short summary
Short summary
Here we investigate the occurrence of extreme storm surges in the southern German Bight and their associated large-scale forcing mechanisms using climate model simulations covering the last 1000 years. We find that extreme storm surges are characterized by a large internal variability that masks potential links to external climate forcing or background sea level fluctuations; existing estimates of extreme sea levels based on short data records thus fail to account for their full variability.
Florian Andreas Ziemen, Marie-Luise Kapsch, Marlene Klockmann, and Uwe Mikolajewicz
Clim. Past, 15, 153–168, https://doi.org/10.5194/cp-15-153-2019, https://doi.org/10.5194/cp-15-153-2019, 2019
Short summary
Short summary
Heinrich events are among the dominant modes of glacial climate variability. They are caused by massive ice discharges from the Laurentide Ice Sheet into the North Atlantic. In previous studies, the climate changes were either seen as resulting from freshwater released from the melt of the discharged icebergs or by ice sheet elevation changes. With a coupled ice sheet–climate model, we show that both effects are relevant with the freshwater effects preceding the ice sheet elevation effects.
Virna Loana Meccia and Uwe Mikolajewicz
Geosci. Model Dev., 11, 4677–4692, https://doi.org/10.5194/gmd-11-4677-2018, https://doi.org/10.5194/gmd-11-4677-2018, 2018
Thomas Riddick, Victor Brovkin, Stefan Hagemann, and Uwe Mikolajewicz
Geosci. Model Dev., 11, 4291–4316, https://doi.org/10.5194/gmd-11-4291-2018, https://doi.org/10.5194/gmd-11-4291-2018, 2018
Short summary
Short summary
During the Last Glacial Maximum, many rivers were blocked by the presence of large ice sheets and thus found new routes to the sea. This resulted in changes in the pattern of freshwater discharge into the oceans and thus would have significantly affected ocean circulation. Also, rivers found routes across the vast exposed continental shelves to the lower coastlines of that time. We propose a model for such changes in river routing suitable for use in wider models of the last glacial cycle.
Uwe Mikolajewicz, Florian Ziemen, Guido Cioni, Martin Claussen, Klaus Fraedrich, Marvin Heidkamp, Cathy Hohenegger, Diego Jimenez de la Cuesta, Marie-Luise Kapsch, Alexander Lemburg, Thorsten Mauritsen, Katharina Meraner, Niklas Röber, Hauke Schmidt, Katharina D. Six, Irene Stemmler, Talia Tamarin-Brodsky, Alexander Winkler, Xiuhua Zhu, and Bjorn Stevens
Earth Syst. Dynam., 9, 1191–1215, https://doi.org/10.5194/esd-9-1191-2018, https://doi.org/10.5194/esd-9-1191-2018, 2018
Short summary
Short summary
Model experiments show that changing the sense of Earth's rotation has relatively little impact on the globally and zonally averaged energy budgets but leads to large shifts in continental climates and patterns of precipitation. The retrograde world is greener as the desert area shrinks. Deep water formation shifts from the North Atlantic to the North Pacific with subsequent changes in ocean overturning. Over large areas of the Indian Ocean, cyanobacteria dominate over bulk phytoplankton.
Valerie Menke, Werner Ehrmann, Yvonne Milker, Swaantje Brzelinski, Jürgen Möbius, Uwe Mikolajewicz, Bernd Zolitschka, Karin Zonneveld, Kay Christian Emeis, and Gerhard Schmiedl
Clim. Past Discuss., https://doi.org/10.5194/cp-2017-139, https://doi.org/10.5194/cp-2017-139, 2017
Preprint withdrawn
Short summary
Short summary
This study examines changes in the marine ecosystem during the past 1300 years in the Gulf of Taranto (Italy) to unravel natural and anthropogenic forcing. Our data suggest, that processes at the sea floor are linked to the North Atlantic Oscillation (NAO) and the Atlantic Multidecadal Oscillation. During the past 200 years, the effects of rising northern hemisphere temperature and increasing anthropogenic activity enhanced nutrient and organic matter fluxes leading to more eutrophic conditions.
Masa Kageyama, Samuel Albani, Pascale Braconnot, Sandy P. Harrison, Peter O. Hopcroft, Ruza F. Ivanovic, Fabrice Lambert, Olivier Marti, W. Richard Peltier, Jean-Yves Peterschmitt, Didier M. Roche, Lev Tarasov, Xu Zhang, Esther C. Brady, Alan M. Haywood, Allegra N. LeGrande, Daniel J. Lunt, Natalie M. Mahowald, Uwe Mikolajewicz, Kerim H. Nisancioglu, Bette L. Otto-Bliesner, Hans Renssen, Robert A. Tomas, Qiong Zhang, Ayako Abe-Ouchi, Patrick J. Bartlein, Jian Cao, Qiang Li, Gerrit Lohmann, Rumi Ohgaito, Xiaoxu Shi, Evgeny Volodin, Kohei Yoshida, Xiao Zhang, and Weipeng Zheng
Geosci. Model Dev., 10, 4035–4055, https://doi.org/10.5194/gmd-10-4035-2017, https://doi.org/10.5194/gmd-10-4035-2017, 2017
Short summary
Short summary
The Last Glacial Maximum (LGM, 21000 years ago) is an interval when global ice volume was at a maximum, eustatic sea level close to a minimum, greenhouse gas concentrations were lower, atmospheric aerosol loadings were higher than today, and vegetation and land-surface characteristics were different from today. This paper describes the implementation of the LGM numerical experiment for the PMIP4-CMIP6 modelling intercomparison projects and the associated sensitivity experiments.
Marlene Klockmann, Uwe Mikolajewicz, and Jochem Marotzke
Clim. Past, 12, 1829–1846, https://doi.org/10.5194/cp-12-1829-2016, https://doi.org/10.5194/cp-12-1829-2016, 2016
Short summary
Short summary
We study the response of the glacial AMOC to different forcings in a coupled AOGCM. The depth of the upper overturning cell remains almost unchanged in response to the full glacial forcing. This is the result of two opposing effects: a deepening due to the ice sheets and a shoaling due to the low GHG concentrations. Increased brine release in the Southern Ocean is key to the shoaling. With glacial ice sheets, a shallower cell can be simulated with GHG concentrations below the glacial level.
N. Sudarchikova, U. Mikolajewicz, C. Timmreck, D. O'Donnell, G. Schurgers, D. Sein, and K. Zhang
Clim. Past, 11, 765–779, https://doi.org/10.5194/cp-11-765-2015, https://doi.org/10.5194/cp-11-765-2015, 2015
F. A. Ziemen, C. B. Rodehacke, and U. Mikolajewicz
Clim. Past, 10, 1817–1836, https://doi.org/10.5194/cp-10-1817-2014, https://doi.org/10.5194/cp-10-1817-2014, 2014
M. Gröger, E. Maier-Reimer, U. Mikolajewicz, A. Moll, and D. Sein
Biogeosciences, 10, 3767–3792, https://doi.org/10.5194/bg-10-3767-2013, https://doi.org/10.5194/bg-10-3767-2013, 2013
P. Bakker, E. J. Stone, S. Charbit, M. Gröger, U. Krebs-Kanzow, S. P. Ritz, V. Varma, V. Khon, D. J. Lunt, U. Mikolajewicz, M. Prange, H. Renssen, B. Schneider, and M. Schulz
Clim. Past, 9, 605–619, https://doi.org/10.5194/cp-9-605-2013, https://doi.org/10.5194/cp-9-605-2013, 2013
Related subject area
Approach: Numerical Models | Depth range: All Depths | Geographical range: Shelf Seas | Phenomena: Temperature, Salinity and Density Fields
A hydrodynamic model for Galveston Bay and the shelf in the northern Gulf of Mexico
Effect of winds and waves on salt intrusion in the Pearl River estuary
Mean circulation in the coastal ocean off northeastern North America from a regional-scale ocean model
Modelling temperature and salinity in Liverpool Bay and the Irish Sea: sensitivity to model type and surface forcing
Numerical simulations of spreading of the Persian Gulf outflow into the Oman Sea
Jiabi Du, Kyeong Park, Jian Shen, Yinglong J. Zhang, Xin Yu, Fei Ye, Zhengui Wang, and Nancy N. Rabalais
Ocean Sci., 15, 951–966, https://doi.org/10.5194/os-15-951-2019, https://doi.org/10.5194/os-15-951-2019, 2019
Short summary
Short summary
The northern Gulf of Mexico is characterized by complex estuary–shelf–ocean interactions. We developed a 3-D model to represent these interactions. The model is validated with observational data and used to examine the remote influence of Mississippi–Atchafalaya freshwater discharge on Texas coastal systems. Numerical experiments reveal that the remote influence varies greatly under different wind conditions, suggesting great control from the shelf circulations on estuarine dynamics.
Wenping Gong, Zhongyuan Lin, Yunzhen Chen, Zhaoyun Chen, and Heng Zhang
Ocean Sci., 14, 139–159, https://doi.org/10.5194/os-14-139-2018, https://doi.org/10.5194/os-14-139-2018, 2018
Short summary
Short summary
Salt intrusion in the Pearl River Estuary is a dynamic process that is influenced by a range of factors, and few studies have examined the effects of winds and waves. Therefore, we investigate these effects using the Coupled Ocean-Atmosphere-Wave-Sediment Transport modeling system in this region. It was found that enhancement of the salt intrusion is comparable between the remote and local winds. Waves decrease the salt intrusion by increasing the water mixing.
K. Chen and R. He
Ocean Sci., 11, 503–517, https://doi.org/10.5194/os-11-503-2015, https://doi.org/10.5194/os-11-503-2015, 2015
C. K. O'Neill, J. A. Polton, J. T. Holt, and E. J. O'Dea
Ocean Sci., 8, 903–913, https://doi.org/10.5194/os-8-903-2012, https://doi.org/10.5194/os-8-903-2012, 2012
M. Ezam, A. A. Bidokhti, and A. H. Javid
Ocean Sci., 6, 887–900, https://doi.org/10.5194/os-6-887-2010, https://doi.org/10.5194/os-6-887-2010, 2010
Cited articles
Agarwal, N., Jungclaus, J. H., Köhl, A., Mechoso, C. R., and Stammer, D.:
Additional contributions to CMIP5 regional sea level projections resulting
from Greenland and Antarctic ice mass loss,
Environ. Res. Lett.,
10, 074008, https://doi.org/10.1088/1748-9326/10/7/074008, 2015. a, b
Alexander, M. A., Scott, J. D., Friedland, K. D., Mills, K. E., Nye, J. A.,
Pershing, A. J., and Thomas, A. C.: Projected sea surface temperatures over
the 21st century: Changes in the mean, variability and extremes for large
marine ecosystem regions of Northern Oceans, Elem. Sci. Anth., 6, https://doi.org/10.1525/elementa.191,
2018. a, b
An, L., Rignot, E., Elieff, S., Morlighem, M., Millan, R., Mouginot, J.,
Holland, D. M., Holland, D., and Paden, J.: Bed elevation of Jakobshavn
Isbræ, West Greenland, from high‐resolution airborne gravity and other
data, Geophys. Res. Lett., 44, 3728–3736, 2017. a
Bamber, J., van den Broeke, M., Ettema, J., Lenaerts, J., and Rignot, E.:
Recent large increases in freshwater fluxes from Greenland into the North
Atlantic, Geophys. Res. Lett., 39, L19501, https://doi.org/10.1029/2012GL052552, 2012. a, b, c
Bamber, J. L., Tedstone, A. J., King, M. D., Howat, I. M., Enderlin, E.,
van den Broeke, M. R., and Noel, B.: Land ice freshwater budget of the
Arctic and North Atlantic Oceans: 1. Data, methods, and results,
J. Geophys. Res.-Oceans, 123, 1827–1837, 2018. a
Barnston, A. G. and Livezey, R. E.: Classification, seasonality and
persistence of low‐frequency atmospheric circulation patterns, Mon.
Weather Rev., 115, 1083–1126, 1987. a
Bhatia, M., Kujawinski, E. B., Das, S. B., Breier, C. F., Henderson, P. B., and
Charette, M. A.: Greenland meltwater as a significant and potentially
bioavailable source of iron to the ocean, Nat. Geosci., 6, 274–278,
2013. a
Bopp, L., Monfray, P., Aumont, O., Dufresne, J. L., Treut, H. L., Madec, G.,
Terray, L., and Orr, J. C.: Potential impact of climate change on marine
export production, Global Biogeochem. Cy., 15, 81–99, 2001. a
Bopp, L., Resplandy, L., Orr, J. C., Doney, S. C., Dunne, J. P., Gehlen, M., Halloran, P., Heinze, C., Ilyina, T., Séférian, R., Tjiputra, J., and Vichi, M.: Multiple stressors of ocean ecosystems in the 21st century: projections with CMIP5 models, Biogeosciences, 10, 6225–6245, https://doi.org/10.5194/bg-10-6225-2013, 2013. a
Burkett, V. R., Suarez, A. G., Bindi, M., Conde, C., Mukerji, R., Prather,
M. J., Clair, A. L. S., and Yohe, G. W.: Point of departure, in: Climate
Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and
Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment
Report of the Intergovernmental Panel on Climate Change, edited by: Field,
C. B., Barros, V. R., Dokken, D. J., Mach, K. J., Mastrandrea, M. D., Bilir,
T. E., Chatterjee, M., Ebi, K. L., Estrada, Y. O., Genova, R. C., Girma, B.,
Kissel, E. S., Levy, A. N., MacCracken, S., Mastrandrea, P. R., and White,
L. L., Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, 169–194, 2014. a, b
Capotondi, A., Alexander, M. A., Bond, N. A., Curchitser, E. N., and Scott,
J. D.: Enhanced upper ocean stratification with climate change in the CMIP3
models, J. Geophys. Res., 117, C04031, https://doi.org/10.1029/2011JC007409, 2012. a
Castro de la Guardia, L., Hu, X., and Myers, P. G.: Potential positive
feedback between Greenland Ice Sheet melt and Baffin Bay heat content on the
west Greenland shelf, Geophys. Res. Lett., 42, 4922–4930, 2015. a
Chafik, L., Nilsen, J. E. O., and Dangendorf, S.: Impact of North Atlantic
Teleconnection Patterns on Northern European Sea Level,
Journal of Marine Science and Engineering, 5, https://doi.org/10.3390/jmse5030043, 2017. a
Chen, J.: Satellite gravimetry and mass transport in the earth system,
Geodesy and Geodynamics,
10,
402–415,
https://doi.org/10.1016/j.geog.2018.07.001, 2019. a
Cheng, W., Chiang, J. C., and Zhang, D.: Atlantic Meridional Overturning
Circulation (AMOC) in CMIP5 Models: RCP and Historical Simulations, J.
Climate, 26, 7187–7197, 2013. a
Church, J. A., Clark, P. U., Cazenave, A., Gregory, J. M., Jevrejeva, S.,
Levermann, A., Merrifield, M. A., Milne, G. A., Nerem, R. S., Nunn, P. D.,
Payne, A. J., Pfeffer, W. T., Stammer, D., and Unnikrishnan, A. S.: Sea
Level Change, in: Climate Change 2013: The Physical Science Basis.
Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D.,
Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y.,
Bex, V., and Midgley, P. M., Cambridge University Press,
Cambridge, United Kingdom and New York, NY, USA, 1137–1216, 2013. a, b, c
Collins, M., Knutti, R., Arblaster, J., Dufresne, J. L., Fichefet, T.,
Friedlingstein, P., Gao, X., Gutowski, W. J., Johns, T., Krinner, G.,
Shongwe, M., Tebaldi, C., Weaver, A. J., and Wehner, M.: Long-term Climate
Change: Projections, Commitments and Irreversibility, in: Climate Change
2013: The Physical Science Basis. Contribution of Working Group I to the
Fifth Assessment Report of the Intergovernmental Panel on Climate Change,
edited by: Stocker, T. F., Qin, D., Plattner, G. K., Tignor, M., Allen, S. K.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, Cambridge, United Kingdom and New
York, NY, USA, 1029–1136, 2013. a
Costoya, X., deCastro, M., Gómez-Gesteira, M., and Santos, F.: Mixed layer
depth trends in the Bay of Biscay over the period 1975–2010, PLoS ONE, 9,
e99321, https://doi.org/10.1371/journal.pone.0099321, 2014. a
Courtois, P., Hu, X., Pennelly, C., Spence, P., and Myers, P. G.: Mixed layer
depth calculation in deep convection regions in ocean numerical models,
Ocean Model., 120, 60–78, 2017. a
de Boyer Montégut, C., Madec, G., Fischer, A. S., Lazar, A., and Iudicone,
D.: Mixed layer depth over the global ocean: An examination of profile data
and a profile‐based climatology, J. Geophys. Res., 109, C12003, https://doi.org/10.1029/2004JC002378,
2004. a
Driesschaert, E., Fichefet, T., Goosse, H., Huybrechts, P., Janssens, I.,
Mouchet, A., Munhoven, G., Brovkin, V., and Weber, S. L.: Modeling the
influence of Greenland ice sheet melting on the Atlantic meridional
overturning circulation during the next millennia, Geophys. Res. Lett., 34,
L10707, https://doi.org/10.1029/2007GL029516, 2007. a, b
Duprat, L. P. A. M., Bigg, G. R., and Wilton, D. J.: Enhanced Southern Ocean
marine productivity due to fertilization by giant icebergs, Nat. Geosci., 9, 219–221, 2016. a
Fagherazzi, S., Fosser, G., D'Alpaos, L., and D'Odorico, P.: Climatic
oscillations influence the flooding of Venice, Geophys. Res. Lett., 32,
L19710, https://doi.org/10.1029/2005GL023758, 2005. a
Fischer, M., Domeisen, D. I. V., Müller, W. A., and Baehr, J.: Changes in the seasonal cycle of the Atlantic meridional heat transport in a RCP 8.5 climate projection in MPI-ESM, Earth Syst. Dynam., 8, 129–146, https://doi.org/10.5194/esd-8-129-2017, 2017. a
Fu, W., Randerson, J. T., and Moore, J. K.: Climate change impacts on net primary production (NPP) and export production (EP) regulated by increasing stratification and phytoplankton community structure in the CMIP5 models, Biogeosciences, 13, 5151–5170, https://doi.org/10.5194/bg-13-5151-2016, 2016. a, b, c
Fu, Y., Karstensen, J., and Brandt, P.: Atlantic Meridional Overturning Circulation at 14.5∘ N in 1989 and 2013 and 24.5∘ N in 1992 and 2015: volume, heat, and freshwater transports, Ocean Sci., 14, 589–616, https://doi.org/10.5194/os-14-589-2018, 2018. a
Giorgetta, M. A., Jungclaus, J., Reick, C. H., Legutke, S., Bader, J.,
Böttinger, M., Brovkin, V., Crueger, T., Esch, M., Fieg, K., Glushak, K.,
Gayler, V., Haak, H., Hollweg, H. D., Ilyina, T., Kinne, S., Kornblueh, L.,
Matei, D., Mauritsen, T., Mikolajewicz, U., Mueller, W., Notz, D., Pithan,
F., Raddatz, T., Rast, S., Redler, R., Roeckner, E., Schmidt, H., Schnur, R.,
Segschneider, J., Six, K. D., Stockhause, M., Timmreck, C., Wegner, J.,
Widmann, H., Wieners, K. H., Claussen, M., Marotzke, J., and Stevens, B.:
Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations
for the Coupled Model Intercomparison Project phase 5,
J. Adv. Model. Earth Sy., 5, 572–597, 2013. a
Graham, J. A., Rosser, J. P., O'Dea, E., and Hewitt, H. T.: Resolving Shelf
Break Exchange Around the European Northwest Shelf, Geophys. Res. Lett., 45, 12386–12395, 2018. a
Hagemann, S. and Dümenil-Gates, L.: Validation of the hydrological cycle
of ECMWF and NCEP reanalyses using the MPI hydrological discharge model,
J. Geophys. Res.-Atmos., 106, 1503–1510, 2001. a
Hatton, J. E., Hendry, K. R., Hawkings, J. R., Wadham, J. L., Opfergelt, S.,
Kohler, T. J., Yde, J. C., Stibal, M., and Žárský, J. D.:
Silicon isotopes in Arctic and sub-Arctic glacial meltwaters: the role of
subglacial weathering in the silicon cycle, P. Roy. Soc.
A, 475, https://doi.org/10.1098/rspa.2019.0098, 2019. a
Hátún, H., Azetsu-Scott, K., Somavilla, R., Rey, F., Johnson, C.,
Mathis, M., Mikolajewicz, U., Coupel, P., Tremblay, J. É., Hartman, S.,
Pacariz, S. V., Salter, I., and Ólafsson, J.: The subpolar gyre
regulates silicate concentrations in the North Atlantic, Sci. Rep.,
7, https://doi.org/10.1038/s41598-017-14837-4, 2017. a
Heinze, C., Maier-Reimer, E., Winguth, A. M. E., and Archer, D.: A global
oceanic sediment model for long-term climate studies, Global Biogeochem.
Cy., 13, 221–250, 1999. a
Hemming, S. R.: Heinrich events: Massive late Pleistocene detritus layers of
the North Atlantic and their global climate imprint, Rev. Geophys., 42,
RG1005, https://doi.org/10.1029/2003RG000128, 2004. a
Heuzé, C.: North Atlantic deep water formation and AMOC in CMIP5 models, Ocean Sci., 13, 609–622, https://doi.org/10.5194/os-13-609-2017, 2017. a, b
Holliday, N. P.: Air-sea interaction and circulation changes in the northeast
Atlantic, J. Geophys. Res., 108, https://doi.org/10.1029/2002JC001344, 2003. a
Holt, J., Butenschön, M., Wakelin, S. L., Artioli, Y., and Allen, J. I.: Oceanic controls on the primary production of the northwest European continental shelf: model experiments under recent past conditions and a potential future scenario, Biogeosciences, 9, 97–117, https://doi.org/10.5194/bg-9-97-2012, 2012. a, b, c
Holt, J., Schrum, C., Cannaby, H., Daewel, U., Allen, I., Artioli, Y., Bopp,
L., Butenschon, M., Fach, B. A., Harle, J., Pushpadas, D., Salihoglu, B., and
Wakelin, S.: Potential impacts of climate change on the primary production
of regional seas: A comparative analysis of five European seas, Prog.
Oceanogr., 140, 91–115, 2016. a
Holt, J., Polton, J., Huthnance, J., Wakelin, S., O'Dea, E., Harle, J., Yool,
A., Artioli, Y., Blackford, J., Siddorn, J., and Inall, M.: Climate-driven
change in the North Atlantic and Arctic Oceans can greatly reduce the
circulation of the North Sea, Geophys. Res. Lett., 45,
11827–11836, 2018. a, b, c, d, e, f
Hu, A., Meehl, G., Han, W., and Yin, J.: Transient response of the MOC and
climate to potential melting of the Greenland ice sheet in the 21st century,
Geophys. Res. Lett., 36, L10707, https://doi.org/10.1029/2009GL037998, 2009. a, b
Hu, Y., Tao, L., and Liu, J.: Poleward expansion of the Hadley circulation in
CMIP5 simulations, Adv. Atmos. Sci., 30, 790–795, 2013. a
Huthnance, J. M., Holt, J. T., and Wakelin, S. L.: Deep ocean exchange with west-European shelf seas, Ocean Sci., 5, 621–634, https://doi.org/10.5194/os-5-621-2009, 2009. a
Ilyina, T., Six, K. D., Segschneider, J., Maier-Reimer, E., Li, H., and
Núñez-Riboni, I.: The global ocean biogeochemistry model HAMOCC:
Model architecture and performance as component of the MPI-Earth System Model
in different CMIP5 experimental realizations, J. Adv. Model. Earth Sy., 5, 287–315, 2013. a
Jacob, D. and Podzun, R.: Sensitivity studies with the regional climate model
REMO, Meteorol. Atmos. Phys., 63, 119–129, 1997. a
Jacob, D., van den Hurk, B. J. J. M., Andræ, U., Elgered, G., Fortelius,
C., Graham, L. P., Jackson, S. D., Karstens, U., Köpken, C., Lindau, R.,
Podzun, R., Rockel, B., Rubel, F., Sass, B. H., Smith, R. N. B., and Yang,
X.: A comprehensive model inter-comparison study investigating the water
budget during the BALTEX-PIDCAP period, Meteorol. Atmos. Phys.,
77, 19–43, 2001. a
Jongma, J. I., Renssen, H., and Roche, D. M.: Simulating Heinrichevent 1 with
interactive icebergs, Clim. Dynam., 40, 1373–1385, 2013. a
Jungclaus, J., Fischer, N., Haak, H., Lohmann, K., Marotzke, J., Matei, D.,
Mikolajewicz, U., Notz, D., and von Storch, J. S.: Characteristics of the
ocean simulations in MPIOM, the ocean component of the MPI Earth System
Model, J. Adv. Model. Earth Sy., 5, 422–446, 2013. a
Jungclaus, J. H., Haak, H., Esch, M., Roeckner, E., and Marotzke, J.: Will
Greenland melting halt the thermohaline circulation?, Geophys. Res. Lett.,
33, L17708, https://doi.org/10.1029/2006GL026815, 2006. a, b
Kanzow, T., Cunningham, S. A., Johns, W. E., Hirschi, J. J., Marotzke, J.,
Baringer, M. O., Meinen, C. S., Chidichimo, M. P., Atkinson, C., Beal, L. M.,
Bryden, H. L., and Collins, J.: Seasonal Variability of the Atlantic
Meridional Overturning Circulation at 26.5∘ N, J. Climate,
23, 5678–5698, 2010. a
Keeling, R. F., Körtzinger, A., and Gruber, N.: Ocean deoxygenation in a
warming world, Annu. Rev. Mar. Sci., 2, 199–229, 2010. a
Kloster, S., Feichter, J., Maier-Reimer, E., Six, K. D., Stier, P., and Wetzel, P.: DMS cycle in the marine ocean-atmosphere system – a global model study, Biogeosciences, 3, 29–51, https://doi.org/10.5194/bg-3-29-2006, 2006. a
Kotlarski, S., Keuler, K., Christensen, O. B., Colette, A., Déqué, M., Gobiet, A., Goergen, K., Jacob, D., Lüthi, D., van Meijgaard, E., Nikulin, G., Schär, C., Teichmann, C., Vautard, R., Warrach-Sagi, K., and Wulfmeyer, V.: Regional climate modeling on European scales: a joint standard evaluation of the EURO-CORDEX RCM ensemble, Geosci. Model Dev., 7, 1297–1333, https://doi.org/10.5194/gmd-7-1297-2014, 2014. a
Kwiatkowski, L., Naar, J., Bopp, L., Aumont, O., Defrance, D., and Couespel,
D.: Decline in Atlantic Primary Production Accelerated by Greenland Ice
Sheet Melt, Geophys. Res. Lett., 46, https://doi.org/10.1029/2019GL085267, 2019. a, b
Liu, K. K., Atkinson, L., Quiñones, R., and Talaue-McManus, L.:
Biogeochemistry of continental margins in a global context, in: Carbon and
nutrient fluxes in continental margins: A global synthesis, edited by: Liu,
K. K., Atkinson, L., Quiñones, R., and Talaue-McManus, L.,
Springer, Berlin, 3–24, 2010. a
Liu, W., Xie, S. P., Liu, Z., and Zhu, J.: Overlooked possibility of a
collapsed Atlantic meridional overturning circulation in warming climate,
Sci. Adv., 3, e1601666, https://doi.org/10.1126/sciadv.1601666, 2017. a, b
Liu, Y., Hallberg, R., Sergienko, O., Samuels, B. L., Harrison, M., and
Oppenheimer, M.: Climate response to the meltwater runoff from Greenland ice
sheet: evolving sensitivity to discharging locations, Clim. Dynam., 51,
1733–1751, 2018. a
Luthcke, S. B., Zwally, H. J., Abdalati, W., Rowlands, D. D., Ray, R. D.,
Nerem, R. S., Lemoine, F. G., McCarthy, J. J., and Chinn, D. S.: Recent
Greenland ice mass loss by drainage system from satellite gravity
observations, Science, 314, 1286–1289, 2006. a
Maier-Reimer, E.: Design of a closed boundary regional model of the Arctic
Ocean, Workshop on polar processes in global climate, Amer. Meteor. Soc.,
Boston, 72–73, 1997. a
Maier-Reimer, E., Kriest, I., Segschneider, J., and Wetzel, P.: The Hamburg
Ocean Carbon Cycle Model HAMOCC5.1 – Technical Description Release 1.1,
Berichte zur Erdsystemforschung, 14, 50 pp., Max Planck Institute for
Meteorology, Hamburg, Germany, 2005. a
Marsh, R., Haigh, I. D., Cunningham, S. A., Inall, M. E., Porter, M., and Moat, B. I.: Large-scale forcing of the European Slope Current and associated inflows to the North Sea, Ocean Sci., 13, 315–335, https://doi.org/10.5194/os-13-315-2017, 2017. a, b
Marson, J. M., Myers, P. G., Hu, X., and Sommer, J. L.: Using vertically
integrated ocean fields to characterize Greenland icebergs' distribution and
lifetime, Geophys. Res. Lett., 45, 4208–4217, 2018. a
Marzeion, B. and Levermann, A.: Stratification-dependent mixing may increase
sensitivity of a wind-driven Atlantic overturning to surface freshwater
flux, Geophys. Res. Lett., 36, L20602, https://doi.org/10.1029/2009GL039947, 2009. a
Mathis, M., Elizalde, A., Mikolajewicz, U., and Pohlmann, T.: Variability
patterns of the general circulation and sea water temperature in the North
Sea, Prog. Oceanogr., 135, 91–112, 2015. a
Mikolajewicz, U., Vizcaíno, M., Jungclaus, J., and Schurgers, G.: Effect
of ice sheet interactions in anthropogenic climate change simulations,
Geophys. Res. Lett., 34, L18706, https://doi.org/10.1029/2007GL031173, 2007. a, b, c
Morlighem, M., Williams, C. N., Rignot, E., An, L., Arndt, J. E., Bamber,
J. L., Catania, G., Chauché, N., Dowdeswell, J. A., Dorschel, B., Fenty,
I., Hogan, K., Howat, I., Hubbard, A., Jakobsson, M., Jordan, T. M.,
Kjeldsen, K. K., Millan, R., Mayer, L., Mouginot, J., Noël, B. P. Y.,
O'Cofaigh, C., Palmer, S., Rysgaard, S., Seroussi, H., Siegert, M. J.,
Slabon, P., Straneo, F., van den Broeke, M. R., Weinrebe, W., Wood, M., and
Zinglersen, K. B.: BedMachine v3: Complete bed topography and ocean
bathymetry mapping of Greenland from multi‐beam echo sounding combined with
mass conservation, Geophys. Res. Lett., 44, 418–422, 2017. a
Nilsson, J., Broström, G., and Walin, G.: The thermohaline circulation and
vertical mixing: does weaker density stratification give stronger
overturning?, J. Phys. Oceanogr., 33, 2781–2795, 2003. a
Oliver, H., Luo, H., Castelao, R. M., van Dijken, G. L., Mattingly, K. S.,
Rosen, J. J., Mote, T. L., Arrigo, K. R., Rennermalm, A. K., Tedesco, M., and
Yager, P. L.: Exploring the potential impact of Greenland meltwater on
stratification, photosynthetically active radiation, and primary production
in the Labrador Sea, J. Geophys. Res.-Oceans, 123,
2570–2591, 2018. a
Pacanowski, R. C. and Philander, S. G. H.: Parameterization of vertical mixing
in numerical models of tropical oceans, J. Phys. Ocean., 11, 1443–1451,
1981. a
Pätsch, J., Burchard, H., Dieterich, C., Gräwe, U., Gröger, M.,
Mathis, M., Kapitza, H., Bersch, M., Moll, A., Pohlmann, T., Su, J.,
Ho-Hagemann, H. T. M., Schulz, A., Elizalde, A., and Eden, C.: An evaluation
of the North Sea circulation in global and regional models relevant for
ecosystem simulations, Ocean Model., 116, 70–95, 2017. a
Ruiz-Castillo, E., Sharples, J., Hopkins, J., and Woodward, M.:
Seasonality in the cross-shelf physical structure of a temperate shelf sea and the implications for nitrate supply,
Prog. Oceanogr.,
177,
101985,
https://doi.org/10.1016/j.pocean.2018.07.006, 2019. a
Schiller, A., Mikolajewicz, U., and Voss, R.: The stability of the North
Atlantic thermohaline circulation in a coupled ocean-atmosphere general
circulation model, Clim. Dynam., 13, 325–347, 1997. a
Sévellec, F., Fedorov, A. V., and Liu, W.: Arctic sea-ice decline weakens
the Atlantic meridional overturning circulation, Nat. Clim. Change, 7,
604–610, 2017. a
Stouffer, R. J., Yin, J., Gregory, J. M., Dixon, K. W., Spelman, M. J., Hurlin,
W., Weaver, A. J., Eby, M., Flato, G. M., Hasumi, H., Hu, A., Jungclaus,
J. H., Kamenkovich, I. V., Levermann, A., Montoya, M., Murakami, S., Nawrath,
S., Oka, A., Peltier, W. R., Robitaille, D. Y., Sokolov, A., Vettoretti, G.,
and Weber, S. L.: Investigating the Causes of the Response of the
Thermohaline Circulation to Past and Future Climate Changes, J. Climate, 19,
1365–1387, 2006. a, b, c, d
Suga, T., Motoki, K., Aoki, Y., and Macdonald, A. M.: The North Pacific
climatology of winter mixed layer and mode waters, J. Phys. Oceanogr., 34,
3–22, 2004. a
Sweby, P. K.: High resolution schemes using flux limiters for hyperbolic
conservation laws, Siam J. Numer. Anal., 21, 995–1011, 1984. a
Talley, L. D., Reid, J. L., and Robbins, P. E.: Data-based meridional
overturning streamfunctions for the global ocean, J. Climate, 16,
3213–3226, 2003. a
Thomas, H., Bozec, Y., de Baar, H., Elkalay, K., Frankignoulle, M., Kühn,
W., Lenhart, H., Moll, A., Pätsch, J., Radach, G., Schiettecatte, L. S.,
and Borges, A. V.: Carbon and nutrient budgets of the North Sea, in:
Carbon and nutrient fluxes in continental margins: A global synthesis,
edited by: Liu, K. K., Atkinson, L., Quiñones, R., and Talaue-McManus,
L., Springer, Berlin, 346–355, 2010. a
Thomas, M., Sündermann, J., and Maier-Reimer, E.: Consideration of ocean
tides in an OGCM and impacts on subseasonal to decadal polar motion
excitation, Geophys. Res. Lett., 28, 2457–2460, 2001. a
Tinker, J., Lowe, J., Pardaens, A., Holt, J., and Barciela, R.: Uncertainty in
climate projections for the 21st century northwest European shelf seas,
Prog. Oceanogr., 148, 56–73, 2016. a
Valcke, S.: The OASIS3 coupler: a European climate modelling community software, Geosci. Model Dev., 6, 373–388, https://doi.org/10.5194/gmd-6-373-2013, 2013. a
van den Broeke, M., Box, J., Fettweis, X., Hanna, E., Noël, B., Tedesco,
M., van As, D., van de Berg, W. J., and van Kampenhout, L.: Greenland Ice
Sheet Surface Mass Loss: Recent Developments in Observation and Modeling,
Current Climate Change Reports, 3, 345–356, 2017. a
Vaughan, D., Comiso, J., Allison, I., Carrasco, J., Kaser, G., Kwok, R., Mote,
P., Murray, T., Paul, F., Ren, J., Rignot, E., Solomina, O., Steffen, K., and
Zhang, T.: Observations: Cryosphere, in: Climate Change 2013: The Physical
Science Basis. Contribution of Working Group I to the Fifth Assessment Report
of the Intergovernmental Panel on Climate Change, edited by: Stocker, T. F.,
Qin, D., Plattner, G. K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A.,
Xia, Y., Bex, V., and Midgley, P. M., Cambridge University
Press, Cambridge, UK and New York, NY, USA, 317–382, 2013. a
Vermaat, J. E., McQuatters-Gollop, A., Eleveld, M. A., and Gilbert, A. J.:
Past, present and future nutrient loads of the North Sea: Causes and
consequences, Estuar. Coast. Shelf Sci., 80, 53–59, 2008. a
Vizcaíno, M., Mikolajewicz, U., Jungclaus, J., and Schurgers, G.: Climate
modification by future ice sheet changes and consequences for ice sheet mass
balance, Clim. Dynam., 34, 301–324, 2010. a
Wadham, J. L., Hawkings, J., Telling, J., Chandler, D., Alcock, J., O'Donnell, E., Kaur, P., Bagshaw, E., Tranter, M., Tedstone, A., and Nienow, P.: Sources, cycling and export of nitrogen on the Greenland Ice Sheet, Biogeosciences, 13, 6339–6352, https://doi.org/10.5194/bg-13-6339-2016, 2016. a
Weaver, A. J., Sedláček, J., Eby, M., Alexander, K., Crespin, E.,
Fichefet, T., Philippon-Berthier, G., Joos, F., Kawamiya, M., Matsumoto, K.,
Steinacher, M., Tachiiri, K., Tokos, K., Yoshimori, M., and Zickfeld, K.:
Stability of the Atlantic meridional overturning circulation: A model
intercomparison, Geophys. Res. Lett., 39, L20709, https://doi.org/10.1029/2012GL053763, 2012. a
Weijer, W., Maltrud, M. E., Hecht, M. W., Dijkstra, H. A., and Kliphuis, M. A.:
Response of the Atlantic Ocean circulation to Greenland Ice Sheet melting in
a strongly-eddying ocean model, Geophys. Res. Lett., 39, L09606, https://doi.org/10.1029/2012GL051611,
2012. a, b
Wilcock, P.: Sediment Transport Seminar, University of California at
Berkeley, Lectures 1 and 3, available at:
http://calm.geo.berkeley.edu/geomorph/wilcock/wilcock.html (last access: 17 January 2020), 2004.
a
Williams, R. G., McDonagh, E., Roussenov, V. M., Torres-Valdes, S., King, B.,
Sanders, R., and Hansell, D. A.: Nutrient streams in the North Atlantic:
Advective pathways of inorganic and dissolved organic nutrients, Global Biogeochem. Cy., 25, 16, https://doi.org/10.1029/2010GB003853, 2011. a
Wouters, B., Drijfhout, S. S., and Hazeleger, W.: Interdecadal North Atlantic
meridional overturning circulation variability in EC-EARTH, Clim.
Dynam., 39, 2695–2712, 2012. a
Yang, Q., Dixon, T. H., Myers, P. G., Bonin, J., Chambers, D., van den Broeke,
M. R., Ribergaard, M. H., and Mortensen, J.: Recent increases in Arctic
freshwater flux affects Labrador Sea convection and Atlantic overturning
circulation, Nat. Commun., 7, 10525, https://doi.org/10.1038/ncomms10525, 2016. a
Yin, J. H.: A consistent poleward shift of the storm tracks in simulations of
21st century climate, Geophys. Res. Lett., 32, L18701, https://doi.org/10.1029/2005GL023684, 2005. a
Yu, L., Gao, Y. Q., Wang, H. J., and Drange, H.: Revisiting effect of ocean
diapycnal mixing on atlantic meridional overturning circulation recovery in a
freshwater perturbation simulation, Adv. Atmos. Sci., 25, 597–609, 2008. a
Zickfeld, K., Eby, M., and Weaver, A. J.: Carbon‐cycle feedbacks of changes
in the Atlantic meridional overturning circulation under future atmospheric
CO2, Global Biogeochem. Cy., 22, GB3024, https://doi.org/10.1029/2007GB003118, 2008. a, b, c, d
Ziemen, F. A., Kapsch, M.-L., Klockmann, M., and Mikolajewicz, U.: Heinrich events show two-stage climate response in transient glacial simulations, Clim. Past, 15, 153–168, https://doi.org/10.5194/cp-15-153-2019, 2019. a
Short summary
In a strong global warming scenario, declining nutrient concentrations of Atlantic water masses flushing the NWES lead to a reduction in the biological productivity on the shelf. We show that meltwater discharge from the Greenland ice sheet induces a change in the subpolar ocean circulation, resulting in a nutrient increase of deeper Atlantic water masses. These are mixed up at the shelf break and spread over the shelf, mitigating both the expected nutrient decline and productivity reduction.
In a strong global warming scenario, declining nutrient concentrations of Atlantic water masses...