Articles | Volume 16, issue 1
https://doi.org/10.5194/os-16-167-2020
https://doi.org/10.5194/os-16-167-2020
Research article
 | 
27 Jan 2020
Research article |  | 27 Jan 2020

The impact of meltwater discharge from the Greenland ice sheet on the Atlantic nutrient supply to the northwest European shelf

Moritz Mathis and Uwe Mikolajewicz

Related authors

Impact of Greenland Ice Sheet Disintegration on Atmosphere and Ocean Disentangled
Malena Andernach, Marie-Luise Kapsch, and Uwe Mikolajewicz
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2024-24,https://doi.org/10.5194/esd-2024-24, 2024
Revised manuscript under review for ESD
Short summary
Modelling Mediterranean ocean biogeochemistry of the Last Glacial Maximum
Katharina D. Six, Uwe Mikolajewicz, and Gerhard Schmiedl
Clim. Past, 20, 1785–1816, https://doi.org/10.5194/cp-20-1785-2024,https://doi.org/10.5194/cp-20-1785-2024, 2024
Short summary
Deglaciation and abrupt events in a coupled comprehensive atmosphere–ocean–ice sheet–solid earth model
Uwe Mikolajewicz, Marie-Luise Kapsch, Clemens Schannwell, Katharina D. Six, Florian A. Ziemen, Meike Bagge, Jean-Philippe Baudouin, Olga Erokhina, Veronika Gayler, Volker Klemann, Virna L. Meccia, Anne Mouchet, and Thomas Riddick
Clim. Past Discuss., https://doi.org/10.5194/cp-2024-55,https://doi.org/10.5194/cp-2024-55, 2024
Revised manuscript under review for CP
Short summary
Patterns of changing surface climate variability from the Last Glacial Maximum to present in transient model simulations
Elisa Ziegler, Nils Weitzel, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lauren Gregoire, Ruza Ivanovic, Paul J. Valdes, Christian Wirths, and Kira Rehfeld
EGUsphere, https://doi.org/10.5194/egusphere-2024-1396,https://doi.org/10.5194/egusphere-2024-1396, 2024
Short summary
Towards spatio-temporal comparison of simulated and reconstructed sea surface temperatures for the last deglaciation
Nils Weitzel, Heather Andres, Jean-Philippe Baudouin, Marie-Luise Kapsch, Uwe Mikolajewicz, Lukas Jonkers, Oliver Bothe, Elisa Ziegler, Thomas Kleinen, André Paul, and Kira Rehfeld
Clim. Past, 20, 865–890, https://doi.org/10.5194/cp-20-865-2024,https://doi.org/10.5194/cp-20-865-2024, 2024
Short summary

Related subject area

Approach: Numerical Models | Depth range: All Depths | Geographical range: Shelf Seas | Phenomena: Temperature, Salinity and Density Fields
A hydrodynamic model for Galveston Bay and the shelf in the northern Gulf of Mexico
Jiabi Du, Kyeong Park, Jian Shen, Yinglong J. Zhang, Xin Yu, Fei Ye, Zhengui Wang, and Nancy N. Rabalais
Ocean Sci., 15, 951–966, https://doi.org/10.5194/os-15-951-2019,https://doi.org/10.5194/os-15-951-2019, 2019
Short summary
Effect of winds and waves on salt intrusion in the Pearl River estuary
Wenping Gong, Zhongyuan Lin, Yunzhen Chen, Zhaoyun Chen, and Heng Zhang
Ocean Sci., 14, 139–159, https://doi.org/10.5194/os-14-139-2018,https://doi.org/10.5194/os-14-139-2018, 2018
Short summary
Mean circulation in the coastal ocean off northeastern North America from a regional-scale ocean model
K. Chen and R. He
Ocean Sci., 11, 503–517, https://doi.org/10.5194/os-11-503-2015,https://doi.org/10.5194/os-11-503-2015, 2015
Modelling temperature and salinity in Liverpool Bay and the Irish Sea: sensitivity to model type and surface forcing
C. K. O'Neill, J. A. Polton, J. T. Holt, and E. J. O'Dea
Ocean Sci., 8, 903–913, https://doi.org/10.5194/os-8-903-2012,https://doi.org/10.5194/os-8-903-2012, 2012
Numerical simulations of spreading of the Persian Gulf outflow into the Oman Sea
M. Ezam, A. A. Bidokhti, and A. H. Javid
Ocean Sci., 6, 887–900, https://doi.org/10.5194/os-6-887-2010,https://doi.org/10.5194/os-6-887-2010, 2010

Cited articles

Agarwal, N., Jungclaus, J. H., Köhl, A., Mechoso, C. R., and Stammer, D.: Additional contributions to CMIP5 regional sea level projections resulting from Greenland and Antarctic ice mass loss, Environ. Res. Lett., 10, 074008, https://doi.org/10.1088/1748-9326/10/7/074008, 2015. a, b
Alexander, M. A., Scott, J. D., Friedland, K. D., Mills, K. E., Nye, J. A., Pershing, A. J., and Thomas, A. C.: Projected sea surface temperatures over the 21st century: Changes in the mean, variability and extremes for large marine ecosystem regions of Northern Oceans, Elem. Sci. Anth., 6, https://doi.org/10.1525/elementa.191, 2018. a, b
An, L., Rignot, E., Elieff, S., Morlighem, M., Millan, R., Mouginot, J., Holland, D. M., Holland, D., and Paden, J.: Bed elevation of Jakobshavn Isbræ, West Greenland, from high‐resolution airborne gravity and other data, Geophys. Res. Lett., 44, 3728–3736, 2017. a
Bamber, J., van den Broeke, M., Ettema, J., Lenaerts, J., and Rignot, E.: Recent large increases in freshwater fluxes from Greenland into the North Atlantic, Geophys. Res. Lett., 39, L19501, https://doi.org/10.1029/2012GL052552, 2012. a, b, c
Bamber, J. L., Tedstone, A. J., King, M. D., Howat, I. M., Enderlin, E., van den Broeke, M. R., and Noel, B.: Land ice freshwater budget of the Arctic and North Atlantic Oceans: 1. Data, methods, and results, J. Geophys. Res.-Oceans, 123, 1827–1837, 2018. a
Download
Short summary
In a strong global warming scenario, declining nutrient concentrations of Atlantic water masses flushing the NWES lead to a reduction in the biological productivity on the shelf. We show that meltwater discharge from the Greenland ice sheet induces a change in the subpolar ocean circulation, resulting in a nutrient increase of deeper Atlantic water masses. These are mixed up at the shelf break and spread over the shelf, mitigating both the expected nutrient decline and productivity reduction.