Articles | Volume 16, issue 6
https://doi.org/10.5194/os-16-1509-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-1509-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Assessment of responses of North Atlantic winter sea surface temperature to the North Atlantic Oscillation on an interannual scale in 13 CMIP5 models
Yujie Jing
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing 100029, China
Department of Atmospheric Chemistry and Environmental Sciences,
College of Earth and Planetary Sciences, University of Chinese Academy of
Sciences, Beijing 100049, China
Yangchun Li
CORRESPONDING AUTHOR
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing 100029, China
Laboratory for Regional Oceanography and Numerical Modeling, Qingdao
National Laboratory for Marine Science and Technology, Qingdao 266237, China
Department of Atmospheric Chemistry and Environmental Sciences,
College of Earth and Planetary Sciences, University of Chinese Academy of
Sciences, Beijing 100049, China
Yongfu Xu
State Key Laboratory of Atmospheric Boundary Layer Physics and
Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of
Sciences, Beijing 100029, China
Laboratory for Regional Oceanography and Numerical Modeling, Qingdao
National Laboratory for Marine Science and Technology, Qingdao 266237, China
Department of Atmospheric Chemistry and Environmental Sciences,
College of Earth and Planetary Sciences, University of Chinese Academy of
Sciences, Beijing 100049, China
Related authors
No articles found.
Qun Zhang, Yongfu Xu, and Long Jia
Atmos. Chem. Phys., 19, 15007–15021, https://doi.org/10.5194/acp-19-15007-2019, https://doi.org/10.5194/acp-19-15007-2019, 2019
Short summary
Short summary
The negative effects of relative humidity (RH) on secondary organic aerosol (SOA) formation from m-xylene under low NOx conditions were observed. The mechanisms of the RH effects of SOA yields have been sufficiently discussed. The decrease of SOA formation at high RH may be mainly attributed to the suppression of oligomers and the further particle-phase reaction of highly oxygenated organic molecules. The faster wall loss of SOA precursors at higher RH may also influence the SOA yield.
Xiaotong Jiang, Narcisse T. Tsona, Long Jia, Shijie Liu, Hailiang Zhang, Yongfu Xu, and Lin Du
Atmos. Chem. Phys., 19, 13591–13609, https://doi.org/10.5194/acp-19-13591-2019, https://doi.org/10.5194/acp-19-13591-2019, 2019
Short summary
Short summary
Atmospheric furan is a primary and secondary pollutant in the atmosphere, and its emission contributes to the formation of ultrafine particles and ground-level ozone. The present study demonstrates the effect of NOx and humidity on secondary organic aerosol (SOA) formation during the furan–NOx–NaCl photooxidation. Furthermore, the results illustrate the importance of studying SOA formation over a comprehensive range of environmental conditions.
Jialin Li, Meigen Zhang, Guiqian Tang, Yele Sun, Fangkun Wu, and Yongfu Xu
Atmos. Chem. Phys., 19, 6481–6495, https://doi.org/10.5194/acp-19-6481-2019, https://doi.org/10.5194/acp-19-6481-2019, 2019
Short summary
Short summary
There are large uncertainties in the sources of secondary organic aerosol (SOA). Simulations of SOA concentrations in China with aqueous SOA formation pathway updated and glyoxal simulation improved reveal that dicarbonyl-derived SOA (AAQ) can explain a significant fraction of the unaccounted SOA sources. The mean AAQ can contribute 60.6 % and 64.5 % to the total concentration of SOA in summer and fall, respectively.
Xiaotong Jiang, Narcisse T. Tsona, Long Jia, Shijie Liu, Yongfu Xu, and Lin Du
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-477, https://doi.org/10.5194/acp-2018-477, 2018
Revised manuscript not accepted
Short summary
Short summary
The roles of NOx level and RH on the formation of SOA from the photooxidation of furan in the presence of NaCl seed particles were elucidated. The aerosol liquid water (ALW) effects on SOA mass concentration and yield were also evaluated. The chemical composition of furan SOA was investigated by ESI-Exactive-Orbitrap MS, with focus on the formation of organic nitrates. Strong evidences indicate that both the RH and different NOx levels have a significant effect on SOA formation.
Long Jia and YongFu Xu
Atmos. Chem. Phys., 18, 8137–8154, https://doi.org/10.5194/acp-18-8137-2018, https://doi.org/10.5194/acp-18-8137-2018, 2018
Short summary
Short summary
In this work, the opposite effects of relative humidity (RH) on secondary organic aerosol (SOA) formation from toluene and isoprene were observed and have been well explained in terms of various experimental data and model simulations. The increase in SOA from toluene under humid conditions is mainly contributed by aqueous reactions of water-soluble products, whereas SOA formation from isoprene-NO2 irradiations is controlled by stable Criegee intermediates that are greatly influenced by water.
Shijie Liu, Long Jia, Yongfu Xu, Narcisse T. Tsona, Shuangshuang Ge, and Lin Du
Atmos. Chem. Phys., 17, 13329–13343, https://doi.org/10.5194/acp-17-13329-2017, https://doi.org/10.5194/acp-17-13329-2017, 2017
Short summary
Short summary
Secondary organic aerosol (SOA) formation from cyclohexene/NOx system with various SO2 concentrations under UV light was investigated to study the effects of cyclic alkenes on the atmospheric environment in polluted urban areas. The composition of organic compounds in SOA was measured using several complementary techniques. We present new evidence that organosulfates were produced from the photooxidation of cyclohexene in the presence of SO2.
Cited articles
Behringer, D. W. and Xue, Y.: Evaluation of the global ocean data
assimilation system at NCEP: The Pacific Ocean, Proc. Eighth Symp. on
integrated observing and assimilation systems for atmosphere, oceans, and
land surface, AMS 84th annual meeting in Washington State Convention and
Trade Center, Seattle, Washington, 11–15 January 2004, Am. Meteorol. Soc., 2004.
Bellucci, A. and Richards, K. J.: Effects of NAO variability on the North
Atlantic Ocean circulation, Geophys. Res. Lett., 33, L02612,
https://doi.org/10.1029/2005gl024890, 2006.
Bretherton, C. S., Widmann, M., Dymnikov, V. P., Wallace, J. M., and
Bladé, I.: The effective number of spatial degrees of freedom of a
time-varying field, J. Clim., 12, 1990–2009, 1999
Buckley, M. W. and Marshall, J.: Observations, inferences, and mechanisms of
the Atlantic Meridional Overturning Circulation: A Review, Rev. Geophys.,
54, 5–63, https://doi.org/10.1002/2015RG000493, 2016.
Cane, M. A., Clement, A. C., Murphy, L. N., and Bellomo, K.: Low pass
filtering, heat flux and Atlantic Multidecadal Variability, J. Clim.,
30, 7529–7553, https://doi.org/10.1175/JCLI-D-16-0810.1, 2017.
Cassou, C., Terray, L., Hurrell, J. W., and Deser. C.: North Atlantic winter
climate regimes: spatial asymmetry, stationarity with time, and oceanic
forcing, J. Clim., 17, 1055–1068, 2004.
Cayan, D. R.: Latent and sensible heat flux anomalies over the northern
oceans: driving the sea surface temperature, J. Phys. Oceanogr., 22,
859–881, 1992.
Chen, H., Schneider, E. K., and Wu, Z.: Mechanisms of internally generated
decadal-to-multidecadal variability of SST in the Atlantic Ocean in a
coupled GCM, Clim. Dynam., 46, 1–30, https://doi.org/10.1007/s00382-015-2660-8, 2015.
Compo, G. P., Whitaker, J.S., Sardeshmukh, P. D., Matsui, N., Allan, R. J.,
Yin, X., Gleason, B. E., Vose, R. S., Rutledge, G., Bessemoulin, P.,
Brönnimann, S., Brunet, M., Crouthamel, R. I., Grant, A. N., Groisman,
P.Y., Jones, P. D., Kruk, M., Kruger, A. C., Marshall, G .J., Maugeri, M.,
Mok, H. Y., Nordli, Ø., Ross, T. F., Trigo, R. M., Wang, X. L., Woodruff,
S. D., and Worley, S. J.: The Twentieth Century Reanalysis Project,
Q. J. Roy. Meteor. Soc., 137, 1–28,
https://doi.org/10.1002/qj.776, 2011.
Czaja, A. and Frankignoul, C.: Observed impact of Atlantic SST anomalies on
the North Atlantic oscillation, J. Clim., 15, 606–623, 2002.
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P.,
Kobayashi, S.,Andrae, U., Balmaseda, M. A., Balsamo G., Bauer P., Bechtold P., Beljaars, A. C. M.,
Berg, L. V., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J. Haimberger,
L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M.,
McNally, A. P., Monge‐Sanz, B. M., Morcrette, J. J., Park, B. K., Peubey, C., Rosnay, P. D.,
Tavolato, C., Thépaut, J. N., and Vitart, F.: The ERA-Interim reanalysis: Configuration and
performance of the data assimilation system, Q. J. Roy. Meteor. Soc.,
137, 553–597, https://doi.org/10.1002/qj.828, 2011.
Delworth, T. L. and Mehta, V. M.: Simulated interannual to decadal
variability in the tropical and sub-tropical North Atlantic, Geophys. Res.
Lett., 25, 2825–2828, https://doi.org/10.1029/98gl02188, 1998.
Delworth, T. L., Zeng, F. R., Zhang, L. P., Zhang, R., Vecchi, G. A., and
Yang, X. S.: The central role of ocean dynamics in connecting the North
Atlantic Oscillation to the extratropical component of the Atlantic
Multidecadal Oscillation, J. Clim., 30, 3789–3805,
2017.
Deser, C., Alexander, M. A., Xie, S. P., and Phillips, A. S.: Sea surface
temperature variability: patterns and mechanisms, Annu. Rev. Mar. Sci.,
2, 115–143, https://doi.org/10.1146/annurev-marine-120408-151453, 2010.
Eden, C. and Jung, T.: North Atlantic interdecadal variability: oceanic
response to the North Atlantic Oscillation (1865–1997), J. Clim., 14,
676–691, 2001.
Flatau, M. K., Talley, L., and Niiler, P. P.: The North Atlantic
Oscillation, surface current velocities, and SST changes in the subpolar
North Atlantic, J. Clim., 16, 2355–2369, https://doi.org/10.1175/2787.1, 2003.
Gastineau, G., D'Andrea, F., and Frankignoul, C.: Atmospheric response to the
North Atlantic Ocean variability on seasonal to decadal time scales, Clim.
Dynam., 40, 2311–2330, https://doi.org/10.1007/s00382-012-1333-0, 2012.
Gong, D. Y. and Wang, S. W.: The North Atlantic Oscillation index and its
interdecadal variability, Chin. J. Atmos. Sci., 24, 187–192,
https://doi.org/10.3878/j.issn.1006-9895.2000.02.07, 2000.
Han, Z., Luo, F. F., and Wan, J. H.: The observational influence of the
North Atlantic SST tripole on the early spring atmospheric circulation,
Geophys. Res. Lett., 43, 2998–3003, https://doi.org/10.1002/2016GL068099,
2016.
Hurrell, J. W. and Deser C.: North Atlantic climate variability: the role
of the North Atlantic Oscillation, J. Mar. Syst., 79, 231–244,
https://doi.org/10.1016/j.jmarsys.2009.11.002, 2009.
Jing, Y., Li, Y. C., Xu, Y. F., and Fan, G. Z.: Influences of different
definitions of the winter NAO index on NAO action centers and its
relationship with SST, Atmos. Ocean. Sci. Lett., 12, 320–328,
https://doi.org/10.1080/16742834.2019.1628607, 2019.
Jung, T., Hilmer, M., Ruprecht, E., Kleppek, S., Gulev, S. K., and Zolina,
O.: Characteristics of the recent eastward shift of interannual NAO
variability, J. Clim., 16, 3371–3382, 2003.
Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M.,
Saha, S., White, G., Woollen, J., Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo,
K. C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D.: The NCEP/NCAR 40-year reanalysis project, Bull. Am.
Meteorol. Soc., 77, 437–470, 1996.
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S. K., Hnilo, J. J.,
Fiorino, M., and Potter, G. L.: NCEP–DOE AMIP-II reanalysis (R-2), B. Am.
Meteor. Soc., 83, 1631–1643, https://doi.org/10.1175/BAMS-83-11-1631, 2002.
Kay, J. E., Deser C., Phillips, A., Mai, A., Hannay, C., Strand, G., Arblaster, J. M.,
Bates, S. C., Danabasoglu, G., Edwards, J., Holland, M., Kushner, P., Lamarque J. F. Lawrence, D.,
Lindsy, K., Middleton, A., Munoz, E., Neale, R., Oleson, K. Polvani, L., and Vertenstein, M.: The Community Earth System Model (CESM) Large
Ensemble Project: A Community Resource for Studying Climate Change in the
Presence of Internal Climate Variability, Bull. Am. Meteorol. Soc., 96,
1333–49, https://doi.org/10.1175/BAMS-D-13-00255.1, 2015.
Krahmann, G., Vsbeck, M., and Reverdin, G.: Formation and propagation of
temperature anomalies along the North Atlantic Current, J. Phys. Oceanogr.,
31, 1287–1303, 2001.
Liu, H. L., Wang, C. Z., Lee, S. K., and Enfield, D.: Atlantic warm pool
variability in the CMIP5 simulations, J. Clim., 26, 5315–5336,
https://doi.org/10.1175/JCLI-D-12-00556.1, 2013.
Marshall, G. J.: Trends in the Southern Annular Mode from observations
and reanalyses, J. Clim., 16, 4134–4143, 2003.
Moore, G. W. K., Renfrew, I. A., and Pickart, R. S.: Multidecadal mobility
of the North Atlantic Oscillation, J. Clim., 26, 2453–2466,
https://doi.org/10.1175/jcli-d-12-00023.1, 2013.
Pokorná, L. and Huth. R.: Climate impacts of the NAO are sensitive to
how the NAO is defined, Theor. Appl. Climatol., 119, 639–652,
https://doi.org/10.1007/s00704-014-1116-0, 2015.
Rayner, N. A., Parker, D. E., Horton, E. B., Folland, C. K., Alexander, L.
V., Rowell, D. P., Kent, E. C., and Kaplan, A.: Global analyses of sea
surface temperature, sea ice, and night marine air temperature since the
late nineteenth century, J. Geophys. Res., 108, 4407,
https://doi.org/10.1029/2002JD002670, 2003.
Rivière, G. and Orlanski, I.: Characteristics of the Atlantic
storm-track eddy activity and its relation with the North Atlantic
Oscillation, J. Atmos. Sci., 64, 241–266,
https://doi.org/10.1175/jas3850.1, 2007.
Scaife, A. A. and Smith. D.: A signal-to-noise paradox in climate science,
NPJ Clim. Atmos. Sci., 1, 1–7,
https://doi.org/10.1038/s41612-018-0038-4, 2018.
Siqueira, L. and Kirtman B. P.: Atlantic near-term climate variability and
the role of a resolved Gulf Stream, Geophys. Res. Lett., 43, 3964–3972,
https://doi.org/10.1002/2016GL068694, 2016.
Smith, D. M., Scaife, A. A., Eade, R., Athanasiadis, P., Bellucci, A., Bethke, I., Bilbao,
R., Borchert, L. F., Caron, L. P., Counillon, F., Danabasoglu, G., Delworth, T., Doblas-Reyes, F. J.,
Dunstone, N. J., Estella-Perez, V., Flavoni, S., Hermanson, L., Keenlyside, N., Kharin, V., Kimoto, M.,
Merryfield, W. J., Mignot, J., Mochizuki, T., Modali, K.,. Monerie, P. A., Müller, W. A., Nicolí, D.,
Ortega, P., Pankatz, K., Pohlmann, H., Robson, J., Ruggieri, P., Sospedra-Alfonso, R., Swingedouw, D.,
Wang, Y., Wild, S., Yeager, S., Yang, X., and Zhang, L.: North Atlantic climate far more predictable
than models imply, Nature, 583, 796–800,
https://doi.org/10.1038/s41586-020-2525-0, 2020.
Stoner, A. M. K., Hayhoe, K., and Wuebbles, D. J.: Assessing general
circulation model simulations of atmospheric teleconnection patterns, J.
Clim., 22, 4348–4372, https://doi.org/10.1175/2009JCLI2577.1, 2009.
Sun, C., Li, J. P., and Jin, F. F.: A delayed oscillator model for the
quasi-periodic multidecadal variability of the NAO, Clim. Dynam., 45,
2083–2099, 2015.
Sutton, R. and Mathieu, P. P.: Response of the atmosphere–ocean
mixed-layer system to anomalous ocean heat-flux convergence, Q. J. Roy.
Meteorol. Soc., 128, 1259–1275,
https://doi.org/10.1256/003590002320373283, 2002.
Taylor, K. E., Stouffer, R. J., and Meehl, G. A.: An overview of CMIP5 and
the experiment design, Bull. Am. Meteorol. Soc., 93, 485–498,
https://doi.org/10.1175/BAMS-D-11-00094.1, 2012
Trigo, R. M., Osborn, T. J., and Corte-Real, J. M.: The North Atlantic
Oscillation influence on Europe: climate impacts and associated physical
mechanisms, Clim. Res., 20, 9–17, 2002.
Visbeck, M., Chassignet, E. P., Curry, R. G., Delworth, T. L., Dickson, R.
R., and Krahmann, K.: The ocean's response to North Atlantic Oscillation
variability, American Geophysicall Union,
USA, 113–145, https://doi.org/10.1029/134GM06, 2003.
Walker, G. T.: Correlation in seasonal variations of weather-A further study
of world weather, Mon. Weather Rev., 53, 252–254, 1924.
Walter, K. and Graf, H. F.: On the changing nature of the regional
connection between the North Atlantic Oscillation and sea surface
temperature, J. Geophys. Res., 107, 7–13,
https://doi.org/10.1029/2001jd000850, 2002.
Wang, G., Dommenget, D., and Frauen, C.: An evaluation of the CMIP3 and CMIP5
simulations in their skill of simulating the spatial structure of SST
variability, Clim. Dynam., 44, 95–114. https://doi.org/10.1007/s00382-014-2154-0, 2014a.
Wang, C. Z, Zhang, L. P., Lee, S. K., Wu, L. X., and Mechoso, C. R.: A
global perspective on CMIP5 climate model biases, Nat. Clim. Change, 4,
201–205, https://doi.org/10.1038/nclimate2118, 2014b.
Wang, X. F., Li, J. P., Sun, C., and Liu T.: NAO and its relationship with
the Northern Hemisphere mean surface temperature in CMIP5 simulations, J.
Geophys. Res.-Atmos., 122, 4202—4227, https://doi.org/10.1002/2016JD025979, 2017.
Wen, N., Liu, Z. Y., Liu, Q. Y., and Frankignoul, C.: Observations of SST, heat
flux and North Atlantic Ocean-atmosphere interaction, Geophys. Res. Lett.,
322, 348–362, https://doi.org/10.1029/2005GL024871, 2005.
Woollings, T., Franzke, C., Hodson, D. L. R., Dong, B., Barnes, E. A.,
Raible C. C., and Pinto, J. G.: Contrasting interannual and multidecadal NAO
variability, Clim. Dynam., 45, 539–556,
https://doi.org/10.1007/s00382-014-2237-y, 2014.
Yu, L. and Weller, R. A.: Objectively analyzed air–sea heat fluxes for the
global ice-free oceans (1981–2005), Bull. Am. Meteorol. Soc., 88, 527–540,
https://doi.org/10.1175/BAMS-88-4-527, 2007
Yulaeva, E., Schneider, N., Pierce D., and Barnett T.: Modeling of North
Pacific climate variability forced by oceanic heat flux anomalies, J. Clim.,
14, 4027–4046, https://doi.org/10.1175/1520-0442(2001)0142.0.CO;2, 2001.
Zheng, F., Li, J. P., Clark, R. T., and Nnamchi, H. C.: Simulation and
projection of the Southern Hemisphere annular mode in CMIP5 models, J.
Clim., 26, 9860–9879, 2013.
Zhou, T. J., Yu, R., Gao, Y., and Helge, D.: Ocean-atmosphere coupled model
simulation of North Atlantic interannual variability I: Local air-sea
interaction, Acta Meteorol. Sin., 64, 18–29, 2006.
Short summary
The performance of Earth system models should be evaluated before their application for the study of climate change. We assessed the relationship between the NAO and winter sea surface temperature (SST) of the North Atlantic (NA) simulated by 13 CMIP5 models. There are some unrealistic links between the SST and NAO-driven turbulent heat fluxes in some models, which leads to the deviation of the simulated locations of response centers of the SST to the NAO in the subpolar NA.
The performance of Earth system models should be evaluated before their application for the...