Articles | Volume 16, issue 6
https://doi.org/10.5194/os-16-1559-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-1559-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Variability and stability of anthropogenic CO2 in Antarctic Bottom Water observed in the Indian sector of the Southern Ocean, 1978–2018
Léo Mahieu
CORRESPONDING AUTHOR
Ocean Sciences, School of Environmental Sciences, University of
Liverpool, 4 Brownlow Street, Liverpool L69 3GP, UK
Claire Lo Monaco
CORRESPONDING AUTHOR
LOCEAN-IPSL, Sorbonne Université, CNRS/IRD/MNHN Paris, Paris, France
Nicolas Metzl
LOCEAN-IPSL, Sorbonne Université, CNRS/IRD/MNHN Paris, Paris, France
Jonathan Fin
LOCEAN-IPSL, Sorbonne Université, CNRS/IRD/MNHN Paris, Paris, France
Claude Mignon
LOCEAN-IPSL, Sorbonne Université, CNRS/IRD/MNHN Paris, Paris, France
Related authors
No articles found.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Simone Alin, Marta Álvarez, Kumiko Azetsu-Scott, Leticia Barbero, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Mario Hoppema, Matthew P. Humphreys, Masao Ishii, Emil Jeansson, Li-Qing Jiang, Steve D. Jones, Claire Lo Monaco, Akihiko Murata, Jens Daniel Müller, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Adam Ulfsbo, Anton Velo, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 14, 5543–5572, https://doi.org/10.5194/essd-14-5543-2022, https://doi.org/10.5194/essd-14-5543-2022, 2022
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2022 is the fourth update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality controlling, including systematic evaluation of measurement biases. This version contains data from 1085 hydrographic cruises covering the world's oceans from 1972 to 2021.
Siv K. Lauvset, Nico Lange, Toste Tanhua, Henry C. Bittig, Are Olsen, Alex Kozyr, Marta Álvarez, Susan Becker, Peter J. Brown, Brendan R. Carter, Leticia Cotrim da Cunha, Richard A. Feely, Steven van Heuven, Mario Hoppema, Masao Ishii, Emil Jeansson, Sara Jutterström, Steve D. Jones, Maren K. Karlsen, Claire Lo Monaco, Patrick Michaelis, Akihiko Murata, Fiz F. Pérez, Benjamin Pfeil, Carsten Schirnick, Reiner Steinfeldt, Toru Suzuki, Bronte Tilbrook, Anton Velo, Rik Wanninkhof, Ryan J. Woosley, and Robert M. Key
Earth Syst. Sci. Data, 13, 5565–5589, https://doi.org/10.5194/essd-13-5565-2021, https://doi.org/10.5194/essd-13-5565-2021, 2021
Short summary
Short summary
GLODAP is a data product for ocean inorganic carbon and related biogeochemical variables measured by the chemical analysis of water bottle samples from scientific cruises. GLODAPv2.2021 is the third update of GLODAPv2 from 2016. The data that are included have been subjected to extensive quality control, including systematic evaluation of measurement biases. This version contains data from 989 hydrographic cruises covering the world's oceans from 1972 to 2020.
Cora Hörstmann, Eric J. Raes, Pier Luigi Buttigieg, Claire Lo Monaco, Uwe John, and Anya M. Waite
Biogeosciences, 18, 3733–3749, https://doi.org/10.5194/bg-18-3733-2021, https://doi.org/10.5194/bg-18-3733-2021, 2021
Short summary
Short summary
Microbes are the main drivers of productivity and nutrient cycling in the ocean. We present a combined approach assessing C and N uptake and microbial community diversity across ecological provinces in the Southern Ocean and southern Indian Ocean. Provinces showed distinct genetic fingerprints, but microbial activity varied gradually across regions, correlating with nutrient concentrations. Our study advances the biogeographic understanding of microbial diversity across C and N uptake regimes.
Pierre Friedlingstein, Michael O'Sullivan, Matthew W. Jones, Robbie M. Andrew, Judith Hauck, Are Olsen, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Simone Alin, Luiz E. O. C. Aragão, Almut Arneth, Vivek Arora, Nicholas R. Bates, Meike Becker, Alice Benoit-Cattin, Henry C. Bittig, Laurent Bopp, Selma Bultan, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Wiley Evans, Liesbeth Florentie, Piers M. Forster, Thomas Gasser, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Luke Gregor, Nicolas Gruber, Ian Harris, Kerstin Hartung, Vanessa Haverd, Richard A. Houghton, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Koji Kadono, Etsushi Kato, Vassilis Kitidis, Jan Ivar Korsbakken, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Gregg Marland, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Yosuke Niwa, Kevin O'Brien, Tsuneo Ono, Paul I. Palmer, Denis Pierrot, Benjamin Poulter, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Adam J. P. Smith, Adrienne J. Sutton, Toste Tanhua, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Guido van der Werf, Nicolas Vuichard, Anthony P. Walker, Rik Wanninkhof, Andrew J. Watson, David Willis, Andrew J. Wiltshire, Wenping Yuan, Xu Yue, and Sönke Zaehle
Earth Syst. Sci. Data, 12, 3269–3340, https://doi.org/10.5194/essd-12-3269-2020, https://doi.org/10.5194/essd-12-3269-2020, 2020
Short summary
Short summary
The Global Carbon Budget 2020 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Coraline Leseurre, Claire Lo Monaco, Gilles Reverdin, Nicolas Metzl, Jonathan Fin, Solveig Olafsdottir, and Virginie Racapé
Biogeosciences, 17, 2553–2577, https://doi.org/10.5194/bg-17-2553-2020, https://doi.org/10.5194/bg-17-2553-2020, 2020
Short summary
Short summary
In this study, we investigate the evolution of CO2 uptake and ocean acidification in the North Atlantic Subpolar surface water. Our results show an important reduction in the capacity of the ocean to absorb CO2 from the atmosphere (1993–2007), due to a rapid increase in the fCO2 and associated with a rapid decrease in pH. Conversely, data obtained during the last decade (2008–2017) show a stagnation of fCO2 (increasing the ocean sink for CO2) and pH.
Pierre Friedlingstein, Matthew W. Jones, Michael O'Sullivan, Robbie M. Andrew, Judith Hauck, Glen P. Peters, Wouter Peters, Julia Pongratz, Stephen Sitch, Corinne Le Quéré, Dorothee C. E. Bakker, Josep G. Canadell, Philippe Ciais, Robert B. Jackson, Peter Anthoni, Leticia Barbero, Ana Bastos, Vladislav Bastrikov, Meike Becker, Laurent Bopp, Erik Buitenhuis, Naveen Chandra, Frédéric Chevallier, Louise P. Chini, Kim I. Currie, Richard A. Feely, Marion Gehlen, Dennis Gilfillan, Thanos Gkritzalis, Daniel S. Goll, Nicolas Gruber, Sören Gutekunst, Ian Harris, Vanessa Haverd, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Emilie Joetzjer, Jed O. Kaplan, Etsushi Kato, Kees Klein Goldewijk, Jan Ivar Korsbakken, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Gregg Marland, Patrick C. McGuire, Joe R. Melton, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-Ichiro Nakaoka, Craig Neill, Abdirahman M. Omar, Tsuneo Ono, Anna Peregon, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Christian Rödenbeck, Roland Séférian, Jörg Schwinger, Naomi Smith, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Guido R. van der Werf, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 11, 1783–1838, https://doi.org/10.5194/essd-11-1783-2019, https://doi.org/10.5194/essd-11-1783-2019, 2019
Short summary
Short summary
The Global Carbon Budget 2019 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Judith Hauck, Julia Pongratz, Penelope A. Pickers, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Almut Arneth, Vivek K. Arora, Leticia Barbero, Ana Bastos, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Scott C. Doney, Thanos Gkritzalis, Daniel S. Goll, Ian Harris, Vanessa Haverd, Forrest M. Hoffman, Mario Hoppema, Richard A. Houghton, George Hurtt, Tatiana Ilyina, Atul K. Jain, Truls Johannessen, Chris D. Jones, Etsushi Kato, Ralph F. Keeling, Kees Klein Goldewijk, Peter Landschützer, Nathalie Lefèvre, Sebastian Lienert, Zhu Liu, Danica Lombardozzi, Nicolas Metzl, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Craig Neill, Are Olsen, Tsueno Ono, Prabir Patra, Anna Peregon, Wouter Peters, Philippe Peylin, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Laure Resplandy, Eddy Robertson, Matthias Rocher, Christian Rödenbeck, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Tobias Steinhoff, Adrienne Sutton, Pieter P. Tans, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, Rebecca Wright, Sönke Zaehle, and Bo Zheng
Earth Syst. Sci. Data, 10, 2141–2194, https://doi.org/10.5194/essd-10-2141-2018, https://doi.org/10.5194/essd-10-2141-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2018 describes the data sets and methodology used to quantify the emissions of carbon dioxide and their partitioning among the atmosphere, land, and ocean. These living data are updated every year to provide the highest transparency and traceability in the reporting of CO2, the key driver of climate change.
Gilles Reverdin, Nicolas Metzl, Solveig Olafsdottir, Virginie Racapé, Taro Takahashi, Marion Benetti, Hedinn Valdimarsson, Alice Benoit-Cattin, Magnus Danielsen, Jonathan Fin, Aicha Naamar, Denis Pierrot, Kevin Sullivan, Francis Bringas, and Gustavo Goni
Earth Syst. Sci. Data, 10, 1901–1924, https://doi.org/10.5194/essd-10-1901-2018, https://doi.org/10.5194/essd-10-1901-2018, 2018
Short summary
Short summary
This paper presents the SURATLANT data set (SURveillance ATLANTique), consisting of individual data of temperature, salinity, parameters of the carbonate system, nutrients, and water stable isotopes (δ18O and δD) collected mostly from ships of opportunity since 1993 along transects between Iceland and Newfoundland. These data are used to quantify the seasonal cycle and can be used to investigate long-term tendencies in the surface ocean, including of pCO2 and pH.
Thibaut Wagener, Nicolas Metzl, Mathieu Caffin, Jonathan Fin, Sandra Helias Nunige, Dominique Lefevre, Claire Lo Monaco, Gilles Rougier, and Thierry Moutin
Biogeosciences, 15, 5221–5236, https://doi.org/10.5194/bg-15-5221-2018, https://doi.org/10.5194/bg-15-5221-2018, 2018
Short summary
Short summary
The western tropical South Pacific was sampled along a longitudinal 4000 km transect (OUTPACE cruise) for the measurement of carbonate parameters (total alkalinity and total inorganic carbon) between the Melanesian Archipelago and the western part of the South Pacific gyre. This paper reports this new dataset and derived properties. We also estimate anthropogenic carbon distribution in the water column using the TrOCA method.
Corinne Le Quéré, Robbie M. Andrew, Pierre Friedlingstein, Stephen Sitch, Julia Pongratz, Andrew C. Manning, Jan Ivar Korsbakken, Glen P. Peters, Josep G. Canadell, Robert B. Jackson, Thomas A. Boden, Pieter P. Tans, Oliver D. Andrews, Vivek K. Arora, Dorothee C. E. Bakker, Leticia Barbero, Meike Becker, Richard A. Betts, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Catherine E. Cosca, Jessica Cross, Kim Currie, Thomas Gasser, Ian Harris, Judith Hauck, Vanessa Haverd, Richard A. Houghton, Christopher W. Hunt, George Hurtt, Tatiana Ilyina, Atul K. Jain, Etsushi Kato, Markus Kautz, Ralph F. Keeling, Kees Klein Goldewijk, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Ivan Lima, Danica Lombardozzi, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Yukihiro Nojiri, X. Antonio Padin, Anna Peregon, Benjamin Pfeil, Denis Pierrot, Benjamin Poulter, Gregor Rehder, Janet Reimer, Christian Rödenbeck, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Hanqin Tian, Bronte Tilbrook, Francesco N. Tubiello, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Steven van Heuven, Nicolas Viovy, Nicolas Vuichard, Anthony P. Walker, Andrew J. Watson, Andrew J. Wiltshire, Sönke Zaehle, and Dan Zhu
Earth Syst. Sci. Data, 10, 405–448, https://doi.org/10.5194/essd-10-405-2018, https://doi.org/10.5194/essd-10-405-2018, 2018
Short summary
Short summary
The Global Carbon Budget 2017 describes data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. It is the 12th annual update and the 6th published in this journal.
Corinne Le Quéré, Robbie M. Andrew, Josep G. Canadell, Stephen Sitch, Jan Ivar Korsbakken, Glen P. Peters, Andrew C. Manning, Thomas A. Boden, Pieter P. Tans, Richard A. Houghton, Ralph F. Keeling, Simone Alin, Oliver D. Andrews, Peter Anthoni, Leticia Barbero, Laurent Bopp, Frédéric Chevallier, Louise P. Chini, Philippe Ciais, Kim Currie, Christine Delire, Scott C. Doney, Pierre Friedlingstein, Thanos Gkritzalis, Ian Harris, Judith Hauck, Vanessa Haverd, Mario Hoppema, Kees Klein Goldewijk, Atul K. Jain, Etsushi Kato, Arne Körtzinger, Peter Landschützer, Nathalie Lefèvre, Andrew Lenton, Sebastian Lienert, Danica Lombardozzi, Joe R. Melton, Nicolas Metzl, Frank Millero, Pedro M. S. Monteiro, David R. Munro, Julia E. M. S. Nabel, Shin-ichiro Nakaoka, Kevin O'Brien, Are Olsen, Abdirahman M. Omar, Tsuneo Ono, Denis Pierrot, Benjamin Poulter, Christian Rödenbeck, Joe Salisbury, Ute Schuster, Jörg Schwinger, Roland Séférian, Ingunn Skjelvan, Benjamin D. Stocker, Adrienne J. Sutton, Taro Takahashi, Hanqin Tian, Bronte Tilbrook, Ingrid T. van der Laan-Luijkx, Guido R. van der Werf, Nicolas Viovy, Anthony P. Walker, Andrew J. Wiltshire, and Sönke Zaehle
Earth Syst. Sci. Data, 8, 605–649, https://doi.org/10.5194/essd-8-605-2016, https://doi.org/10.5194/essd-8-605-2016, 2016
Short summary
Short summary
The Global Carbon Budget 2016 is the 11th annual update of emissions of carbon dioxide (CO2) and their partitioning among the atmosphere, land, and ocean. This data synthesis brings together measurements, statistical information, and analyses of model results in order to provide an assessment of the global carbon budget and their uncertainties for years 1959 to 2015, with a projection for year 2016.
Dorothee C. E. Bakker, Benjamin Pfeil, Camilla S. Landa, Nicolas Metzl, Kevin M. O'Brien, Are Olsen, Karl Smith, Cathy Cosca, Sumiko Harasawa, Stephen D. Jones, Shin-ichiro Nakaoka, Yukihiro Nojiri, Ute Schuster, Tobias Steinhoff, Colm Sweeney, Taro Takahashi, Bronte Tilbrook, Chisato Wada, Rik Wanninkhof, Simone R. Alin, Carlos F. Balestrini, Leticia Barbero, Nicholas R. Bates, Alejandro A. Bianchi, Frédéric Bonou, Jacqueline Boutin, Yann Bozec, Eugene F. Burger, Wei-Jun Cai, Robert D. Castle, Liqi Chen, Melissa Chierici, Kim Currie, Wiley Evans, Charles Featherstone, Richard A. Feely, Agneta Fransson, Catherine Goyet, Naomi Greenwood, Luke Gregor, Steven Hankin, Nick J. Hardman-Mountford, Jérôme Harlay, Judith Hauck, Mario Hoppema, Matthew P. Humphreys, Christopher W. Hunt, Betty Huss, J. Severino P. Ibánhez, Truls Johannessen, Ralph Keeling, Vassilis Kitidis, Arne Körtzinger, Alex Kozyr, Evangelia Krasakopoulou, Akira Kuwata, Peter Landschützer, Siv K. Lauvset, Nathalie Lefèvre, Claire Lo Monaco, Ansley Manke, Jeremy T. Mathis, Liliane Merlivat, Frank J. Millero, Pedro M. S. Monteiro, David R. Munro, Akihiko Murata, Timothy Newberger, Abdirahman M. Omar, Tsuneo Ono, Kristina Paterson, David Pearce, Denis Pierrot, Lisa L. Robbins, Shu Saito, Joe Salisbury, Reiner Schlitzer, Bernd Schneider, Roland Schweitzer, Rainer Sieger, Ingunn Skjelvan, Kevin F. Sullivan, Stewart C. Sutherland, Adrienne J. Sutton, Kazuaki Tadokoro, Maciej Telszewski, Matthias Tuma, Steven M. A. C. van Heuven, Doug Vandemark, Brian Ward, Andrew J. Watson, and Suqing Xu
Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, https://doi.org/10.5194/essd-8-383-2016, 2016
Short summary
Short summary
Version 3 of the Surface Ocean CO2 Atlas (www.socat.info) has 14.5 million CO2 (carbon dioxide) values for the years 1957 to 2014 covering the global oceans and coastal seas. Version 3 is an update to version 2 with a longer record and 44 % more CO2 values. The CO2 measurements have been made on ships, fixed moorings and drifting buoys. SOCAT enables quantification of the ocean carbon sink and ocean acidification, as well as model evaluation, thus informing climate negotiations.
C. Rödenbeck, D. C. E. Bakker, N. Gruber, Y. Iida, A. R. Jacobson, S. Jones, P. Landschützer, N. Metzl, S. Nakaoka, A. Olsen, G.-H. Park, P. Peylin, K. B. Rodgers, T. P. Sasse, U. Schuster, J. D. Shutler, V. Valsala, R. Wanninkhof, and J. Zeng
Biogeosciences, 12, 7251–7278, https://doi.org/10.5194/bg-12-7251-2015, https://doi.org/10.5194/bg-12-7251-2015, 2015
Short summary
Short summary
This study investigates variations in the CO2 uptake of the ocean from year to year. These variations have been calculated from measurements of the surface-ocean carbon content by various different interpolation methods. The equatorial Pacific is estimated to be the region with the strongest year-to-year variations, tied to the El Nino phase. The global ocean CO2 uptake gradually increased from about the year 2000. The comparison of the interpolation methods identifies these findings as robust.
C. Le Quéré, R. Moriarty, R. M. Andrew, J. G. Canadell, S. Sitch, J. I. Korsbakken, P. Friedlingstein, G. P. Peters, R. J. Andres, T. A. Boden, R. A. Houghton, J. I. House, R. F. Keeling, P. Tans, A. Arneth, D. C. E. Bakker, L. Barbero, L. Bopp, J. Chang, F. Chevallier, L. P. Chini, P. Ciais, M. Fader, R. A. Feely, T. Gkritzalis, I. Harris, J. Hauck, T. Ilyina, A. K. Jain, E. Kato, V. Kitidis, K. Klein Goldewijk, C. Koven, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, I. D. Lima, N. Metzl, F. Millero, D. R. Munro, A. Murata, J. E. M. S. Nabel, S. Nakaoka, Y. Nojiri, K. O'Brien, A. Olsen, T. Ono, F. F. Pérez, B. Pfeil, D. Pierrot, B. Poulter, G. Rehder, C. Rödenbeck, S. Saito, U. Schuster, J. Schwinger, R. Séférian, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, I. T. van der Laan-Luijkx, G. R. van der Werf, S. van Heuven, D. Vandemark, N. Viovy, A. Wiltshire, S. Zaehle, and N. Zeng
Earth Syst. Sci. Data, 7, 349–396, https://doi.org/10.5194/essd-7-349-2015, https://doi.org/10.5194/essd-7-349-2015, 2015
Short summary
Short summary
Accurate assessment of anthropogenic carbon dioxide emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to understand the global carbon cycle, support the development of climate policies, and project future climate change. We describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on a range of data and models and their interpretation by a broad scientific community.
C. Le Quéré, R. Moriarty, R. M. Andrew, G. P. Peters, P. Ciais, P. Friedlingstein, S. D. Jones, S. Sitch, P. Tans, A. Arneth, T. A. Boden, L. Bopp, Y. Bozec, J. G. Canadell, L. P. Chini, F. Chevallier, C. E. Cosca, I. Harris, M. Hoppema, R. A. Houghton, J. I. House, A. K. Jain, T. Johannessen, E. Kato, R. F. Keeling, V. Kitidis, K. Klein Goldewijk, C. Koven, C. S. Landa, P. Landschützer, A. Lenton, I. D. Lima, G. Marland, J. T. Mathis, N. Metzl, Y. Nojiri, A. Olsen, T. Ono, S. Peng, W. Peters, B. Pfeil, B. Poulter, M. R. Raupach, P. Regnier, C. Rödenbeck, S. Saito, J. E. Salisbury, U. Schuster, J. Schwinger, R. Séférian, J. Segschneider, T. Steinhoff, B. D. Stocker, A. J. Sutton, T. Takahashi, B. Tilbrook, G. R. van der Werf, N. Viovy, Y.-P. Wang, R. Wanninkhof, A. Wiltshire, and N. Zeng
Earth Syst. Sci. Data, 7, 47–85, https://doi.org/10.5194/essd-7-47-2015, https://doi.org/10.5194/essd-7-47-2015, 2015
Short summary
Short summary
Carbon dioxide (CO2) emissions from human activities (burning fossil fuels and cement production, deforestation and other land-use change) are set to rise again in 2014.
This study (updated yearly) makes an accurate assessment of anthropogenic CO2 emissions and their redistribution between the atmosphere, ocean, and terrestrial biosphere in order to better understand the global carbon cycle, support the development of climate policies, and project future climate change.
C. Lo Monaco, N. Metzl, F. D'Ovidio, J. Llort, and C. Ridame
Biogeosciences Discuss., https://doi.org/10.5194/bgd-11-17543-2014, https://doi.org/10.5194/bgd-11-17543-2014, 2014
Revised manuscript has not been submitted
V. Racapé, N. Metzl, C. Pierre, G. Reverdin, P. D. Quay, and S. R. Olafsdottir
Biogeosciences, 11, 1683–1692, https://doi.org/10.5194/bg-11-1683-2014, https://doi.org/10.5194/bg-11-1683-2014, 2014
D. C. E. Bakker, B. Pfeil, K. Smith, S. Hankin, A. Olsen, S. R. Alin, C. Cosca, S. Harasawa, A. Kozyr, Y. Nojiri, K. M. O'Brien, U. Schuster, M. Telszewski, B. Tilbrook, C. Wada, J. Akl, L. Barbero, N. R. Bates, J. Boutin, Y. Bozec, W.-J. Cai, R. D. Castle, F. P. Chavez, L. Chen, M. Chierici, K. Currie, H. J. W. de Baar, W. Evans, R. A. Feely, A. Fransson, Z. Gao, B. Hales, N. J. Hardman-Mountford, M. Hoppema, W.-J. Huang, C. W. Hunt, B. Huss, T. Ichikawa, T. Johannessen, E. M. Jones, S. D. Jones, S. Jutterström, V. Kitidis, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. B. Manke, J. T. Mathis, L. Merlivat, N. Metzl, A. Murata, T. Newberger, A. M. Omar, T. Ono, G.-H. Park, K. Paterson, D. Pierrot, A. F. Ríos, C. L. Sabine, S. Saito, J. Salisbury, V. V. S. S. Sarma, R. Schlitzer, R. Sieger, I. Skjelvan, T. Steinhoff, K. F. Sullivan, H. Sun, A. J. Sutton, T. Suzuki, C. Sweeney, T. Takahashi, J. Tjiputra, N. Tsurushima, S. M. A. C. van Heuven, D. Vandemark, P. Vlahos, D. W. R. Wallace, R. Wanninkhof, and A. J. Watson
Earth Syst. Sci. Data, 6, 69–90, https://doi.org/10.5194/essd-6-69-2014, https://doi.org/10.5194/essd-6-69-2014, 2014
V. V. S. S. Sarma, A. Lenton, R. M. Law, N. Metzl, P. K. Patra, S. Doney, I. D. Lima, E. Dlugokencky, M. Ramonet, and V. Valsala
Biogeosciences, 10, 7035–7052, https://doi.org/10.5194/bg-10-7035-2013, https://doi.org/10.5194/bg-10-7035-2013, 2013
C. L. Sabine, S. Hankin, H. Koyuk, D. C. E. Bakker, B. Pfeil, A. Olsen, N. Metzl, A. Kozyr, A. Fassbender, A. Manke, J. Malczyk, J. Akl, S. R. Alin, R. G. J. Bellerby, A. Borges, J. Boutin, P. J. Brown, W.-J. Cai, F. P. Chavez, A. Chen, C. Cosca, R. A. Feely, M. González-Dávila, C. Goyet, N. Hardman-Mountford, C. Heinze, M. Hoppema, C. W. Hunt, D. Hydes, M. Ishii, T. Johannessen, R. M. Key, A. Körtzinger, P. Landschützer, S. K. Lauvset, N. Lefèvre, A. Lenton, A. Lourantou, L. Merlivat, T. Midorikawa, L. Mintrop, C. Miyazaki, A. Murata, A. Nakadate, Y. Nakano, S. Nakaoka, Y. Nojiri, A. M. Omar, X. A. Padin, G.-H. Park, K. Paterson, F. F. Perez, D. Pierrot, A. Poisson, A. F. Ríos, J. Salisbury, J. M. Santana-Casiano, V. V. S. S. Sarma, R. Schlitzer, B. Schneider, U. Schuster, R. Sieger, I. Skjelvan, T. Steinhoff, T. Suzuki, T. Takahashi, K. Tedesco, M. Telszewski, H. Thomas, B. Tilbrook, D. Vandemark, T. Veness, A. J. Watson, R. Weiss, C. S. Wong, and H. Yoshikawa-Inoue
Earth Syst. Sci. Data, 5, 145–153, https://doi.org/10.5194/essd-5-145-2013, https://doi.org/10.5194/essd-5-145-2013, 2013
Cited articles
Anderson, L. A. and Sarmiento, J. L.: Redfield ratios of remineralization
determined by nutrient data analysis, Global Biogeochem. Cy., 8,
65–80, https://doi.org/10.1029/93gb03318, 1994.
Anderson, L. G., Holby, O., Lindegren, R., and Ohlson, M.: The transport of
anthropogenic carbon dioxide into the Weddell Sea, J. Geophys.
Res.-Ocean., 96, 16679–16687, https://doi.org/10.1029/91jc01785, 1991.
Anilkumar, N., Chacko, R., Sabu, P., and George, J. V.: Freshening of
Antarctic Bottom Water in the Indian Ocean sector of Southern Ocean, Deep-Sea Res. Pt. II, 118, 162–169,
https://doi.org/10.1016/j.dsr2.2015.03.009, 2015.
Bakker, D. C. E., Pfeil, B., Landa, C. S., Metzl, N., O'Brien, K. M., Olsen,
A., Smith, K., Cosca, C., Harasawa, S., Jones, S. D., Nakaoka, S., Nojiri,
Y., Schuster, U., Steinhoff, T., Sweeney, C., Takahashi, T., Tilbrook, B.,
Wada, C., Wanninkhof, R., Alin, S. R., Balestrini, C. F., Barbero, L.,
Bates, N. R., Bianchi, A. A., Bonou, F., Boutin, J., Bozec, Y., Burger, E.
F., Cai, W. J., Castle, R. D., Chen, L., Chierici, M., Currie, K., Evans,
W., Featherstone, C., Feely, R. A., Fransson, A., Goyet, C., Greenwood, N.,
Gregor, L., Hankin, S., Hardman-Mountford, N. J., Harlay, J., Hauck, J.,
Hoppema, M., Humphreys, M. P., Hunt, C. W., Huss, B., Ibánhez, J. S. P.,
Johannessen, T., Keeling, R., Kitidis, V., Körtzinger, A., Kozyr, A.,
Krasakopoulou, E., Kuwata, A., Landschützer, P., Lauvset, S. K.,
Lefèvre, N., Lo Monaco, C., Manke, A., Mathis, J. T., Merlivat, L.,
Millero, F. J., Monteiro, P. M. S., Munro, D. R., Murata, A., Newberger, T.,
Omar, A. M., Ono, T., Paterson, K., Pearce, D., Pierrot, D., Robbins, L. L.,
Saito, S., Salisbury, J., Schlitzer, R., Schneider, B., Schweitzer, R.,
Sieger, R., Skjelvan, I., Sullivan, K. F., Sutherland, S. C., Sutton, A. J.,
Tadokoro, K., Telszewski, M., Tuma, M., van Heuven, S. M. A. C., Vandemark,
D., Ward, B., Watson, A. J., and Xu, S.: A multi-decade record of
high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas
(SOCAT), Earth Syst. Sci. Data, 8, 383–413, https://doi.org/10.5194/essd-8-383-2016, 2016.
Benson, B. B. and Krause, D.: The concentration and isotopic fractionation of gases dissolved in freshwater in equilibrium with the atmosphere, 1. Oxygen, Limnol. Oceanogr., 25, 662–671, https://doi.org/10.4319/lo.1980.25.4.0662, 1980.
Bockmon, E. E. and Dickson, A. G.: An inter-laboratory comparison assessing
the quality of seawater carbon dioxide measurements, Mar. Chem., 171,
36–43, https://doi.org/10.1016/j.marchem.2015.02.002, 2015.
Brewer, P. G.: Direct observation of the oceanic CO2 increase,
Geophys. Res. Lett., 5, 997–1000, https://doi.org/10.1029/GL005i012p00997, 1978.
Broecker, W. S.: “NO”, a conservative water-mass tracer, Earth
Planet. Sc. Lett., 23, 100–107, https://doi.org/10.1016/0012-821X(74)90036-3, 1974.
Carmack, E. C. and Foster, T. D.: Circulation and distribution of
oceanographic properties near the Filchner Ice Shelf, Deep-Sea Res.
Oceanogr. Abstr., 22, 77–90, https://doi.org/10.1016/0011-7471(75)90097-2, 1975.
Carter, L., McCave, I. N., and Williams, M. J. M.: Chapter 4 Circulation and
Water Masses of the Southern Ocean: A Review, in: Developments in Earth and
Environmental Sciences, edited by: Florindo, F., and Siegert, M., Elsevier,
85–114, https://doi.org/10.1016/S1571-9197(08)00004-9, 2008.
Chen, C.-T. A.: On the distribution of anthropogenic CO2 in the
Atlantic and Southern oceans, Deep-Sea Res. Pt. A, 29, 563–580, https://doi.org/10.1016/0198-0149(82)90076-0, 1982.
Chen, G.-T. and Millero, F. J.: Gradual increase of oceanic CO2,
Nature, 277, 205–206, https://doi.org/10.1038/277205a0, 1979.
Chen, T. and Chen, A.: The oceanic anthropogenic CO2 sink,
Chemosphere, 27, 1041–1064, https://doi.org/10.1016/0045-6535(93)90067-F, 1993.
Couldrey, M. P., Jullion, L., Naveira Garabato, A. C., Rye, C., Herráiz-Borreguero, L., Brown, P. J., Meredith, M. P., and Speer, K. L.: Remotely induced warming of Antarctic Bottom Water in the eastern Weddell gyre, Geophys. Res. Lett., 40, 2755–2760, https://doi.org/10.1002/grl.50526, 2013.
Coverly, S. C., Aminot, A., and R. Kérouel, 2009. Nutrients in Seawater
Using Segmented Flow Analysis, in: Practical Guidelines for the Analysis of
Seawater, edited by: Oliver Wurl, CRC Press, 143–178, https://doi.org/10.1201/9781420073072, 2009.
De Baar, H. J. W.: Options for enhancing the storage of carbon dioxide in
the oceans: A review, Energ. Convers. Manag., 33, 635–642,
https://doi.org/10.1016/0196-8904(92)90066-6, 1992.
DeJong, H. B. and Dunbar, R. B.: Air-Sea CO2 Exchange in the Ross Sea,
Antarctica, J. Geophys. Res.-Ocean., 122, 8167–8181,
https://doi.org/10.1002/2017JC012853, 2017.
Desbruyères, D. G., Purkey, S. G., McDonagh, E. L., Johnson, G. C., and
King, B. A.: Deep and abyssal ocean warming from 35 years of repeat
hydrography, Geophys. Res. Lett., 43, 10356–10365, https://doi.org/10.1002/2016GL070413, 2016.
DeVries, T., Holzer, M., and Primeau, F.: Recent increase in oceanic carbon
uptake driven by weaker upper-ocean overturning, Nature, 542, 215–218,
https://doi.org/10.1038/nature21068, 2017.
Edmond, J. M.: High precision determination of titration alkalinity and
total carbon dioxide content of sea water by potentiometric titration, Deep-Sea Res. Oceanogr. Abstr., 17, 737–750, https://doi.org/10.1016/0011-7471(70)90038-0, 1970.
Fahrbach, E., Rohardt, G., Schröder, M., and Strass, V.: Transport and
structure of the Weddell Gyre, Ann. Geophys., 12, 840–855, https://doi.org/10.1007/s00585-994-0840-7, 1994.
Fay, A. R., Lovenduski, N. S., McKinley, G. A., Munro, D. R., Sweeney, C.,
Gray, A. R., Landschützer, P., Stephens, B. B., Takahashi, T., and
Williams, N.: Utilizing the Drake Passage Time-series to understand
variability and change in subpolar Southern Ocean pCO2, Biogeosciences,
15, 3841–3855, https://doi.org/10.5194/bg-15-3841-2018, 2018.
Frölicher, T. L., Sarmiento, J. L., Paynter, D. J., Dunne, J. P.,
Krasting, J. P., and Winton, M.: Dominance of the Southern Ocean in
Anthropogenic Carbon and Heat Uptake in CMIP5 Models, J. Clim.,
28, 862–886, https://doi.org/10.1175/jcli-d-14-00117.1, 2015.
Fukamachi, Y., Wakatsuchi, M., Taira, K., Kitagawa, S., Ushio, S.,
Takahashi, A., Oikawa, K., Furukawa, T., Yoritaka, H., Fukuchi, M., and
Yamanouchi, T.: Seasonal variability of bottom water properties off
Adélie Land, Antarctica, J. Geophys. Res.-Ocean., 105,
6531–6540, https://doi.org/10.1029/1999JC900292, 2000.
Fukamachi, Y., Rintoul, S. R., Church, J. A., Aoki, S., Sokolov, S.,
Rosenberg, M. A., and Wakatsuchi, M.: Strong export of Antarctic Bottom
Water east of the Kerguelen plateau, Nat. Geosci., 3, 327–331,
https://doi.org/10.1038/ngeo842, 2010.
Gattuso, J.-P. and Hansson, L.: Ocean Acidification, Oxford University
Press, Oxford, New York, 326 pp., 2011.
Gibson, J. A. E. and Trull, T. W.: Annual cycle of fCO2 under sea-ice
and in open water in Prydz Bay, East Antarctica, Mar. Chem., 66,
187–200, https://doi.org/10.1016/S0304-4203(99)00040-7, 1999.
Gordon, A. L.: Bottom Water Formation, in: Encyclopedia of Ocean Sciences,
Academic Press, © 2019 Elsevier Ltd., 334–340, 2001.
Gordon, A. L., Orsi, A. H., Muench, R., Huber, B. A., Zambianchi, E., and
Visbeck, M.: Western Ross Sea continental slope gravity currents, Deep-Sea
Res. Pt. II, 56, 796–817, https://doi.org/10.1016/j.dsr2.2008.10.037, 2009.
Gordon, A. L., Huber, B., McKee, D., and Visbeck, M.: A seasonal cycle in
the export of bottom water from the Weddell Sea, Nat. Geosci., 3,
551–556, https://doi.org/10.1038/ngeo916, 2010.
Gordon, A. L., Huber, B. A., and Busecke, J.: Bottom water export from the
western Ross Sea, 2007 through 2010, Geophys. Res. Lett., 42,
5387–5394, https://doi.org/10.1002/2015GL064457, 2015.
Goyet, C., Adams, R., and Eischeid, G.: Observations of the CO2 system
properties in the tropical Atlantic Ocean, Mar. Chem., 60, 49–61,
https://doi.org/10.1016/S0304-4203(97)00081-9, 1998.
Gregor, L., Kok, S., and Monteiro, P. M. S.: Interannual drivers of the
seasonal cycle of CO2 in the Southern Ocean, Biogeosciences, 15,
2361–2378, https://doi.org/10.5194/bg-15-2361-2018, 2018.
Gruber, N.: Anthropogenic CO2 in the Atlantic Ocean, Global
Biogeochem. Cy., 12, 165–191, https://doi.org/10.1029/97GB03658, 1998.
Gruber, N., Gloor, M., Mikaloff Fletcher, S. E., Doney, S. C., Dutkiewicz,
S., Follows, M. J., Gerber, M., Jacobson, A. R., Joos, F., Lindsay, K.,
Menemenlis, D., Mouchet, A., Müller, S. A., Sarmiento, J. L., and
Takahashi, T.: Oceanic sources, sinks, and transport of atmospheric
CO2, Global Biogeochem. Cy., 23, https://doi.org/10.1029/2008GB003349, 2009.
Gruber, N., Clement, D., Carter, B. R., Feely, R. A., van Heuven, S.,
Hoppema, M., Ishii, M., Key, R. M., Kozyr, A., Lauvset, S. K., Lo Monaco,
C., Mathis, J. T., Murata, A., Olsen, A., Perez, F. F., Sabine, C. L.,
Tanhua, T., and Wanninkhof, R.: The oceanic sink for anthropogenic CO2;
from 1994 to 2007, Science, 363, 1193–1199, https://doi.org/10.1126/science.aau5153, 2019a.
Gruber, N., Landschützer, P., and Lovenduski, N. S.: The Variable
Southern Ocean Carbon Sink, Ann. Rev. Mar. Sci., 11, 159–186,
https://doi.org/10.1146/annurev-marine-121916-063407, 2019b.
Hauck, J., Völker, C., Wolf-Gladrow, D. A., Laufkötter, C., Vogt,
M., Aumont, O., Bopp, L., Buitenhuis, E. T., Doney, S. C., Dunne, J.,
Gruber, N., Hashioka, T., John, J., Quéré, C. L., Lima, I. D.,
Nakano, H., Séférian, R., and Totterdell, I.: On the Southern Ocean
CO2 uptake and the role of the biological carbon pump in the 21st
century, Global Biogeochem. Cy., 29, 1451–1470, https://doi.org/10.1002/2015GB005140, 2015.
Heuzé, C., Heywood, K. J., Stevens, D. P., and Ridley, J. K.: Changes in
Global Ocean Bottom Properties and Volume Transports in CMIP5 Models under
Climate Change Scenarios, J. Clim., 28, 2917–2944, https://doi.org/10.1175/JCLI-D-14-00381.1, 2015.
Heywood, K. J., Sparrow, M. D., Brown, J., and Dickson, R. R.: Frontal
structure and Antarctic Bottom Water flow through the Princess Elizabeth
Trough, Antarctica, Deep-Sea Res. Pt. I,
46, 1181–1200, https://doi.org/10.1016/S0967-0637(98)00108-3,
1999.
Ito, T., Bracco, A., Deutsch, C., Frenzel, H., Long, M., and Takano, Y.:
Sustained growth of the Southern Ocean carbon storage in a warming climate,
Geophys. Res. Lett., 42, 4516–4522, https://doi.org/10.1002/2015GL064320, 2015.
Jabaud-Jan, A., Metzl, N., Brunet, C., Poisson, A., and Schauer, B.:
Interannual variability of the carbon dioxide system in the southern Indian
Ocean (20∘ S–60∘ S): The impact of a warm anomaly in
austral summer 1998, Global Biogeochem. Cy., 18, GB1042, https://doi.org/10.1029/2002GB002017, 2004.
Jiang, L.-Q., Carter, B. R., Feely, R. A., Lauvset, S. K., and Olsen, A.:
Surface ocean pH and buffer capacity: past, present and future, Sci.
Rep., 9, 18624, https://doi.org/10.1038/s41598-019-55039-4,
2019.
Johnson, G. C.: Quantifying Antarctic Bottom Water and North Atlantic Deep
Water volumes, J. Geophys. Res.-Ocean., 113, C05027,
https://doi.org/10.1029/2007JC004477, 2008.
Johnson, G. C., Purkey, S. G., and Bullister, J. L.: Warming and Freshening
in the Abyssal Southeastern Indian Ocean, J. Clim., 21,
5351–5363, https://doi.org/10.1175/2008JCLI2384.1, 2008.
Keeling, C. D. and Whorf, T. P.: Monthly carbon dioxide measurements on Mauna Loa, Hawaii from 1958 to 1998, PANGAEA, https://doi.org/10.1594/PANGAEA.56536, 2000.
Kerr, R., Goyet, C., da Cunha, L. C., Orselli, I. B. M., Lencina-Avila, J.
M., Mendes, C. R. B., Carvalho-Borges, M., Mata, M. M., and Tavano, V. M.:
Carbonate system properties in the Gerlache Strait, Northern Antarctic
Peninsula (February 2015): II. Anthropogenic CO2 and seawater
acidification, Deep-Sea Res. Pt. II,
149, 182–192, https://doi.org/10.1016/j.dsr2.2017.07.007, 2018.
Key, R. M., Kozyr, A., Sabine, C. L., Lee, K., Wanninkhof, R., Bullister, J.
L., Feely, R. A., Millero, F. J., Mordy, C., and Peng, T. H.: A global ocean
carbon climatology: Results from Global Data Analysis Project (GLODAP),
Global Biogeochem. Cy., 18, GB4031, https://doi.org/10.1029/2004GB002247, 2004.
Key, R. M., Olsen, A., Van Heuven, S., Lauvset, S. K., Velo, A., Lin, X.,
Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterstrom, S.,
Steinfeldt, R., Jeansson, E., Ishi, M., Perez, F. F., and Suzuki, T.: Global
Ocean Data Analysis Project, Version 2 (GLODAPv2), ORNL/CDIAC-162, ND-P093,
https://doi.org/10.3334/CDIAC/OTG.NDP093_GLODAPv2, 2015.
Khatiwala, S., Primeau, F., and Hall, T.: Reconstruction of the history of
anthropogenic CO2 concentrations in the ocean, Nature, 462, 346–349,
https://doi.org/10.1038/nature08526, 2009.
Khatiwala, S., Tanhua, T., Mikaloff Fletcher, S., Gerber, M., Doney, S. C.,
Graven, H. D., Gruber, N., McKinley, G. A., Murata, A., Ríos, A. F.,
and Sabine, C. L.: Global ocean storage of anthropogenic carbon,
Biogeosciences, 10, 2169–2191, https://doi.org/10.5194/bg-10-2169-2013, 2013.
Körtzinger, A., Mintrop, L., and Duinker, J. C.: On the penetration of
anthropogenic CO2 into the North Atlantic Ocean, J. Geophys.
Res.-Ocean., 103, 18681–18689, https://doi.org/10.1029/98JC01737, 1998.
Körtzinger, A., Rhein, M., and Mintrop, L.: Anthropogenic CO2 and
CFCs in the North Atlantic Ocean – A comparison of man-made tracers,
Geophys. Res. Lett., 26, 2065–2068, https://doi.org/10.1029/1999GL900432, 1999.
Körtzinger, A., Hedges, J. I., and Quay, P. D.: Redfield ratios
revisited: Removing the biasing effect of anthropogenic CO2, Limnol.
Oceanogr., 46, 964–970, https://doi.org/10.4319/lo.2001.46.4.0964, 2001.
Landschützer, P., Gruber, N., Haumann, F. A., Rödenbeck, C., Bakker,
D. C. E., van Heuven, S., Hoppema, M., Metzl, N., Sweeney, C., Takahashi,
T., Tilbrook, B., and Wanninkhof, R.: The reinvigoration of the Southern
Ocean carbon sink, Science, 349, 1221–1224, https://doi.org/10.1126/science.aab2620, 2015.
Laruelle, G. G., Cai, W.-J., Hu, X., Gruber, N., Mackenzie, F. T., and
Regnier, P.: Continental shelves as a variable but increasing global sink
for atmospheric carbon dioxide, Nat. Commun., 9, 454, https://doi.org/10.1038/s41467-017-02738-z, 2018.
Lenton, A., Codron, F., Bopp, L., Metzl, N., Cadule, P., Tagliabue, A., and Le Sommer, J.: Stratospheric ozone depletion reduces ocean carbon uptake and enhances ocean acidification, Geophys. Res. Lett., 36, L12606, https://doi.org/10.1029/2009GL038227, 2009.
Le Quéré, C., Rödenbeck, C., Buitenhuis, E. T., Conway, T. J.,
Langenfelds, R., Gomez, A., Labuschagne, C., Ramonet, M., Nakazawa, T.,
Metzl, N., Gillett, N., and Heimann, M.: Saturation of the Southern Ocean
CO2; Sink Due to Recent Climate Change, Science, 316, 1735–1738,
https://doi.org/10.1126/science.1136188, 2007.
Lenton, A., Metzl, N., Takahashi, T., Kuchinke, M., Matear, R. J., Roy, T.,
Sutherland, S. C., Sweeney, C., and Tilbrook, B.: The observed evolution of
oceanic pCO2 and its drivers over the last two decades, Global
Biogeochem. Cy., 26, GB2021, https://doi.org/10.1029/2011GB004095, 2012.
Lo Monaco, C., Goyet, C., Metzl, N., Poisson, A., and Touratier, F.:
Distribution and inventory of anthropogenic CO2 in the Southern Ocean:
Comparison of three data-based methods, J. Geophys. Res.-Ocean., 110, C09S02, https://doi.org/10.1029/2004JC002571,
2005a.
Lo Monaco, C., Metzl, N., Poisson, A., Brunet, C., and Schauer, B.:
Anthropogenic CO2 in the Southern Ocean: Distribution and inventory at
the Indian-Atlantic boundary (World Ocean Circulation Experiment line I6),
J. Geophys. Res.-Ocean., 110, C06010, https://doi.org/10.1029/2004JC002643, 2005b.
Lo Monaco, C., Álvarez, M., Key, R. M., Lin, X., Tanhua, T., Tilbrook,
B., Bakker, D. C. E., van Heuven, S., Hoppema, M., Metzl, N., Ríos, A.
F., Sabine, C. L., and Velo, A.: Assessing the internal consistency of the
CARINA database in the Indian sector of the Southern Ocean, Earth Syst. Sci.
Data, 2, 51–70, https://doi.org/10.5194/essd-2-51-2010, 2010.
Mantyla, A. W. and Reid, J. L.: On the origins of deep and bottom waters of
the Indian Ocean, J. Geophys. Res.-Ocean., 100, 2417–2439,
https://doi.org/10.1029/94JC02564, 1995.
Marshall, J. and Speer, K.: Closure of the meridional overturning
circulation through Southern Ocean upwelling, Nat. Geosci., 5, 171–180,
https://doi.org/10.1038/ngeo1391, 2012.
Matear, R. J.: Effects of numerical advection schemes and eddy
parameterizations on ocean ventilation and oceanic anthropogenic CO2
uptake, Ocean Model., 3, 217–248, https://doi.org/10.1016/S1463-5003(01)00010-5, 2001.
McKee, D. C., Yuan, X., Gordon, A. L., Huber, B. A., and Dong, Z.: Climate
impact on interannual variability of Weddell Sea Bottom Water, J.
Geophys. Res.-Ocean., 116, C05020, https://doi.org/10.1029/2010JC006484, 2011.
McNeil, B. I., Matear, R. J., Key, R. M., Bullister, J. L., and Sarmiento,
J. L.: Anthropogenic CO2 Uptake by the Ocean Based on the Global
Chlorofluorocarbon Data Set, Science, 299, 235–239, https://doi.org/10.1126/science.1077429, 2003.
Meijers, A. J. S., Klocker, A., Bindoff, N. L., Williams, G. D., and
Marsland, S. J.: The circulation and water masses of the Antarctic shelf and
continental slope between 30 and 80∘ E, Deep-Sea Res. Pt. II, 57, 723–737, https://doi.org/10.1016/j.dsr2.2009.04.019, 2010.
Menezes, V. V., Macdonald, A. M., and Schatzman, C.: Accelerated freshening
of Antarctic Bottom Water over the last decade in the Southern Indian Ocean,
Sci. Adv., 3, e1601426, https://doi.org/10.1126/sciadv.1601426, 2017.
Metzl, N.: Decadal increase of oceanic carbon dioxide in Southern Indian
Ocean surface waters (1991–2007), Deep-Sea Res. Pt. II, 56, 607–619, https://doi.org/10.1016/j.dsr2.2008.12.007, 2009.
Metzl, N., Brunet, C., Jabaud-Jan, A., Poisson, A., and Schauer, B.: Summer
and winter air–sea CO2 fluxes in the Southern Ocean, Deep-Sea Res.
Pt. I, 53, 1548–1563, https://doi.org/10.1016/j.dsr.2006.07.006, 2006.
Munro, D. R., Lovenduski, N. S., Takahashi, T., Stephens, B. B., Newberger,
T., and Sweeney, C.: Recent evidence for a strengthening CO2 sink in
the Southern Ocean from carbonate system measurements in the Drake Passage
(2002–2015), Geophys. Res. Lett., 42, 7623–7630, https://doi.org/10.1002/2015GL065194, 2015.
Murata, A., Kumamoto, Y.-i., and Sasaki, K.-i.: Decadal-Scale Increases of
Anthropogenic CO2 in Antarctic Bottom Water in the Indian and Western
Pacific Sectors of the Southern Ocean, Geophys. Res. Lett.s, 46,
833–841, https://doi.org/10.1029/2018GL080604, 2019.
Ohshima, K. I., Fukamachi, Y., Williams, G. D., Nihashi, S., Roquet, F.,
Kitade, Y., Tamura, T., Hirano, D., Herraiz-Borreguero, L., Field, I.,
Hindell, M., Aoki, S., and Wakatsuchi, M.: Antarctic Bottom Water production
by intense sea-ice formation in the Cape Darnley polynya, Nat. Geosci.,
6, 235–240, https://doi.org/10.1038/ngeo1738, 2013.
Olsen, A., Key, R. M., van Heuven, S., Lauvset, S. K., Velo, A., Lin, X.,
Schirnick, C., Kozyr, A., Tanhua, T., Hoppema, M., Jutterström, S.,
Steinfeldt, R., Jeansson, E., Ishii, M., Pérez, F. F., and Suzuki, T.:
The Global Ocean Data Analysis Project version 2 (GLODAPv2) – an internally
consistent data product for the world ocean, Earth Syst. Sci. Data, 8,
297–323, https://doi.org/10.5194/essd-8-297-2016, 2016.
Olsen, A., Lange, N., Key, R. M., Tanhua, T., Álvarez, M., Becker, S.,
Bittig, H. C., Carter, B. R., Cotrim da Cunha, L., Feely, R. A., van Heuven,
S., Hoppema, M., Ishii, M., Jeansson, E., Jones, S. D., Jutterström, S.,
Karlsen, M. K., Kozyr, A., Lauvset, S. K., Lo Monaco, C., Murata, A.,
Pérez, F. F., Pfeil, B., Schirnick, C., Steinfeldt, R., Suzuki, T.,
Telszewski, M., Tilbrook, B., Velo, A., and Wanninkhof, R.: GLODAPv2.2019 –
an update of GLODAPv2, Earth Syst. Sci. Data, 11, 1437–1461, https://doi.org/10.5194/essd-11-1437-2019, 2019.
Orr, J. C., Maier-Reimer, E., Mikolajewicz, U., Monfray, P., Sarmiento, J.
L., Toggweiler, J. R., Taylor, N. K., Palmer, J., Gruber, N., Sabine, C. L.,
Le Quéré, C., Key, R. M., and Boutin, J.: Estimates of anthropogenic
carbon uptake from four three-dimensional global ocean models, Global
Biogeochem. Cy., 15, 43–60, https://doi.org/10.1029/2000GB001273, 2001.
Orr, J. C., Fabry, V. J., Aumont, O., Bopp, L., Doney, S. C., Feely, R. A.,
Gnanadesikan, A., Gruber, N., Ishida, A., Joos, F., Key, R. M., Lindsay, K.,
Maier-Reimer, E., Matear, R., Monfray, P., Mouchet, A., Najjar, R. G.,
Plattner, G.-K., Rodgers, K. B., Sabine, C. L., Sarmiento, J. L., Schlitzer,
R., Slater, R. D., Totterdell, I. J., Weirig, M.-F., Yamanaka, Y., and Yool,
A.: Anthropogenic ocean acidification over the twenty-first century and its
impact on calcifying organisms, Nature, 437, 681–686, https://doi.org/10.1038/nature04095, 2005.
Orsi, A. H., Johnson, G. C., and Bullister, J. L.: Circulation, mixing, and
production of Antarctic Bottom Water, Prog. Oceanogr., 43, 55–109,
https://doi.org/10.1016/S0079-6611(99)00004-X, 1999.
Pardo, P. C., Pérez, F. F., Khatiwala, S., and Ríos, A. F.:
Anthropogenic CO2 estimates in the Southern Ocean: Storage partitioning
in the different water masses, Prog. Oceanogr., 120, 230–242,
https://doi.org/10.1016/j.pocean.2013.09.005, 2014.
Pardo, P. C., Tilbrook, B., Langlais, C., Trull, T. W., and Rintoul, S. R.:
Carbon uptake and biogeochemical change in the Southern Ocean, south of
Tasmania, Biogeosciences, 14, 5217–5237, https://doi.org/10.5194/bg-14-5217-2017, 2017.
Poisson, A. and Chen, C.-T. A.: Why is there little anthropogenic CO2
in the Antarttic bottom water?, Deep-Sea Res. Pt. A, 34, 1255–1275, https://doi.org/10.1016/0198-0149(87)90075-6, 1987.
Purkey, S. G. and Johnson, G. C.: Warming of Global Abyssal and Deep
Southern Ocean Waters between the 1990s and 2000s: Contributions to Global
Heat and Sea Level Rise Budgets, J. Clim., 23, 6336–6351,
https://doi.org/10.1175/2010JCLI3682.1, 2010.
Purkey, S. G. and Johnson, G. C.: Global Contraction of Antarctic Bottom
Water between the 1980s and 2000s, J. Clim., 25, 5830–5844,
https://doi.org/10.1175/JCLI-D-11-00612.1, 2012.
Ridgwell, A. and Zeebe, R. E.: The role of the global carbonate cycle in
the regulation and evolution of the Earth system, Earth Planet.
Sc. Lett., 234, 299–315, https://doi.org/10.1016/j.epsl.2005.03.006, 2005.
Rintoul, S. R.: Rapid freshening of Antarctic Bottom Water formed in the
Indian and Pacific oceans, Geophys. Res. Lett., 34, L06606,
https://doi.org/10.1029/2006GL028550, 2007.
Rintoul, S. R., Sparrow, M., Meredith, M. P., Wadley, V., Speer, K., Hofmann,
E., Summerhayes, C., Urban, E., and Bellerby, R.: The Southern Ocean
Observing System: Initial Science and Implementation Strategy, Scientific
Committee on Antarctic Research/Scientific Committee on Oceanic Research, 74
pp., 2012.
Ríos, A. F., Velo, A., Pardo, P. C., Hoppema, M., and Pérez, F. F.:
An update of anthropogenic CO2 storage rates in the western South
Atlantic basin and the role of Antarctic Bottom Water, J. Mar.
Syst., 94, 197–203, https://doi.org/10.1016/j.jmarsys.2011.11.023, 2012.
Robertson, R., Visbeck, M., Gordon, A. L., and Fahrbach, E.: Long-term
temperature trends in the deep waters of the Weddell Sea, Deep-Sea Res.
Pt. II, 49, 4791–4806, https://doi.org/10.1016/S0967-0645(02)00159-5, 2002.
Rodehacke, C. B., Hellmer, H. H., Beckmann, A., and Roether, W.: Formation
and spreading of Antarctic deep and bottom waters inferred from a
chlorofluorocarbon (CFC) simulation, J. Geophys. Res.-Ocean., 112, C09001, https://doi.org/10.1029/2006JC003884,
2007.
Roden, N. P., Shadwick, E. H., Tilbrook, B., and Trull, T. W.: Annual cycle
of carbonate chemistry and decadal change in coastal Prydz Bay, East
Antarctica, Mar. Chem., 155, 135–147, https://doi.org/10.1016/j.marchem.2013.06.006, 2013.
Roden, N. P., Tilbrook, B., Trull, T. W., Virtue, P., and Williams, G. D.:
Carbon cycling dynamics in the seasonal sea-ice zone of East Antarctica,
J. Geophys. Res.-Ocean., 121, 8749–8769, https://doi.org/10.1002/2016JC012008, 2016.
Russell, J. L., Kamenkovich, I., Bitz, C., Ferrari, R., Gille, S. T.,
Goodman, P. J., Hallberg, R., Johnson, K., Khazmutdinova, K., Marinov, I.,
Mazloff, M., Riser, S., Sarmiento, J. L., Speer, K., Talley, L. D., and
Wanninkhof, R.: Metrics for the Evaluation of the Southern Ocean in Coupled
Climate Models and Earth System Models, J. Geophys. Res.-Ocean., 123, 3120–3143, https://doi.org/10.1002/2017JC013461,
2018.
Sabine, C. L., Key, R. M., Johnson, K. M., Millero, F. J., Poisson, A.,
Sarmiento, J. L., Wallace, D. W. R., and Winn, C. D.: Anthropogenic CO2
inventory of the Indian Ocean, Global Biogeochem. Cy., 13, 179–198,
https://doi.org/10.1029/1998GB900022, 1999.
Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J.
L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero,
F. J., Peng, T.-H., Kozyr, A., Ono, T., and Ríos, A. F.: The Oceanic Sink
for Anthropogenic CO2, Science, 305, 367–371, https://doi.org/10.1126/science.1097403, 2004.
Sandrini, S., Ait-Ameur, N., Rivaro, P., Massolo, S., Touratier, F.,
Tositti, L., and Goyet, C.: Anthropogenic carbon distribution in the Ross
Sea, Antarctica, Antarct. Sci., 19, 395–407, https://doi.org/10.1017/S0954102007000405, 2007.
Schlitzer, R.: Ocean Data View, available at: http://odv.awi.de, last access: 2 September 2019.
Schmidtko, S., Stramma, L., and Visbeck, M.: Decline in global oceanic
oxygen content during the past five decades, Nature, 542, 335–339,
https://doi.org/10.1038/nature21399, 2017.
Shadwick, E. H., Rintoul, S. R., Tilbrook, B., Williams, G. D., Young, N.,
Fraser, A. D., Marchant, H., Smith, J., and Tamura, T.: Glacier tongue
calving reduced dense water formation and enhanced carbon uptake,
Geophys. Res. Lett., 40, 904–909, https://doi.org/10.1002/grl.50178, 2013.
Shadwick, E. H., Tilbrook, B., and Williams, G. D.: Carbonate chemistry in
the Mertz Polynya (East Antarctica): Biological and physical modification of
dense water outflows and the export of anthropogenic CO2, J.
Geophys. Res.-Ocean., 119, 1–14, https://doi.org/10.1002/2013JC009286, 2014.
Siegenthaler, U. and Sarmiento, J. L.: Atmospheric carbon dioxide and the
ocean, Nature, 365, 119–125, https://doi.org/10.1038/365119a0,
1993.
Smith, N. and Treguer, P.: Physical and Chemical Oceanography in the
Vicinity of Prydz Bay, Antarctica, edited by: ElSayed, S. Z., Cambridge Univ
Press, Cambridge, 25–43, 1994.
Swart, N. C., Gille, S. T., Fyfe, J. C., and Gillett, N. P.: Recent Southern Ocean warming and freshening driven by greenhouse gas emissions and ozone depletion, Nat. Geosci., 11, 836–841, https://doi.org/10.1038/s41561-018-0226-1, 2018.
Takahashi, T., Sutherland, S. C., Wanninkhof, R., Sweeney, C., Feely, R. A.,
Chipman, D. W., Hales, B., Friederich, G., Chavez, F., Sabine, C., Watson,
A., Bakker, D. C. E., Schuster, U., Metzl, N., Yoshikawa-Inoue, H., Ishii,
M., Midorikawa, T., Nojiri, Y., Körtzinger, A., Steinhoff, T., Hoppema,
M., Olafsson, J., Arnarson, T. S., Tilbrook, B., Johannessen, T., Olsen, A.,
Bellerby, R., Wong, C. S., Delille, B., Bates, N. R., and de Baar, H. J. W.:
Climatological mean and decadal change in surface ocean pCO2, and net
sea–air CO2 flux over the global oceans, Deep-Sea Res. Pt. II, 56, 554–577, https://doi.org/10.1016/j.dsr2.2008.12.009, 2009.
Takahashi, T., Sweeney, C., Hales, B., Chipman, D. W., Newberger, T.,
Goddard, J. G., Iannuzzi, R. A., and Sutherland, S. C.: The Changing Carbon
Cycle in the Southern Ocean, Oceanography, 25, 26–37, 2012.
Tamura, T., Ohshima, K. I., Fraser, A. D., and Williams, G. D.: Sea ice
production variability in Antarctic coastal polynyas, J. Geophys.l
Res.-Ocean., 121, 2967–2979, https://doi.org/10.1002/2015JC011537, 2016.
Touratier, F. and Goyet, C.: Definition, properties, and Atlantic Ocean
distribution of the new tracer TrOCA, J. Mar. Syst., 46,
169–179, https://doi.org/10.1016/j.jmarsys.2003.11.016, 2004a.
Touratier, F. and Goyet, C.: Applying the new TrOCA approach to assess the
distribution of anthropogenic CO2 in the Atlantic Ocean, J. Mar.
Syst., 46, 181–197, https://doi.org/10.1016/j.jmarsys.2003.11.020, 2004b.
Touratier, F., Azouzi, L., and Goyet, C.: CFC-11, Δ14C and 3H
tracers as a means to assess anthropogenic CO2 concentrations in the ocean,
Tellus B, 59, 318–325, https://doi.org/10.1111/j.1600-0889.2006.00247.x, 2007.
Tréguer, P. and Le Corre, P.: Manuel d'analyse des sels nutritifs dans
l'eau de mer (utilisation de l'autoanalyseur II Technicon), 2nd Edn., L.O.C.U.B.O., Brest, 110
pp., 1975.
van Heuven, S. M. A. C., Hoppema, M., Huhn, O., Slagter, H. A., and de Baar,
H. J. W.: Direct observation of increasing CO2 in the Weddell Gyre along the
Prime Meridian during 1973–2008, Deep-Sea Res. Pt. II, 58, 2613–2635, https://doi.org/10.1016/j.dsr2.2011.08.007, 2011.
van Heuven, S. M. A. C.: Determination of the rate of oceanic storage of
anthropogenic CO2 from measurements in the ocean interior: The South
Atlantic Ocean, Doctor of Philosophy, Groningen, 268 pp., 2013.
van Heuven, S. M. A. C., Hoppema, M., Jones, E. M., and de Baar, H. J. W.:
Rapid invasion of anthropogenic CO2 into the deep circulation of the Weddell
Gyre, Philos. T. R. Soc. A, 372, 20130056, https://doi.org/10.1098/rsta.2013.0056, 2014.
van Wijk, E. M. and Rintoul, S. R.: Freshening drives contraction of
Antarctic Bottom Water in the Australian Antarctic Basin, Geophys.
Res. Lett., 41, 1657–1664, https://doi.org/10.1002/2013GL058921, 2014.
Vázquez-Rodríguez, M., Touratier, F., Lo Monaco, C., Waugh, D. W.,
Padin, X. A., Bellerby, R. G. J., Goyet, C., Metzl, N., Ríos, A. F.,
and Pérez, F. F.: Anthropogenic carbon distributions in the Atlantic
Ocean: data-based estimates from the Arctic to the Antarctic,
Biogeosciences, 6, 439–451, https://doi.org/10.5194/bg-6-439-2009, 2009.
Vernet, M., Geibert, W., Hoppema, M., Brown, P. J., Haas, C., Hellmer, H.
H., Jokat, W., Jullion, L., Mazloff, M., Bakker, D. C. E., Brearley, J. A.,
Croot, P., Hattermann, T., Hauck, J., Hillenbrand, C. D., Hoppe, C. J. M.,
Huhn, O., Koch, B. P., Lechtenfeld, O. J., Meredith, M. P., Naveira
Garabato, A. C., Nöthig, E. M., Peeken, I., Rutgers van der Loeff, M.
M., Schmidtko, S., Schröder, M., Strass, V. H., Torres-Valdés, S.,
and Verdy, A.: The Weddell Gyre, Southern Ocean: Present Knowledge and
Future Challenges, Rev. Geophys., 57, 623–708, https://doi.org/10.1029/2018RG000604, 2019.
Waugh, D. W., Hall, T. M., McNeil, B. I., Key, R., and Matear, R. J.:
Anthropogenic CO2 in the oceans estimated using transit time distributions,
Tellus B, 58, 376–389, https://doi.org/10.1111/j.1600-0889.2006.00222.x, 2006.
Weiss, R. F.: The solubility of nitrogen, oxygen and argon in water and
seawater, Deep-Sea Res. Oceanogr. Abstracts, 17, 721–735,
https://doi.org/10.1016/0011-7471(70)90037-9, 1970.
Williams, W. J., Carmack, E. C., and Ingram, R. G.: Physical oceanography of polynyas, Elsevier Oceanography Series, 74, 55–85, https://doi.org/10.1016/S0422-9894(06)74002-8, 2007.
Williams, G. D., Bindoff, N. L., Marsland, S. J., and Rintoul, S. R.:
Formation and export of dense shelf water from the Adélie Depression,
East Antarctica, J. Geophys. Res.-Ocean., 113, C04039,
https://doi.org/10.1029/2007JC004346, 2008.
Williams, G. D., Aoki, S., Jacobs, S. S., Rintoul, S. R., Tamura, T., and
Bindoff, N. L.: Antarctic Bottom Water from the Adélie and George V Land
coast, East Antarctica (140–149∘ E), J. Geophys.
Res.-Ocean., 115, C04027, https://doi.org/10.1029/2009JC005812, 2010.
Williams, G. D., Herraiz-Borreguero, L., Roquet, F., Tamura, T., Ohshima, K.
I., Fukamachi, Y., Fraser, A. D., Gao, L., Chen, H., McMahon, C. R.,
Harcourt, R., and Hindell, M.: The suppression of Antarctic bottom water
formation by melting ice shelves in Prydz Bay, Nat. Commun., 7,
12577, https://doi.org/10.1038/ncomms12577, 2016.
Williams, N. L., Feely, R. A., Sabine, C. L., Dickson, A. G., Swift, J. H.,
Talley, L. D., and Russell, J. L.: Quantifying anthropogenic carbon
inventory changes in the Pacific sector of the Southern Ocean, Mar.
Chem., 174, 147–160, https://doi.org/10.1016/j.marchem.2015.06.015, 2015.
Williams, N. L., Juranek, L. W., Feely, R. A., Russell, J. L., Johnson, K.
S., and Hales, B.: Assessment of the Carbonate Chemistry Seasonal Cycles in
the Southern Ocean From Persistent Observational Platforms, J.
Geophys. Res.-Ocean., 123, 4833–4852, https://doi.org/10.1029/2017JC012917, 2018.
Yabuki, T., Suga, T., Hanawa, K., Matsuoka, K., Kiwada, H., and Watanabe,
T.: Possible source of the antarctic bottom water in the Prydz Bay Region,
J. Oceanogr., 62, 649–655, https://doi.org/10.1007/s10872-006-0083-1, 2006.
Yamamoto, A., Abe-Ouchi, A., Shigemitsu, M., Oka, A., Takahashi, K.,
Ohgaito, R., and Yamanaka, Y.: Global deep ocean oxygenation by enhanced
ventilation in the Southern Ocean under long-term global warming, Global
Biogeochem. Cy., 29, 1801–1815, https://doi.org/10.1002/2015GB005181, 2015.
Short summary
We investigated the evolution of anthropogenic CO2 (Cant) in the Antarctic Bottom Water in the southern Indian Ocean since 1978 based on observations from 16 reocupations. We found that the Cant and dissolved inorganic carbon increased at about the same rate over the 40-year period. However, the data also show large interannual variations and a surprising stability of Cant in the last decade, likely reflecting the variability of bottom water formation and circulation in the Southern Ocean.
We investigated the evolution of anthropogenic CO2 (Cant) in the Antarctic Bottom Water in the...