Articles | Volume 16, issue 5
https://doi.org/10.5194/os-16-1225-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-16-1225-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Properties and dynamics of mesoscale eddies in Fram Strait from a comparison between two high-resolution ocean–sea ice models
Claudia Wekerle
CORRESPONDING AUTHOR
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
Tore Hattermann
Norwegian Polar Institute, Tromsø, Norway
Energy and Climate Group, Department of Physics and Technology, The Arctic University of Tromsø, Tromsø, Norway
Qiang Wang
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
Laura Crews
School of Oceanography, University of Washington, Seattle, USA
Applied Physics Laboratory, University of Washington, Seattle, USA
Wilken-Jon von Appen
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
Sergey Danilov
Alfred-Wegener-Institut Helmholtz-Zentrum für Polar- und Meeresforschung, Bremerhaven, Germany
Related authors
Torsten Kanzow, Angelika Humbert, Thomas Mölg, Mirko Scheinert, Matthias Braun, Hans Burchard, Francesca Doglioni, Philipp Hochreuther, Martin Horwath, Oliver Huhn, Jürgen Kusche, Erik Loebel, Katrina Lutz, Ben Marzeion, Rebecca McPherson, Mahdi Mohammadi-Aragh, Marco Möller, Carolyne Pickler, Markus Reinert, Monika Rhein, Martin Rückamp, Janin Schaffer, Muhammad Shafeeque, Sophie Stolzenberger, Ralph Timmermann, Jenny Turton, Claudia Wekerle, and Ole Zeising
EGUsphere, https://doi.org/10.5194/egusphere-2024-757, https://doi.org/10.5194/egusphere-2024-757, 2024
Short summary
Short summary
The Greenland Ice Sheet represents the second-largest contributor to global sea-level rise. We quantify atmosphere, ice and ocean-based processes related to the mass balance of glaciers in Northeast Greenland, focusing on Greenland’s largest floating ice tongue, the 79N Glacier. We find that together, the different in situ and remote sensing observations and model simulations to reveal a consistent picture of a coupled atmosphere-ice sheet-ocean system, that has entered a phase of major change.
Cara Nissen, Ralph Timmermann, Mathias van Caspel, and Claudia Wekerle
Ocean Sci., 20, 85–101, https://doi.org/10.5194/os-20-85-2024, https://doi.org/10.5194/os-20-85-2024, 2024
Short summary
Short summary
The southeastern Weddell Sea is important for global ocean circulation due to the cross-shelf-break exchange of Dense Shelf Water and Warm Deep Water, but their exact circulation pathways remain elusive. Using Lagrangian model experiments in an eddy-permitting ocean model, we show how present circulation pathways and transit times of these water masses on the continental shelf are altered by 21st-century climate change, which has implications for local ice-shelf basal melt rates and ecosystems.
Qiang Wang, Sergey Danilov, Longjiang Mu, Dmitry Sidorenko, and Claudia Wekerle
The Cryosphere, 15, 4703–4725, https://doi.org/10.5194/tc-15-4703-2021, https://doi.org/10.5194/tc-15-4703-2021, 2021
Short summary
Short summary
Using simulations, we found that changes in ocean freshwater content induced by wind perturbations can significantly affect the Arctic sea ice drift, thickness, concentration and deformation rates years after the wind perturbations. The impact is through changes in sea surface height and surface geostrophic currents and the most pronounced in warm seasons. Such a lasting impact might become stronger in a warming climate and implies the importance of ocean initialization in sea ice prediction.
Felix L. Müller, Denise Dettmering, Claudia Wekerle, Christian Schwatke, Marcello Passaro, Wolfgang Bosch, and Florian Seitz
Earth Syst. Sci. Data, 11, 1765–1781, https://doi.org/10.5194/essd-11-1765-2019, https://doi.org/10.5194/essd-11-1765-2019, 2019
Short summary
Short summary
Polar regions by satellite-altimetry-derived geostrophic currents (GCs) suffer from irregular and sparse data coverage. Therefore, a new dataset is presented, combining along-track derived dynamic ocean topography (DOT) heights with simulated differential water heights. For this purpose, a combination method, based on principal component analysis, is used. The results are combined with spatio-temporally consistent DOT and derived GC representations on unstructured, triangular formulated grids.
Felix L. Müller, Claudia Wekerle, Denise Dettmering, Marcello Passaro, Wolfgang Bosch, and Florian Seitz
The Cryosphere, 13, 611–626, https://doi.org/10.5194/tc-13-611-2019, https://doi.org/10.5194/tc-13-611-2019, 2019
Short summary
Short summary
Knowledge of the dynamic ocean topography (DOT) enables studying changes of ocean surface currents. The DOT can be derived by satellite altimetry measurements or by models. However, in polar regions, altimetry-derived sea surface heights are affected by sea ice. Model representations are consistent but impacted by the underlying functional backgrounds and forcing models. The present study compares results from both data sources in order to investigate the potential for a combination of the two.
Maren Elisabeth Richter, Wilken-Jon von Appen, and Claudia Wekerle
Ocean Sci., 14, 1147–1165, https://doi.org/10.5194/os-14-1147-2018, https://doi.org/10.5194/os-14-1147-2018, 2018
Short summary
Short summary
In the Fram Strait, Arctic Ocean outflow is joined by Atlantic Water (AW) that has not flowed through the Arctic Ocean. The confluence creates a density gradient which steepens and draws closer to the east Greenland shelf break from N to S. This brings the warm AW closer to the shelf break. South of 79° N, AW has reached the shelf break and the East Greenland Current has formed. When AW reaches the Greenland shelf it may propagate through troughs to glacier termini and contribute to glacier melt.
Qiang Wang, Claudia Wekerle, Sergey Danilov, Xuezhu Wang, and Thomas Jung
Geosci. Model Dev., 11, 1229–1255, https://doi.org/10.5194/gmd-11-1229-2018, https://doi.org/10.5194/gmd-11-1229-2018, 2018
Short summary
Short summary
For developing a system for Arctic research, we evaluate the Arctic Ocean simulated by FESOM. We use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer. The high resolution also improves the ocean surface circulation, mainly through a better representation of the Canadian Arctic Archipelago.
Qin Zhou, Chen Zhao, Rupert Gladstone, Tore Hattermann, David Gwyther, and Benjamin Galton-Fenzi
Geosci. Model Dev., 17, 8243–8265, https://doi.org/10.5194/gmd-17-8243-2024, https://doi.org/10.5194/gmd-17-8243-2024, 2024
Short summary
Short summary
We introduce an accelerated forcing approach to address timescale discrepancies between the ice sheets and ocean components in coupled modelling by reducing the ocean simulation duration. The approach is evaluated using idealized coupled models, and its limitations in real-world applications are discussed. Our results suggest it can be a valuable tool for process-oriented coupled ice sheet–ocean modelling and downscaling climate simulations with such models.
Tridib Banerjee, Patrick Scholz, Sergey Danilov, Knut Klingbeil, and Dmitry Sidorenko
Geosci. Model Dev., 17, 7051–7065, https://doi.org/10.5194/gmd-17-7051-2024, https://doi.org/10.5194/gmd-17-7051-2024, 2024
Short summary
Short summary
In this paper we propose a new alternative to one of the functionalities of the sea ice model FESOM2. The alternative we propose allows the model to capture and simulate fast changes in quantities like sea surface elevation more accurately. We also demonstrate that the new alternative is faster and more adept at taking advantages of highly parallelized computing infrastructure. We therefore show that this new alternative is a great addition to the sea ice model FESOM2.
Ja-Yeon Moon, Jan Streffing, Sun-Seon Lee, Tido Semmler, Miguel Andrés-Martínez, Jiao Chen, Eun-Byeoul Cho, Jung-Eun Chu, Christian Franzke, Jan P. Gärtner, Rohit Ghosh, Jan Hegewald, Songyee Hong, Nikolay Koldunov, June-Yi Lee, Zihao Lin, Chao Liu, Svetlana Loza, Wonsun Park, Woncheol Roh, Dmitry V. Sein, Sahil Sharma, Dmitry Sidorenko, Jun-Hyeok Son, Malte F. Stuecker, Qiang Wang, Gyuseok Yi, Martina Zapponini, Thomas Jung, and Axel Timmermann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2491, https://doi.org/10.5194/egusphere-2024-2491, 2024
Short summary
Short summary
Based on a series of storm-resolving greenhouse warming simulations conducted with the AWI-CM3 model at 9 km global atmosphere, 4–25 km ocean resolution, we present new projections of regional climate change, modes of climate variability and extreme events. The 10-year-long high resolution simulations for the 2000s, 2030s, 2060s, 2090s were initialized from a coarser resolution transient run (31 km atmosphere) which follows the SSP5-8.5 greenhouse gas emission scenario from 1950–2100 CE.
Ole Zeising, Tore Hattermann, Lars Kaleschke, Sophie Berger, Reinhard Drews, M. Reza Ershadi, Tanja Fromm, Frank Pattyn, Daniel Steinhage, and Olaf Eisen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2109, https://doi.org/10.5194/egusphere-2024-2109, 2024
Short summary
Short summary
Basal melting of ice shelves impacts the mass loss of the Antarctic Ice Sheet. This study focuses on the Ekström Ice Shelf in East Antarctica, using multi-year data from an autonomous radar system. Results show a surprising seasonal pattern of high melt rates in winter and spring. Sea-ice growth correlates with melt rates, indicating that in winter, dense water enhances plume activity and melt rates. Understanding these dynamics is crucial for improving future mass balance projections.
Kacper Nowak, Sergey Danilov, Vasco Müller, and Caili Liu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1119, https://doi.org/10.5194/egusphere-2024-1119, 2024
Short summary
Short summary
A new method called coarse-graining scale analysis is gaining traction as an alternative to Fourier analysis. However, it requires data to be on a regular grid. To address this, we present a high-performance Python package of coarse-graining technique using discrete Laplacians. This method can handle any mesh type and is ideal for processing output directly from unstructured-mesh models. Computation is split into preparation and solving phases, with GPU acceleration ensuring fast processing.
Swantje Bastin, Aleksei Koldunov, Florian Schütte, Oliver Gutjahr, Marta Agnieszka Mrozowska, Tim Fischer, Radomyra Shevchenko, Arjun Kumar, Nikolay Koldunov, Helmuth Haak, Nils Brüggemann, Rebecca Hummels, Mia Sophie Specht, Johann Jungclaus, Sergey Danilov, Marcus Dengler, and Markus Jochum
EGUsphere, https://doi.org/10.5194/egusphere-2024-2281, https://doi.org/10.5194/egusphere-2024-2281, 2024
Short summary
Short summary
Vertical mixing is an important process e.g. for tropical sea surface temperature, but cannot be resolved by ocean models. Comparisons of mixing schemes and settings have usually been done with a single model, sometimes yielding conflicting results. We systematically compare two widely used schemes, TKE and KPP, with different parameter settings, in two different ocean models, and show that most effects from mixing scheme parameter changes are model dependent.
Torsten Kanzow, Angelika Humbert, Thomas Mölg, Mirko Scheinert, Matthias Braun, Hans Burchard, Francesca Doglioni, Philipp Hochreuther, Martin Horwath, Oliver Huhn, Jürgen Kusche, Erik Loebel, Katrina Lutz, Ben Marzeion, Rebecca McPherson, Mahdi Mohammadi-Aragh, Marco Möller, Carolyne Pickler, Markus Reinert, Monika Rhein, Martin Rückamp, Janin Schaffer, Muhammad Shafeeque, Sophie Stolzenberger, Ralph Timmermann, Jenny Turton, Claudia Wekerle, and Ole Zeising
EGUsphere, https://doi.org/10.5194/egusphere-2024-757, https://doi.org/10.5194/egusphere-2024-757, 2024
Short summary
Short summary
The Greenland Ice Sheet represents the second-largest contributor to global sea-level rise. We quantify atmosphere, ice and ocean-based processes related to the mass balance of glaciers in Northeast Greenland, focusing on Greenland’s largest floating ice tongue, the 79N Glacier. We find that together, the different in situ and remote sensing observations and model simulations to reveal a consistent picture of a coupled atmosphere-ice sheet-ocean system, that has entered a phase of major change.
Julius Lauber, Tore Hattermann, Laura de Steur, Elin Darelius, and Agneta Fransson
EGUsphere, https://doi.org/10.5194/egusphere-2024-904, https://doi.org/10.5194/egusphere-2024-904, 2024
Short summary
Short summary
Recent studies have highlighted the potential vulnerability of the East Antarctic Ice Sheet to atmospheric and oceanic changes. We present new insights from observations from three oceanic moorings below Fimbulisen Ice Shelf from 2009 to 2021. We find that relatively warm water masses reach below the ice shelf both close to the surface and at depth with implications for the basal melting of Fimbulisen.
Sergey Danilov, Carolin Mehlmann, Dmitry Sidorenko, and Qiang Wang
Geosci. Model Dev., 17, 2287–2297, https://doi.org/10.5194/gmd-17-2287-2024, https://doi.org/10.5194/gmd-17-2287-2024, 2024
Short summary
Short summary
Sea ice models are a necessary component of climate models. At very high resolution they are capable of simulating linear kinematic features, such as leads, which are important for better prediction of heat exchanges between the ocean and atmosphere. Two new discretizations are described which improve the sea ice component of the Finite volumE Sea ice–Ocean Model (FESOM version 2) by allowing simulations of finer scales.
Cara Nissen, Ralph Timmermann, Mathias van Caspel, and Claudia Wekerle
Ocean Sci., 20, 85–101, https://doi.org/10.5194/os-20-85-2024, https://doi.org/10.5194/os-20-85-2024, 2024
Short summary
Short summary
The southeastern Weddell Sea is important for global ocean circulation due to the cross-shelf-break exchange of Dense Shelf Water and Warm Deep Water, but their exact circulation pathways remain elusive. Using Lagrangian model experiments in an eddy-permitting ocean model, we show how present circulation pathways and transit times of these water masses on the continental shelf are altered by 21st-century climate change, which has implications for local ice-shelf basal melt rates and ecosystems.
Qiang Wang, Qi Shu, Alexandra Bozec, Eric P. Chassignet, Pier Giuseppe Fogli, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Nikolay Koldunov, Julien Le Sommer, Yiwen Li, Pengfei Lin, Hailong Liu, Igor Polyakov, Patrick Scholz, Dmitry Sidorenko, Shizhu Wang, and Xiaobiao Xu
Geosci. Model Dev., 17, 347–379, https://doi.org/10.5194/gmd-17-347-2024, https://doi.org/10.5194/gmd-17-347-2024, 2024
Short summary
Short summary
Increasing resolution improves model skills in simulating the Arctic Ocean, but other factors such as parameterizations and numerics are at least of the same importance for obtaining reliable simulations.
Neil C. Swart, Torge Martin, Rebecca Beadling, Jia-Jia Chen, Christopher Danek, Matthew H. England, Riccardo Farneti, Stephen M. Griffies, Tore Hattermann, Judith Hauck, F. Alexander Haumann, André Jüling, Qian Li, John Marshall, Morven Muilwijk, Andrew G. Pauling, Ariaan Purich, Inga J. Smith, and Max Thomas
Geosci. Model Dev., 16, 7289–7309, https://doi.org/10.5194/gmd-16-7289-2023, https://doi.org/10.5194/gmd-16-7289-2023, 2023
Short summary
Short summary
Current climate models typically do not include full representation of ice sheets. As the climate warms and the ice sheets melt, they add freshwater to the ocean. This freshwater can influence climate change, for example by causing more sea ice to form. In this paper we propose a set of experiments to test the influence of this missing meltwater from Antarctica using multiple different climate models.
Abhay Prakash, Qin Zhou, Tore Hattermann, and Nina Kirchner
The Cryosphere, 17, 5255–5281, https://doi.org/10.5194/tc-17-5255-2023, https://doi.org/10.5194/tc-17-5255-2023, 2023
Short summary
Short summary
Sea ice arch formation in the Nares Strait has shielded the Petermann Glacier ice shelf from enhanced basal melting. However, with the sustained decline of the Arctic sea ice predicted to continue, the ice shelf is likely to be exposed to a year-round mobile and thin sea ice cover. In such a scenario, our modelled results show that elevated temperatures, and more importantly, a stronger ocean circulation in the ice shelf cavity, could result in up to two-thirds increase in basal melt.
Hélène Seroussi, Vincent Verjans, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Peter Van Katwyk, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 17, 5197–5217, https://doi.org/10.5194/tc-17-5197-2023, https://doi.org/10.5194/tc-17-5197-2023, 2023
Short summary
Short summary
Mass loss from Antarctica is a key contributor to sea level rise over the 21st century, and the associated uncertainty dominates sea level projections. We highlight here the Antarctic glaciers showing the largest changes and quantify the main sources of uncertainty in their future evolution using an ensemble of ice flow models. We show that on top of Pine Island and Thwaites glaciers, Totten and Moscow University glaciers show rapid changes and a strong sensitivity to warmer ocean conditions.
Xiaoxu Shi, Alexandre Cauquoin, Gerrit Lohmann, Lukas Jonkers, Qiang Wang, Hu Yang, Yuchen Sun, and Martin Werner
Geosci. Model Dev., 16, 5153–5178, https://doi.org/10.5194/gmd-16-5153-2023, https://doi.org/10.5194/gmd-16-5153-2023, 2023
Short summary
Short summary
We developed a new climate model with isotopic capabilities and simulated the pre-industrial and mid-Holocene periods. Despite certain regional model biases, the modeled isotope composition is in good agreement with observations and reconstructions. Based on our analyses, the observed isotope–temperature relationship in polar regions may have a summertime bias. Using daily model outputs, we developed a novel isotope-based approach to determine the onset date of the West African summer monsoon.
Anne Marie Treguier, Clement de Boyer Montégut, Alexandra Bozec, Eric P. Chassignet, Baylor Fox-Kemper, Andy McC. Hogg, Doroteaciro Iovino, Andrew E. Kiss, Julien Le Sommer, Yiwen Li, Pengfei Lin, Camille Lique, Hailong Liu, Guillaume Serazin, Dmitry Sidorenko, Qiang Wang, Xiaobio Xu, and Steve Yeager
Geosci. Model Dev., 16, 3849–3872, https://doi.org/10.5194/gmd-16-3849-2023, https://doi.org/10.5194/gmd-16-3849-2023, 2023
Short summary
Short summary
The ocean mixed layer is the interface between the ocean interior and the atmosphere and plays a key role in climate variability. We evaluate the performance of the new generation of ocean models for climate studies, designed to resolve
ocean eddies, which are the largest source of ocean variability and modulate the mixed-layer properties. We find that the mixed-layer depth is better represented in eddy-rich models but, unfortunately, not uniformly across the globe and not in all models.
Qi Shu, Qiang Wang, Chuncheng Guo, Zhenya Song, Shizhu Wang, Yan He, and Fangli Qiao
Geosci. Model Dev., 16, 2539–2563, https://doi.org/10.5194/gmd-16-2539-2023, https://doi.org/10.5194/gmd-16-2539-2023, 2023
Short summary
Short summary
Ocean models are often used for scientific studies on the Arctic Ocean. Here the Arctic Ocean simulations by state-of-the-art global ocean–sea-ice models participating in the Ocean Model Intercomparison Project (OMIP) were evaluated. The simulations on Arctic Ocean hydrography, freshwater content, stratification, sea surface height, and gateway transports were assessed and the common biases were detected. The simulations forced by different atmospheric forcing were also evaluated.
Julian Gutt, Stefanie Arndt, David Keith Alan Barnes, Horst Bornemann, Thomas Brey, Olaf Eisen, Hauke Flores, Huw Griffiths, Christian Haas, Stefan Hain, Tore Hattermann, Christoph Held, Mario Hoppema, Enrique Isla, Markus Janout, Céline Le Bohec, Heike Link, Felix Christopher Mark, Sebastien Moreau, Scarlett Trimborn, Ilse van Opzeeland, Hans-Otto Pörtner, Fokje Schaafsma, Katharina Teschke, Sandra Tippenhauer, Anton Van de Putte, Mia Wege, Daniel Zitterbart, and Dieter Piepenburg
Biogeosciences, 19, 5313–5342, https://doi.org/10.5194/bg-19-5313-2022, https://doi.org/10.5194/bg-19-5313-2022, 2022
Short summary
Short summary
Long-term ecological observations are key to assess, understand and predict impacts of environmental change on biotas. We present a multidisciplinary framework for such largely lacking investigations in the East Antarctic Southern Ocean, combined with case studies, experimental and modelling work. As climate change is still minor here but is projected to start soon, the timely implementation of this framework provides the unique opportunity to document its ecological impacts from the very onset.
Jan Streffing, Dmitry Sidorenko, Tido Semmler, Lorenzo Zampieri, Patrick Scholz, Miguel Andrés-Martínez, Nikolay Koldunov, Thomas Rackow, Joakim Kjellsson, Helge Goessling, Marylou Athanase, Qiang Wang, Jan Hegewald, Dmitry V. Sein, Longjiang Mu, Uwe Fladrich, Dirk Barbi, Paul Gierz, Sergey Danilov, Stephan Juricke, Gerrit Lohmann, and Thomas Jung
Geosci. Model Dev., 15, 6399–6427, https://doi.org/10.5194/gmd-15-6399-2022, https://doi.org/10.5194/gmd-15-6399-2022, 2022
Short summary
Short summary
We developed a new atmosphere–ocean coupled climate model, AWI-CM3. Our model is significantly more computationally efficient than its predecessors AWI-CM1 and AWI-CM2. We show that the model, although cheaper to run, provides results of similar quality when modeling the historic period from 1850 to 2014. We identify the remaining weaknesses to outline future work. Finally we preview an improved simulation where the reduction in computational cost has to be invested in higher model resolution.
Takaya Uchida, Julien Le Sommer, Charles Stern, Ryan P. Abernathey, Chris Holdgraf, Aurélie Albert, Laurent Brodeau, Eric P. Chassignet, Xiaobiao Xu, Jonathan Gula, Guillaume Roullet, Nikolay Koldunov, Sergey Danilov, Qiang Wang, Dimitris Menemenlis, Clément Bricaud, Brian K. Arbic, Jay F. Shriver, Fangli Qiao, Bin Xiao, Arne Biastoch, René Schubert, Baylor Fox-Kemper, William K. Dewar, and Alan Wallcraft
Geosci. Model Dev., 15, 5829–5856, https://doi.org/10.5194/gmd-15-5829-2022, https://doi.org/10.5194/gmd-15-5829-2022, 2022
Short summary
Short summary
Ocean and climate scientists have used numerical simulations as a tool to examine the ocean and climate system since the 1970s. Since then, owing to the continuous increase in computational power and advances in numerical methods, we have been able to simulate increasing complex phenomena. However, the fidelity of the simulations in representing the phenomena remains a core issue in the ocean science community. Here we propose a cloud-based framework to inter-compare and assess such simulations.
Chen Zhao, Rupert Gladstone, Benjamin Keith Galton-Fenzi, David Gwyther, and Tore Hattermann
Geosci. Model Dev., 15, 5421–5439, https://doi.org/10.5194/gmd-15-5421-2022, https://doi.org/10.5194/gmd-15-5421-2022, 2022
Short summary
Short summary
We use a coupled ice–ocean model to explore an oscillation feature found in several contributing models to MISOMIP1. The oscillation is closely related to the discretized grounding line retreat and likely strengthened by the buoyancy–melt feedback and/or melt–geometry feedback near the grounding line, and frequent ice–ocean coupling. Our model choices have a non-trivial impact on mean melt and ocean circulation strength, which might be interesting for the coupled ice–ocean community.
Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, Qiang Wang, Nikolay Koldunov, Dmitry Sein, and Thomas Jung
Geosci. Model Dev., 15, 335–363, https://doi.org/10.5194/gmd-15-335-2022, https://doi.org/10.5194/gmd-15-335-2022, 2022
Short summary
Short summary
Structured-mesh ocean models are still the most mature in terms of functionality due to their long development history. However, unstructured-mesh ocean models have acquired new features and caught up in their functionality. This paper continues the work by Scholz et al. (2019) of documenting the features available in FESOM2.0. It focuses on the following two aspects: (i) partial bottom cells and embedded sea ice and (ii) dealing with mixing parameterisations enabled by using the CVMix package.
Vera Fofonova, Tuomas Kärnä, Knut Klingbeil, Alexey Androsov, Ivan Kuznetsov, Dmitry Sidorenko, Sergey Danilov, Hans Burchard, and Karen Helen Wiltshire
Geosci. Model Dev., 14, 6945–6975, https://doi.org/10.5194/gmd-14-6945-2021, https://doi.org/10.5194/gmd-14-6945-2021, 2021
Short summary
Short summary
We present a test case of river plume spreading to evaluate coastal ocean models. Our test case reveals the level of numerical mixing (due to parameterizations used and numerical treatment of processes in the model) and the ability of models to reproduce complex dynamics. The major result of our comparative study is that accuracy in reproducing the analytical solution depends less on the type of applied model architecture or numerical grid than it does on the type of advection scheme.
Qiang Wang, Sergey Danilov, Longjiang Mu, Dmitry Sidorenko, and Claudia Wekerle
The Cryosphere, 15, 4703–4725, https://doi.org/10.5194/tc-15-4703-2021, https://doi.org/10.5194/tc-15-4703-2021, 2021
Short summary
Short summary
Using simulations, we found that changes in ocean freshwater content induced by wind perturbations can significantly affect the Arctic sea ice drift, thickness, concentration and deformation rates years after the wind perturbations. The impact is through changes in sea surface height and surface geostrophic currents and the most pronounced in warm seasons. Such a lasting impact might become stronger in a warming climate and implies the importance of ocean initialization in sea ice prediction.
Coen Hofstede, Sebastian Beyer, Hugh Corr, Olaf Eisen, Tore Hattermann, Veit Helm, Niklas Neckel, Emma C. Smith, Daniel Steinhage, Ole Zeising, and Angelika Humbert
The Cryosphere, 15, 1517–1535, https://doi.org/10.5194/tc-15-1517-2021, https://doi.org/10.5194/tc-15-1517-2021, 2021
Short summary
Short summary
Support Force Glacier rapidly flows into Filcher Ice Shelf of Antarctica. As we know little about this glacier and its subglacial drainage, we used seismic energy to map the transition area from grounded to floating ice where a drainage channel enters the ocean cavity. Soft sediments close to the grounding line are probably transported by this drainage channel. The constant ice thickness over the steeply dipping seabed of the ocean cavity suggests a stable transition and little basal melting.
Tingfeng Dou, Cunde Xiao, Jiping Liu, Qiang Wang, Shifeng Pan, Jie Su, Xiaojun Yuan, Minghu Ding, Feng Zhang, Kai Xue, Peter A. Bieniek, and Hajo Eicken
The Cryosphere, 15, 883–895, https://doi.org/10.5194/tc-15-883-2021, https://doi.org/10.5194/tc-15-883-2021, 2021
Short summary
Short summary
Rain-on-snow (ROS) events can accelerate the surface ablation of sea ice, greatly influencing the ice–albedo feedback. We found that spring ROS events have shifted to earlier dates over the Arctic Ocean in recent decades, which is correlated with sea ice melt onset in the Pacific sector and most Eurasian marginal seas. There has been a clear transition from solid to liquid precipitation, leading to a reduction in spring snow depth on sea ice by more than −0.5 cm per decade since the 1980s.
Rupert Gladstone, Benjamin Galton-Fenzi, David Gwyther, Qin Zhou, Tore Hattermann, Chen Zhao, Lenneke Jong, Yuwei Xia, Xiaoran Guo, Konstantinos Petrakopoulos, Thomas Zwinger, Daniel Shapero, and John Moore
Geosci. Model Dev., 14, 889–905, https://doi.org/10.5194/gmd-14-889-2021, https://doi.org/10.5194/gmd-14-889-2021, 2021
Short summary
Short summary
Retreat of the Antarctic ice sheet, and hence its contribution to sea level rise, is highly sensitive to melting of its floating ice shelves. This melt is caused by warm ocean currents coming into contact with the ice. Computer models used for future ice sheet projections are not able to realistically evolve these melt rates. We describe a new coupling framework to enable ice sheet and ocean computer models to interact, allowing projection of the evolution of melt and its impact on sea level.
Eric P. Chassignet, Stephen G. Yeager, Baylor Fox-Kemper, Alexandra Bozec, Frederic Castruccio, Gokhan Danabasoglu, Christopher Horvat, Who M. Kim, Nikolay Koldunov, Yiwen Li, Pengfei Lin, Hailong Liu, Dmitry V. Sein, Dmitry Sidorenko, Qiang Wang, and Xiaobiao Xu
Geosci. Model Dev., 13, 4595–4637, https://doi.org/10.5194/gmd-13-4595-2020, https://doi.org/10.5194/gmd-13-4595-2020, 2020
Short summary
Short summary
This paper presents global comparisons of fundamental global climate variables from a suite of four pairs of matched low- and high-resolution ocean and sea ice simulations to assess the robustness of climate-relevant improvements in ocean simulations associated with moving from coarse (∼1°) to eddy-resolving (∼0.1°) horizontal resolutions. Despite significant improvements, greatly enhanced horizontal resolution does not deliver unambiguous bias reduction in all regions for all models.
Nicolas C. Jourdain, Xylar Asay-Davis, Tore Hattermann, Fiammetta Straneo, Hélène Seroussi, Christopher M. Little, and Sophie Nowicki
The Cryosphere, 14, 3111–3134, https://doi.org/10.5194/tc-14-3111-2020, https://doi.org/10.5194/tc-14-3111-2020, 2020
Short summary
Short summary
To predict the future Antarctic contribution to sea level rise, we need to use ice sheet models. The Ice Sheet Model Intercomparison Project for AR6 (ISMIP6) builds an ensemble of ice sheet projections constrained by atmosphere and ocean projections from the 6th Coupled Model Intercomparison Project (CMIP6). In this work, we present and assess a method to derive ice shelf basal melting in ISMIP6 from the CMIP6 ocean outputs, and we give examples of projected melt rates.
Hélène Seroussi, Sophie Nowicki, Antony J. Payne, Heiko Goelzer, William H. Lipscomb, Ayako Abe-Ouchi, Cécile Agosta, Torsten Albrecht, Xylar Asay-Davis, Alice Barthel, Reinhard Calov, Richard Cullather, Christophe Dumas, Benjamin K. Galton-Fenzi, Rupert Gladstone, Nicholas R. Golledge, Jonathan M. Gregory, Ralf Greve, Tore Hattermann, Matthew J. Hoffman, Angelika Humbert, Philippe Huybrechts, Nicolas C. Jourdain, Thomas Kleiner, Eric Larour, Gunter R. Leguy, Daniel P. Lowry, Chistopher M. Little, Mathieu Morlighem, Frank Pattyn, Tyler Pelle, Stephen F. Price, Aurélien Quiquet, Ronja Reese, Nicole-Jeanne Schlegel, Andrew Shepherd, Erika Simon, Robin S. Smith, Fiammetta Straneo, Sainan Sun, Luke D. Trusel, Jonas Van Breedam, Roderik S. W. van de Wal, Ricarda Winkelmann, Chen Zhao, Tong Zhang, and Thomas Zwinger
The Cryosphere, 14, 3033–3070, https://doi.org/10.5194/tc-14-3033-2020, https://doi.org/10.5194/tc-14-3033-2020, 2020
Short summary
Short summary
The Antarctic ice sheet has been losing mass over at least the past 3 decades in response to changes in atmospheric and oceanic conditions. This study presents an ensemble of model simulations of the Antarctic evolution over the 2015–2100 period based on various ice sheet models, climate forcings and emission scenarios. Results suggest that the West Antarctic ice sheet will continue losing a large amount of ice, while the East Antarctic ice sheet could experience increased snow accumulation.
Hiroyuki Tsujino, L. Shogo Urakawa, Stephen M. Griffies, Gokhan Danabasoglu, Alistair J. Adcroft, Arthur E. Amaral, Thomas Arsouze, Mats Bentsen, Raffaele Bernardello, Claus W. Böning, Alexandra Bozec, Eric P. Chassignet, Sergey Danilov, Raphael Dussin, Eleftheria Exarchou, Pier Giuseppe Fogli, Baylor Fox-Kemper, Chuncheng Guo, Mehmet Ilicak, Doroteaciro Iovino, Who M. Kim, Nikolay Koldunov, Vladimir Lapin, Yiwen Li, Pengfei Lin, Keith Lindsay, Hailong Liu, Matthew C. Long, Yoshiki Komuro, Simon J. Marsland, Simona Masina, Aleksi Nummelin, Jan Klaus Rieck, Yohan Ruprich-Robert, Markus Scheinert, Valentina Sicardi, Dmitry Sidorenko, Tatsuo Suzuki, Hiroaki Tatebe, Qiang Wang, Stephen G. Yeager, and Zipeng Yu
Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, https://doi.org/10.5194/gmd-13-3643-2020, 2020
Short summary
Short summary
The OMIP-2 framework for global ocean–sea-ice model simulations is assessed by comparing multi-model means from 11 CMIP6-class global ocean–sea-ice models calculated separately for the OMIP-1 and OMIP-2 simulations. Many features are very similar between OMIP-1 and OMIP-2 simulations, and yet key improvements in transitioning from OMIP-1 to OMIP-2 are also identified. Thus, the present assessment justifies that future ocean–sea-ice model development and analysis studies use the OMIP-2 framework.
Dmitry Sidorenko, Sergey Danilov, Nikolay Koldunov, Patrick Scholz, and Qiang Wang
Geosci. Model Dev., 13, 3337–3345, https://doi.org/10.5194/gmd-13-3337-2020, https://doi.org/10.5194/gmd-13-3337-2020, 2020
Short summary
Short summary
Computation of barotropic and meridional overturning streamfunctions for models formulated on unstructured meshes is commonly preceded by interpolation to a regular mesh. This operation destroys the original conservation, which can be then be artificially imposed to make the computation possible. An elementary method is proposed that avoids interpolation and preserves conservation in a strict model sense.
Wilken-Jon von Appen, Volker H. Strass, Astrid Bracher, Hongyan Xi, Cora Hörstmann, Morten H. Iversen, and Anya M. Waite
Ocean Sci., 16, 253–270, https://doi.org/10.5194/os-16-253-2020, https://doi.org/10.5194/os-16-253-2020, 2020
Short summary
Short summary
Nutrient-rich water is moved to the surface near continental margins. Then it forms rich but difficult to observe spatial structures of physical and biological/biogeochemical properties. Here we present a high resolution (2.5 km) section through such features obtained in May 2018 with a vehicle towed behind a ship. Considering that such interactions of physics and biology are common in the ocean, they likely strongly influence the productivity of such systems and their role in CO2 uptake.
Felix L. Müller, Denise Dettmering, Claudia Wekerle, Christian Schwatke, Marcello Passaro, Wolfgang Bosch, and Florian Seitz
Earth Syst. Sci. Data, 11, 1765–1781, https://doi.org/10.5194/essd-11-1765-2019, https://doi.org/10.5194/essd-11-1765-2019, 2019
Short summary
Short summary
Polar regions by satellite-altimetry-derived geostrophic currents (GCs) suffer from irregular and sparse data coverage. Therefore, a new dataset is presented, combining along-track derived dynamic ocean topography (DOT) heights with simulated differential water heights. For this purpose, a combination method, based on principal component analysis, is used. The results are combined with spatio-temporally consistent DOT and derived GC representations on unstructured, triangular formulated grids.
Patrick Scholz, Dmitry Sidorenko, Ozgur Gurses, Sergey Danilov, Nikolay Koldunov, Qiang Wang, Dmitry Sein, Margarita Smolentseva, Natalja Rakowsky, and Thomas Jung
Geosci. Model Dev., 12, 4875–4899, https://doi.org/10.5194/gmd-12-4875-2019, https://doi.org/10.5194/gmd-12-4875-2019, 2019
Short summary
Short summary
This paper is the first in a series documenting and assessing important key components of the Finite-volumE Sea ice-Ocean Model version 2.0 (FESOM2.0). We assess the hydrographic biases, large-scale circulation, numerical performance and scalability of FESOM2.0 compared with its predecessor, FESOM1.4. The main conclusion is that the results of FESOM2.0 compare well to FESOM1.4 in terms of model biases but with a remarkable performance speedup with a 3 times higher throughput.
Ivan Kuznetsov, Alexey Androsov, Vera Fofonova, Sergey Danilov, Natalja Rakowsky, Sven Harig, and Karen Helen Wiltshire
Ocean Sci. Discuss., https://doi.org/10.5194/os-2019-103, https://doi.org/10.5194/os-2019-103, 2019
Revised manuscript not accepted
Short summary
Short summary
Coastal regions play a significant role in global processes. Numerical models are one of the major instruments in understanding ocean dynamics. The main objective of this article is to demonstrate the representativeness of the simulations with the new FESOM-C model by comparing the results with observational data for the southeastern part of the North Sea. An equally important objective is to present the application of convergence analysis of solutions for grids of different spatial resolutions.
Katrin Lindbäck, Geir Moholdt, Keith W. Nicholls, Tore Hattermann, Bhanu Pratap, Meloth Thamban, and Kenichi Matsuoka
The Cryosphere, 13, 2579–2595, https://doi.org/10.5194/tc-13-2579-2019, https://doi.org/10.5194/tc-13-2579-2019, 2019
Short summary
Short summary
In this study, we used a ground-penetrating radar technique to measure melting at high precision under Nivlisen, an ice shelf in central Dronning Maud Land, East Antarctica. We found that summer-warmed ocean surface waters can increase melting close to the ice shelf front. Our study shows the use of and need for measurements in the field to monitor Antarctica's coastal margins; these detailed variations in basal melting are not captured in satellite data but are vital to predict future changes.
Nikolay V. Koldunov, Vadym Aizinger, Natalja Rakowsky, Patrick Scholz, Dmitry Sidorenko, Sergey Danilov, and Thomas Jung
Geosci. Model Dev., 12, 3991–4012, https://doi.org/10.5194/gmd-12-3991-2019, https://doi.org/10.5194/gmd-12-3991-2019, 2019
Short summary
Short summary
We measure how computational performance of the global FESOM2 ocean model (formulated on an unstructured mesh) changes with the increase in the number of computational cores. We find that for many components of the model the performance increases linearly but we also identify two bottlenecks: sea ice and ssh submodules. We show that FESOM2 is on par with the state-of-the-art ocean models in terms of throughput that reach 16 simulated years per day for eddy resolving configuration (1/10°).
Özgür Gürses, Vanessa Kolatschek, Qiang Wang, and Christian Bernd Rodehacke
The Cryosphere, 13, 2317–2324, https://doi.org/10.5194/tc-13-2317-2019, https://doi.org/10.5194/tc-13-2317-2019, 2019
Short summary
Short summary
The warming of the Earth's climate system causes sea level rise. In Antarctica, ice streams flow into the sea and develop ice shelves. These are floating extensions of the ice streams. Ocean water melts these ice shelves. It has been proposed that a submarine wall could shield these ice shelves from the warm water. Our model simulation shows that the wall protects ice shelves. However, the warm water flows to neighboring ice shelves. There, enhanced melting reduces the effectiveness of the wall.
Thomas Rackow, Dmitry V. Sein, Tido Semmler, Sergey Danilov, Nikolay V. Koldunov, Dmitry Sidorenko, Qiang Wang, and Thomas Jung
Geosci. Model Dev., 12, 2635–2656, https://doi.org/10.5194/gmd-12-2635-2019, https://doi.org/10.5194/gmd-12-2635-2019, 2019
Short summary
Short summary
Current climate models show errors in the deep ocean that are larger than the level of natural variability and the response to enhanced greenhouse gas concentrations. These errors are larger than the signals we aim to predict. With the AWI Climate Model, we show that increasing resolution to resolve eddies can lead to major reductions in deep ocean errors. AWI's next-generation (CMIP6) model configuration will thus use locally eddy-resolving computational grids for projecting climate change.
Alexey Androsov, Vera Fofonova, Ivan Kuznetsov, Sergey Danilov, Natalja Rakowsky, Sven Harig, Holger Brix, and Karen Helen Wiltshire
Geosci. Model Dev., 12, 1009–1028, https://doi.org/10.5194/gmd-12-1009-2019, https://doi.org/10.5194/gmd-12-1009-2019, 2019
Short summary
Short summary
We present a description of a coastal ocean circulation model designed to work on variable-resolution meshes made of triangular and quadrilateral cells. This hybrid mesh functionality allows for higher numerical performance and less dissipative solutions.
Felix L. Müller, Claudia Wekerle, Denise Dettmering, Marcello Passaro, Wolfgang Bosch, and Florian Seitz
The Cryosphere, 13, 611–626, https://doi.org/10.5194/tc-13-611-2019, https://doi.org/10.5194/tc-13-611-2019, 2019
Short summary
Short summary
Knowledge of the dynamic ocean topography (DOT) enables studying changes of ocean surface currents. The DOT can be derived by satellite altimetry measurements or by models. However, in polar regions, altimetry-derived sea surface heights are affected by sea ice. Model representations are consistent but impacted by the underlying functional backgrounds and forcing models. The present study compares results from both data sources in order to investigate the potential for a combination of the two.
Maren Elisabeth Richter, Wilken-Jon von Appen, and Claudia Wekerle
Ocean Sci., 14, 1147–1165, https://doi.org/10.5194/os-14-1147-2018, https://doi.org/10.5194/os-14-1147-2018, 2018
Short summary
Short summary
In the Fram Strait, Arctic Ocean outflow is joined by Atlantic Water (AW) that has not flowed through the Arctic Ocean. The confluence creates a density gradient which steepens and draws closer to the east Greenland shelf break from N to S. This brings the warm AW closer to the shelf break. South of 79° N, AW has reached the shelf break and the East Greenland Current has formed. When AW reaches the Greenland shelf it may propagate through troughs to glacier termini and contribute to glacier melt.
Qiang Wang, Claudia Wekerle, Sergey Danilov, Xuezhu Wang, and Thomas Jung
Geosci. Model Dev., 11, 1229–1255, https://doi.org/10.5194/gmd-11-1229-2018, https://doi.org/10.5194/gmd-11-1229-2018, 2018
Short summary
Short summary
For developing a system for Arctic research, we evaluate the Arctic Ocean simulated by FESOM. We use two global meshes differing in the horizontal resolution only in the Arctic Ocean (24 vs. 4.5 km). The high resolution significantly improves the model's representation of the Arctic Ocean. The most pronounced improvement is in the Arctic intermediate layer. The high resolution also improves the ocean surface circulation, mainly through a better representation of the Canadian Arctic Archipelago.
Amelie Driemel, Eberhard Fahrbach, Gerd Rohardt, Agnieszka Beszczynska-Möller, Antje Boetius, Gereon Budéus, Boris Cisewski, Ralph Engbrodt, Steffen Gauger, Walter Geibert, Patrizia Geprägs, Dieter Gerdes, Rainer Gersonde, Arnold L. Gordon, Hannes Grobe, Hartmut H. Hellmer, Enrique Isla, Stanley S. Jacobs, Markus Janout, Wilfried Jokat, Michael Klages, Gerhard Kuhn, Jens Meincke, Sven Ober, Svein Østerhus, Ray G. Peterson, Benjamin Rabe, Bert Rudels, Ursula Schauer, Michael Schröder, Stefanie Schumacher, Rainer Sieger, Jüri Sildam, Thomas Soltwedel, Elena Stangeew, Manfred Stein, Volker H Strass, Jörn Thiede, Sandra Tippenhauer, Cornelis Veth, Wilken-Jon von Appen, Marie-France Weirig, Andreas Wisotzki, Dieter A. Wolf-Gladrow, and Torsten Kanzow
Earth Syst. Sci. Data, 9, 211–220, https://doi.org/10.5194/essd-9-211-2017, https://doi.org/10.5194/essd-9-211-2017, 2017
Short summary
Short summary
Our oceans are always in motion – huge water masses are circulated by winds and by global seawater density gradients resulting from different water temperatures and salinities. Measuring temperature and salinity of the world's oceans is crucial e.g. to understand our climate. Since 1983, the research icebreaker Polarstern has been the basis of numerous water profile measurements in the Arctic and the Antarctic. We report on a unique collection of 33 years of polar salinity and temperature data.
Sergey Danilov, Dmitry Sidorenko, Qiang Wang, and Thomas Jung
Geosci. Model Dev., 10, 765–789, https://doi.org/10.5194/gmd-10-765-2017, https://doi.org/10.5194/gmd-10-765-2017, 2017
Short summary
Short summary
Numerical models of global ocean circulation are used to learn about future climate. The ocean circulation is characterized by processes on different spatial scales which are still beyond the reach of present computers. We describe a new model setup that allows one to vary a model's spatial resolution and hence focus the computational power on regional dynamics, reaching a better description of local processes in areas of interest.
Stephen M. Griffies, Gokhan Danabasoglu, Paul J. Durack, Alistair J. Adcroft, V. Balaji, Claus W. Böning, Eric P. Chassignet, Enrique Curchitser, Julie Deshayes, Helge Drange, Baylor Fox-Kemper, Peter J. Gleckler, Jonathan M. Gregory, Helmuth Haak, Robert W. Hallberg, Patrick Heimbach, Helene T. Hewitt, David M. Holland, Tatiana Ilyina, Johann H. Jungclaus, Yoshiki Komuro, John P. Krasting, William G. Large, Simon J. Marsland, Simona Masina, Trevor J. McDougall, A. J. George Nurser, James C. Orr, Anna Pirani, Fangli Qiao, Ronald J. Stouffer, Karl E. Taylor, Anne Marie Treguier, Hiroyuki Tsujino, Petteri Uotila, Maria Valdivieso, Qiang Wang, Michael Winton, and Stephen G. Yeager
Geosci. Model Dev., 9, 3231–3296, https://doi.org/10.5194/gmd-9-3231-2016, https://doi.org/10.5194/gmd-9-3231-2016, 2016
Short summary
Short summary
The Ocean Model Intercomparison Project (OMIP) aims to provide a framework for evaluating, understanding, and improving the ocean and sea-ice components of global climate and earth system models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). This document defines OMIP and details a protocol both for simulating global ocean/sea-ice models and for analysing their output.
Tim Stöven, Toste Tanhua, Mario Hoppema, and Wilken-Jon von Appen
Ocean Sci., 12, 319–333, https://doi.org/10.5194/os-12-319-2016, https://doi.org/10.5194/os-12-319-2016, 2016
Short summary
Short summary
The article describes transient tracer distributions of CFC-12 and SF6 in the Fram Strait in 2012. The SF6 excess and the anthropogenic carbon content in this area was estimated assuming a standard parameterization of the inverse-Gaussian–transit-time distribution. Hydrographic data were obtained along a mooring array at 78°50’N and a mean velocity field was used for flux estimates.
S. Danilov, Q. Wang, R. Timmermann, N. Iakovlev, D. Sidorenko, M. Kimmritz, T. Jung, and J. Schröter
Geosci. Model Dev., 8, 1747–1761, https://doi.org/10.5194/gmd-8-1747-2015, https://doi.org/10.5194/gmd-8-1747-2015, 2015
Short summary
Short summary
Unstructured meshes allow multi-resolution modeling of ocean dynamics. Sea ice models formulated on unstructured meshes are a necessary component of ocean models intended for climate studies. This work presents a description of a finite-element sea ice model which is used as a component of a finite-element sea ice ocean circulation model. The principles underlying its design can be of interest to other groups pursuing ocean modelling on unstructured meshes.
Q. Wang, S. Danilov, D. Sidorenko, R. Timmermann, C. Wekerle, X. Wang, T. Jung, and J. Schröter
Geosci. Model Dev., 7, 663–693, https://doi.org/10.5194/gmd-7-663-2014, https://doi.org/10.5194/gmd-7-663-2014, 2014
N. Rakowsky, A. Androsov, A. Fuchs, S. Harig, A. Immerz, S. Danilov, W. Hiller, and J. Schröter
Nat. Hazards Earth Syst. Sci., 13, 1629–1642, https://doi.org/10.5194/nhess-13-1629-2013, https://doi.org/10.5194/nhess-13-1629-2013, 2013
Cited articles
Adcock, S. T. and Marshall, D. P.: Interactions between Geostrophic Eddies and
the Mean Circulation over Large-Scale Bottom Topography, J. Phys.
Oceanogr., 30, 3223–3238,
https://doi.org/10.1175/1520-0485(2000)030<3223:IBGEAT>2.0.CO;2, 2000. a
Albretsen, J., Hattermann, T., and Sundfjord, A.: Ocean and sea ice circulation model results from Svalbard area (ROMS) [Data set], Norwegian Polar Institute, https://doi.org/10.21334/npolar.2017.2f52acd2, 2017. a
Bashmachnikov, I. L., Kozlov, I. E., Petrenko, L. A., Glok, N. I., and Wekerle,
C.: Eddies in the North Greenland Sea and Fram Strait From Satellite
Altimetry, SAR and High-Resolution Model Data, J. Geophys.
Res.-Oceans, 125, e2019JC015832, https://doi.org/10.1029/2019JC015832, 2020. a, b, c
Beszczynska-Möller, A., Fahrbach, E., Schauer, U., and Hansen, E.:
Variability in Atlantic water temperature and transport at the entrance to
the Arctic Ocean, 1997–2010, ICES J. Mar. Sci., 69, 852–863,
https://doi.org/10.1093/icesjms/fss056, 2012. a, b
Budgell, W. P.: Numerical simulation of ice-ocean variability in the Barents
Sea region, Ocean Dynam., 55, 370–387, https://doi.org/10.1007/s10236-005-0008-3,
2005. a, b
Chelton, D. B., Schlax, M. G., and Samelson, R. M.: Global observations of
nonlinear mesoscale eddies, Prog. Oceanogr., 91, 167–216,
https://doi.org/10.1016/j.pocean.2011.01.002, 2011. a, b
Cherian, D. A. and Brink, K. H.: Shelf Flows Forced by Deep-Ocean Anticyclonic
Eddies at the Shelf Break, J. Phys. Oceanogr., 48, 1117–1138,
https://doi.org/10.1175/JPO-D-17-0237.1, 2018. a
Crews, L., Sundfjord, A., Albretsen, J., and Hattermann, T.: Mesoscale Eddy
Activity and Transport in the Atlantic Water Inflow Region North of
Svalbard, J. Geophys. Res.-Oceans, 123, 201–215,
https://doi.org/10.1002/2017JC013198, 2018. a
Crews, L., Sundfjord, A., and Hattermann, T.: How the Yermak Pass Branch
Regulates Atlantic Water Inflow to the Arctic Ocean, J. Geophys.
Res.-Oceans, 124, 267–280, https://doi.org/10.1029/2018JC014476, 2019. a, b
Dai, A., Qian, T., Trenberth, K. E., and Milliman, J. D.: Changes in
Continental Freshwater Discharge from 1948 to 2004, J. Climate, 22,
2773–2792, https://doi.org/10.1175/2008JCLI2592.1, 2009. a
Danilov, S., Wang, Q., Timmermann, R., Iakovlev, N., Sidorenko, D., Kimmritz, M., Jung, T., and Schröter, J.: Finite-Element Sea Ice Model (FESIM), version 2, Geosci. Model Dev., 8, 1747–1761, https://doi.org/10.5194/gmd-8-1747-2015, 2015. a
Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi,
S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P.,
Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C.,
Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B.,
Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M.,
Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park,
B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and
Vitart, F.: The ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor.
Soc., 137, 553–597, https://doi.org/10.1002/qj.828, 2011. a
de Steur, L., Hansen, E., Gerdes, R., Karcher, M., Fahrbach, E., and Holfort,
J.: Freshwater fluxes in the East Greenland Current: A decade of
observations, Geophys. Res. Lett., 36, L23611, https://doi.org/10.1029/2009GL041278, 2009. a
Egbert, G. D. and Erofeeva, S. Y.: Efficient Inverse Modeling of Barotropic
Ocean Tides, J. Atmos. Ocean. Tech., 19, 183–204,
https://doi.org/10.1175/1520-0426(2002)019<0183:EIMOBO>2.0.CO;2, 2002. a
Eldevik, T., Nilsen, J. E. Ø., Iovino, D., Olsson, K. A., Sandø, A. B.,
and Drange, H.: Observed sources and variability of Nordic Seas overflow,
Nat. Geosci., 2, 406–410, https://doi.org/10.1038/NGEO518, 2009. a
Fer, I., Müller, M., and Peterson, A. K.: Tidal forcing, energetics, and mixing near the Yermak Plateau, Ocean Sci., 11, 287–304, https://doi.org/10.5194/os-11-287-2015, 2015 a
Fer, I., Bosse, A., and Dugstad, J.: Norwegian Atlantic Slope Current along
the Lofoten Escarpment, Ocean Science, 16, 685–701,
https://doi.org/10.5194/os-16-685-2020, 2020. a, b
Gent, P. and McWilliams, J.: Isopycnal Mixing in Ocean Circulation Models, J.
Phys. Oceanogr., 20, 150–155, 1990. a
Griffies, S.: The Gent-McWilliams Skew Flux, J. Phys. Oceanogr., 28,
831–841, https://doi.org/10.1175/1520-0485(1998)028<0831:TGMSF>2.0.CO;2, 1998. a
Gula, J., Molemaker, M. J., and McWilliams, J. C.: Gulf Stream Dynamics along
the Southeastern U.S. Seaboard, J. Phys. Oceanogr., 45, 690–715,
https://doi.org/10.1175/JPO-D-14-0154.1, 2015. a
Haidvogel, D., Arango, H., Budgell, W., Cornuelle, B., Curchitser, E., Lorenzo,
E. D., Fennel, K., Geyer, W., Hermann, A., Lanerolle, L., Levin, J.,
McWilliams, J., Miller, A., Moore, A., Powell, T., Shchepetkin, A., Sherwood,
C., Signell, R., Warner, J., and Wilkin, J.: Ocean forecasting in
terrain-following coordinates: Formulation and skill assessment of the
Regional Ocean Modeling System, J. Comput. Phys., 227, 3595–3624, https://doi.org/10.1016/j.jcp.2007.06.016, 2008. a
Hallberg, R.: Using a resolution function to regulate parameterizations of
oceanic mesoscale eddy effects, Ocean Model., 72, 92–103,
https://doi.org/10.1016/j.ocemod.2013.08.007, 2013. a
Isern-Fontanet, J., Garcia-Ladona, E., and Font, J.: Vortices of the
Mediterranean Sea: An Altimetric Perspective, J. Phys.
Oceanogr., 36, 87–103, https://doi.org/10.1175/JPO2826.1, 2006. a
Jansen, M. F., Held, I. M., Adcroft, A., and Hallberg, R.: Energy budget-based
backscatter in an eddy permitting primitive equation model, Ocean Model.,
94, 15–26, https://doi.org/10.1016/j.ocemod.2015.07.015, 2015. a
Johannessen, O. M., Johannessen, J. A., Svendsen, E., Shuchman, R. A.,
Campbell, W. J., and Josberger, E.: Ice-Edge Eddies in the Fram Strait
Marginal Ice Zone, Science, 236, 427–429,
https://doi.org/10.1126/science.236.4800.427, 1987. a, b
Juricke, S., Danilov, S., Kutsenko, A., and Oliver, M.: Ocean kinetic energy
backscatter parametrizations on unstructured grids: Impact on mesoscale
turbulence in a channel, Ocean Model., 138, 51–67,
https://doi.org/10.1016/j.ocemod.2019.03.009, 2019. a
Juricke, S., Danilov, S., Koldunov, N., Oliver, M., and Sidorenko, D.: Ocean
Kinetic Energy Backscatter Parametrization on Unstructured Grids: Impact on
Global Eddy-Permitting Simulations, J. Adv. Model. Earth
Sy., 12, e2019MS001855, https://doi.org/10.1029/2019MS001855, 2020. a
Kang, D. and Curchitser, E. N.: Gulf Stream eddy characteristics in a
high-resolution ocean model, J. Geophys. Res.-Oceans, 118,
4474–4487, https://doi.org/10.1002/jgrc.20318, 2013. a
Kawasaki, T. and Hasumi, H.: The inflow of Atlantic water at the Fram Strait
and its interannual variability, J. Geophys. Res.-Oceans, 121, 502–519,
https://doi.org/10.1002/2015JC011375, 2016. a
Large, W. and Yeager, S.: The global climatology of an interannually varying
air-sea flux data set, Clim. Dynam., 33, 341–364,
https://doi.org/10.1007/s00382-008-0441-3, 2008. a
Lüschow, V., Storch, J.-S. v., and Marotzke, J.: Diagnosing the Influence
of Mesoscale Eddy Fluxes on the Deep Western Boundary Current in the
1∕10∘ STORM/NCEP Simulation, J. Phys. Oceanogr., 49,
751–764, https://doi.org/10.1175/JPO-D-18-0103.1, 2019. a
Mahadevan, A.: The Impact of Submesoscale Physics on Primary Productivity of
Plankton, Annu. Rev. Mar. Sci., 8, 161–184,
https://doi.org/10.1146/annurev-marine-010814-015912, 2016. a
Manucharyan, G. E. and Thompson, A. F.: Submesoscale Sea Ice-Ocean
Interactions in Marginal Ice Zones, J. Geophys. Res.-Oceans,
122, 9455–9475, https://doi.org/10.1002/2017JC012895, 2017. a
Martínez-Moreno, J., Hogg, A. M., Kiss, A. E., Constantinou, N. C., and
Morrison, A. K.: Kinetic Energy of Eddy-Like Features From Sea Surface
Altimetry, J. Adv. Modeling Earth Sy., 11, 3090–3105,
https://doi.org/10.1029/2019MS001769, 2019. a
Morrow, R., Birol, F., Griffin, D., and Sudre, J.: Divergent pathways of
cyclonic and anti-cyclonic ocean eddies, Geophys. Res. Lett., 31, L24311,
https://doi.org/10.1029/2004GL020974, 2004. a
Nencioli, F., Dong, C., Dickey, T., Washburn, L., and McWilliams, J. C.: A
Vector Geometry-Based Eddy Detection Algorithm and Its Application to a
High-Resolution Numerical Model Product and High-Frequency Radar Surface
Velocities in the Southern California Bight, J. Atmos.
Ocean. Tech., 27, 564–579, https://doi.org/10.1175/2009JTECHO725.1, 2010. a, b, c, d, e
Okubo, A.: Horizontal dispersion of floatable particles in the vicinity of
velocity singularities such as convergences, Deep Sea Research and
Oceanographic Abstracts, 17, 445–454, https://doi.org/10.1016/0011-7471(70)90059-8,
1970. a
Olbers, D., Willebrand, J., and Eden, C.: Ocean Dynamics, Springer-Verlag,
Berlin Heidelberg, https://doi.org/10.1007/978-3-642-23450-7, 2012. a
Olson, D. B.: Rings in the ocean, Annu. Rev. Earth Pl.
Sc., 19, 283–311, 1991. a
Polyakov, I. V., Pnyushkov, A. V., and Timokhov, L.: Warming of the
Intermediate Atlantic Water of the Arctic Ocean in the 2000s, J. Climate,
25, 8362–8370, https://doi.org/10.1175/JCLI-D-12-00266.1, 2012. a
Raj, R. P., Johannessen, J. A., Eldevik, T., Nilsen, J. E. A., and Halo, I.:
Quantifying mesoscale eddies in the Lofoten Basin, J. Geophys.
Res.-Oceans, 121, 4503–4521, https://doi.org/10.1002/2016JC011637, 2016. a
Richter, M. E., von Appen, W.-J., and Wekerle, C.: Does the East Greenland Current exist in the northern Fram Strait?, Ocean Sci., 14, 1147–1165, https://doi.org/10.5194/os-14-1147-2018, 2018. a
Rudels, B.: The thermohaline circulation of the Arctic Ocean and the Greenland
Sea, Philos. T. Roy. Soc. Lond. A, 352, 287–299,
https://doi.org/10.1098/rsta.1995.0071, 1995. a
Schaffer, J., von Appen, W.-J., Dodd, P. A., Hofstede, C., Mayer, C., de Steur,
L., and Kanzow, T.: Warm water pathways toward Nioghalvfjerdsfjorden
Glacier, Northeast Greenland, J. Geophys. Res.-Oceans, 122,
4004–4020, https://doi.org/10.1002/2016JC012462, 2017. a
Schauer, U., Fahrbach, E., Østerhus, S., and Rohardt, G.: Arctic warming
through the Fram Strait: Oceanic heat transport from 3 years of
measurements, J. Geophys. Res., 109, C06026, https://doi.org/10.1029/2003JC001823, 2004. a
Shchepetkin, A. F. and McWilliams, J. C.: The regional oceanic modeling system
(ROMS): a split-explicit, free-surface, topography-following-coordinate
oceanic model, Ocean Model., 9, 347–404,
https://doi.org/10.1016/j.ocemod.2004.08.002, 2005. a, b
Shchepetkin, A. F. and McWilliams, J. C.: Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill
assessment of the regional ocean modeling system” by Haidvogel et al., J.
Comp. Phys., 227, 3595–3624, J. Comput. Phys., 228, 8985–9000, https://doi.org/10.1016/j.jcp.2009.09.002, 2009. a
Smith, D. C., Morison, J. H., Johannessen, J. A., and Untersteiner, N.:
Topographic generation of an eddy at the edge of the East Greenland
Current, J. Geophys. Res.-Oceans, 89, 8205–8208,
https://doi.org/10.1029/JC089iC05p08205, 1984. a, b
Soufflet, Y., Marchesiello, P., Lemarié, F., Jouanno, J., Capet, X.,
Debreu, L., and Benshila, R.: On effective resolution in ocean models,
Ocean Model., 98, 36–50, https://doi.org/10.1016/j.ocemod.2015.12.004, 2016. a, b
Spall, M. A. and Pedlosky, J.: Lateral Coupling in Baroclinically Unstable
Flows, J. Phys. Oceanogr., 38, 1267–1277,
https://doi.org/10.1175/2007JPO3906.1, 2008. a
Storkey, D., Blockley, E. W., Furner, R., Guiavarc'h, C., Lea, D., Martin,
M. J., Barciela, R. M., Hines, A., Hyder, P., and Siddorn, J. R.:
Forecasting the ocean state using NEMO: The new FOAM system, J.
Oper. Oceanogr., 3, 3–15, https://doi.org/10.1080/1755876X.2010.11020109,
2010. a
Teigen, S. H., Nilsen, F., Skogseth, R., Gjevik, B., and Beszczynska-Möller,
A.: Baroclinic instability in the West Spitsbergen Current, J. Geophys.
Res.-Oceans, 116, C07012, https://doi.org/10.1029/2011JC006974, 2011. a, b
Tverberg, V. and Nøst, O. A.: Eddy overturning across a shelf edge front:
Kongsfjorden, west Spitsbergen, J. Geophys. Res.-Oceans,
114, C04024, https://doi.org/10.1029/2008JC005106, 2009. a, b, c
Volkov, D. L., Kubryakov, A. A., and Lumpkin, R.: Formation and variability of
the Lofoten basin vortex in a high-resolution ocean model, Deep-Sea Res.
Pt. I, 105, 142–157, https://doi.org/10.1016/j.dsr.2015.09.001, 2015. a
von Appen, W.-J., Wekerle, C., Hehemann, L., Schourup-Kristensen, V., Konrad,
C., and Iversen, M. H.: Observations of a Submesoscale Cyclonic Filament in
the Marginal Ice Zone, Geophys. Res. Lett., 45, 6141–6149,
https://doi.org/10.1029/2018GL077897, 2018. a, b
von Appen, W.-J., Beszczynska-Möller, A., Schauer, U., and
Fahrbach, E.: Physical oceanography and current meter data from moorings
F1–F14 and F15/F16 in the Fram Strait, 1997–2016, PANGAEA,
https://doi.org/10.1594/PANGAEA.900883, 2019. a, b, c, d
Wang, Q., Danilov, S., and Schröter, J.: Finite element ocean circulation
model based on triangular prismatic elements, with application in studying
the effect of topography representation, J. Geophys. Res., 113, C05015, https://doi.org/10.1029/2007JC004482, 2008. a
Wang, Q., Danilov, S., Sidorenko, D., Timmermann, R., Wekerle, C., Wang, X., Jung, T., and Schröter, J.: The Finite Element Sea Ice-Ocean Model (FESOM) v.1.4: formulation of an ocean general circulation model, Geosci. Model Dev., 7, 663–693, https://doi.org/10.5194/gmd-7-663-2014, 2014. a, b
Wang, Q., Koldunov, N. V., Danilov, S., Sidorenko, D., Wekerle, C., Scholz, P.,
Bashmachnikov, I. L., and Jung, T.: Eddy Kinetic Energy in the Arctic Ocean
from a Global Simulation with a 1-km Arctic, Geophys. Res. Lett., 47, e2020GL088550,
https://doi.org/10.1029/2020GL088550, 2020. a
Weiss, J.: The dynamics of enstrophy transfer in two-dimensional
hydrodynamics, Physica D, 48, 273–294,
https://doi.org/10.1016/0167-2789(91)90088-Q, 1991. a
Wekerle, C., Wang, Q., von Appen, W.-J., Danilov, S., Schourup-Kristensen, V.,
and Jung, T.: Eddy-Resolving Simulation of the Atlantic Water Circulation in
the Fram Strait With Focus on the Seasonal Cycle, J. Geophys. Res.-Oceans, 122, 8385–8405,
https://doi.org/10.1002/2017JC012974, 2017a. a, b, c, d, e, f, g
Wekerle, C., Wang, Q., von Appen, W.-J., Danilov, S., Schourup-Kristensen, V., and Jung, T.: Eddy-permitting and eddy-resolving simulations of the Fram Strait ocean dynamics with the Finite-Element Sea-Ice Ocean Model (FESOM), links to NetCDF files, PANGAEA, https://doi.org/10.1594/PANGAEA.880569, 2017b. a
Wilson, N., Straneo, F., and Heimbach, P.: Satellite-derived submarine melt rates and mass balance (2011–2015) for Greenland's largest remaining ice tongues, The Cryosphere, 11, 2773–2782, https://doi.org/10.5194/tc-11-2773-2017, 2017.
a
Short summary
The high-resolution ocean models ROMS and FESOM configured for the Fram Strait reveal very energetic ocean conditions there. The two main currents meander strongly and shed circular currents of water, called eddies. Our analysis shows that this region is characterised by small and short-lived eddies (on average around a 5 km radius and 10 d lifetime). Both models agree on eddy properties and show similar patterns of baroclinic and barotropic instability of the West Spitsbergen Current.
The high-resolution ocean models ROMS and FESOM configured for the Fram Strait reveal very...