Articles | Volume 15, issue 3
https://doi.org/10.5194/os-15-631-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-631-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Zooplankton diel vertical migration in the Corsica Channel (north-western Mediterranean Sea) detected by a moored acoustic Doppler current profiler
Davide Guerra
Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine
(CNR-ISMAR), 30122 Venice, 19036 La Spezia, 34149 Trieste, Italy
Katrin Schroeder
CORRESPONDING AUTHOR
Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine
(CNR-ISMAR), 30122 Venice, 19036 La Spezia, 34149 Trieste, Italy
Mireno Borghini
Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine
(CNR-ISMAR), 30122 Venice, 19036 La Spezia, 34149 Trieste, Italy
Elisa Camatti
Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine
(CNR-ISMAR), 30122 Venice, 19036 La Spezia, 34149 Trieste, Italy
Marco Pansera
Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine
(CNR-ISMAR), 30122 Venice, 19036 La Spezia, 34149 Trieste, Italy
Anna Schroeder
Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine
(CNR-ISMAR), 30122 Venice, 19036 La Spezia, 34149 Trieste, Italy
University of Trieste, Faculty of Environmental Life Science, 34127
Trieste, Italy
Stefania Sparnocchia
Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine
(CNR-ISMAR), 30122 Venice, 19036 La Spezia, 34149 Trieste, Italy
Jacopo Chiggiato
Consiglio Nazionale delle Ricerche, Istituto di Scienze Marine
(CNR-ISMAR), 30122 Venice, 19036 La Spezia, 34149 Trieste, Italy
Related authors
No articles found.
Chiara Santinelli, Silvia Valsecchi, Simona Retelletti Brogi, Giancarlo Bachi, Giovanni Checcucci, Mirco Guerrazzi, Elisa Camatti, Stefano Caserini, Arianna Azzellino, and Daniela Basso
Biogeosciences, 21, 5131–5141, https://doi.org/10.5194/bg-21-5131-2024, https://doi.org/10.5194/bg-21-5131-2024, 2024
Short summary
Short summary
Ocean liming is a technique proposed to mitigate ocean acidification. Every action we take has an impact on the environment and the effects on the invisible world are often overlooked. With this study, we show that lime addition impacts the dynamics of dissolved organic matter, one of the largest reservoirs of carbon on Earth, representing the main source of energy for marine microbes. Further studies to assess the impacts on marine ecosystems are therefore crucial before taking any action.
Malek Belgacem, Katrin Schroeder, Siv K. Lauvset, Marta Álvarez, Jacopo Chiggiato, Mireno Borghini, Carolina Cantoni, Tiziana Ciuffardi, and Stefania Sparnocchia
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2024-365, https://doi.org/10.5194/essd-2024-365, 2024
Preprint under review for ESSD
Short summary
Short summary
Having consistent dissolved Oxygen (O2) data is crucial for understanding the health of our oceans. By monitoring O2 levels, we can spot changes in water quality. Reliable data helps scientist and policymakers make informed decisions to protect marine environments, ensuring practices that benefit both wildlife and people. The Mediterranean Sea is particularly sensitive to climate change. O2WMED dataset- a compilation of data that provides a clear picture of O2 changes over the past 20 years.
Francesco Paladini de Mendoza, Katrin Schroeder, Leonardo Langone, Jacopo Chiggiato, Mireno Borghini, Patrizia Giordano, Giulio Verazzo, and Stefano Miserocchi
Earth Syst. Sci. Data, 14, 5617–5635, https://doi.org/10.5194/essd-14-5617-2022, https://doi.org/10.5194/essd-14-5617-2022, 2022
Short summary
Short summary
This work presents the dataset of continuous monitoring in the southern Adriatic Margin, providing a unique observatory of deep-water dynamics. The study area is influenced by episodic dense-water cascading, which is a fundamental process for water renewal and deep-water dynamics. Information about the frequency and intensity variations of these events is observed along a time series. The monitoring activities are still ongoing and the moorings are part of the EMSO-ERIC network.
Malek Belgacem, Katrin Schroeder, Alexander Barth, Charles Troupin, Bruno Pavoni, Patrick Raimbault, Nicole Garcia, Mireno Borghini, and Jacopo Chiggiato
Earth Syst. Sci. Data, 13, 5915–5949, https://doi.org/10.5194/essd-13-5915-2021, https://doi.org/10.5194/essd-13-5915-2021, 2021
Short summary
Short summary
The Mediterranean Sea exhibits an anti-estuarine circulation, responsible for its low productivity. Understanding this peculiar character is still a challenge since there is no exact quantification of nutrient sinks and sources. Because nutrient in situ observations are generally infrequent and scattered in space and time, climatological mapping is often applied to sparse data in order to understand the biogeochemical state of the ocean. The dataset presented here partly addresses these issues.
Malek Belgacem, Jacopo Chiggiato, Mireno Borghini, Bruno Pavoni, Gabriella Cerrati, Francesco Acri, Stefano Cozzi, Alberto Ribotti, Marta Álvarez, Siv K. Lauvset, and Katrin Schroeder
Earth Syst. Sci. Data, 12, 1985–2011, https://doi.org/10.5194/essd-12-1985-2020, https://doi.org/10.5194/essd-12-1985-2020, 2020
Short summary
Short summary
Long-term time series are a fundamental prerequisite to understanding and detecting climate shifts and trends. In marginal seas, such as the Mediterranean Sea, there are still monitoring gaps. An extensive dataset of dissolved inorganic nutrient profiles were collected between 2004 and 2017 in the western Mediterranean Sea to provide to the scientific community a publicly available, long-term, quality-controlled, internally consistent new database.
Francesco Acri, Mauro Bastianini, Fabrizio Bernardi Aubry, Elisa Camatti, Alfredo Boldrin, Caterina Bergami, Daniele Cassin, Amelia De Lazzari, Stefania Finotto, Annalisa Minelli, Alessandro Oggioni, Marco Pansera, Alessandro Sarretta, Giorgio Socal, and Alessandra Pugnetti
Earth Syst. Sci. Data, 12, 215–230, https://doi.org/10.5194/essd-12-215-2020, https://doi.org/10.5194/essd-12-215-2020, 2020
Short summary
Short summary
The present paper describes a database containing observations for 21 parameters of abiotic, phytoplankton, and zooplankton data collected in the northern Adriatic Sea region (Italy) from 1965 to 2015. Due to the long temporal coverage, the majority of parameters changed collection and analysis method over time. These variations are reported in the database and detailed in the paper.
Denise Smythe-Wright, W. John Gould, Trevor J. McDougall, Stefania Sparnocchia, and Philip L. Woodworth
Hist. Geo Space. Sci., 10, 137–150, https://doi.org/10.5194/hgss-10-137-2019, https://doi.org/10.5194/hgss-10-137-2019, 2019
Short summary
Short summary
From the early work of Prince Albert I of Monaco, the first president of the International Association for the Physical Sciences of the Oceans, to today, the Association has promoted and supported international research and cross-cutting activities in ocean sciences, building on the work of the many far-sighted scientists who, over the last century, have addressed seemingly intractable problems. This paper describes key events in IAPSO's history and the roles played by the scientists involved.
Simona Aracri, Katrin Schroeder, Jacopo Chiggiato, Harry Bryden, Elaine McDonagh, Simon Josey, Yann Hello, and Mireno Borghini
Ocean Sci. Discuss., https://doi.org/10.5194/os-2016-65, https://doi.org/10.5194/os-2016-65, 2016
Preprint withdrawn
Short summary
Short summary
The abyssal velocity of the Northern Current, in the north-western Mediterranean has been estimated using for the first time MERMAIDs, i.e. submarine drifting instruments that record seismic waves. In this study the Northern Current shows an intense activity even in deep layers of the water column. Through pseudo-eulerian statistics different components of the observed variability are analysed and described, revealing the turbulent nature of the Liguro-Provençal basin abyssal circulation.
M. Borghini, H. Bryden, K. Schroeder, S. Sparnocchia, and A. Vetrano
Ocean Sci., 10, 693–700, https://doi.org/10.5194/os-10-693-2014, https://doi.org/10.5194/os-10-693-2014, 2014
D. Hainbucher, A. Rubino, V. Cardin, T. Tanhua, K. Schroeder, and M. Bensi
Ocean Sci., 10, 669–682, https://doi.org/10.5194/os-10-669-2014, https://doi.org/10.5194/os-10-669-2014, 2014
A. Olita, S. Sparnocchia, S. Cusí, L. Fazioli, R. Sorgente, J. Tintoré, and A. Ribotti
Ocean Sci., 10, 657–666, https://doi.org/10.5194/os-10-657-2014, https://doi.org/10.5194/os-10-657-2014, 2014
P. Malanotte-Rizzoli, V. Artale, G. L. Borzelli-Eusebi, S. Brenner, A. Crise, M. Gacic, N. Kress, S. Marullo, M. Ribera d'Alcalà, S. Sofianos, T. Tanhua, A. Theocharis, M. Alvarez, Y. Ashkenazy, A. Bergamasco, V. Cardin, S. Carniel, G. Civitarese, F. D'Ortenzio, J. Font, E. Garcia-Ladona, J. M. Garcia-Lafuente, A. Gogou, M. Gregoire, D. Hainbucher, H. Kontoyannis, V. Kovacevic, E. Kraskapoulou, G. Kroskos, A. Incarbona, M. G. Mazzocchi, M. Orlic, E. Ozsoy, A. Pascual, P.-M. Poulain, W. Roether, A. Rubino, K. Schroeder, J. Siokou-Frangou, E. Souvermezoglou, M. Sprovieri, J. Tintoré, and G. Triantafyllou
Ocean Sci., 10, 281–322, https://doi.org/10.5194/os-10-281-2014, https://doi.org/10.5194/os-10-281-2014, 2014
M. Álvarez, H. Sanleón-Bartolomé, T. Tanhua, L. Mintrop, A. Luchetta, C. Cantoni, K. Schroeder, and G. Civitarese
Ocean Sci., 10, 69–92, https://doi.org/10.5194/os-10-69-2014, https://doi.org/10.5194/os-10-69-2014, 2014
T. Tanhua, D. Hainbucher, K. Schroeder, V. Cardin, M. Álvarez, and G. Civitarese
Ocean Sci., 9, 789–803, https://doi.org/10.5194/os-9-789-2013, https://doi.org/10.5194/os-9-789-2013, 2013
Related subject area
Approach: In situ Observations | Depth range: All Depths | Geographical range: Mediterranean Sea | Phenomena: Biological Processes
Acoustic Doppler current profiler observations of migration patternsof zooplankton in the Cretan Sea
Marine mammal tracks from two-hydrophone acoustic recordings made with a glider
Observations of a phytoplankton spring bloom onset triggered by a density front in NW Mediterranean
Emmanuel Potiris, Constantin Frangoulis, Alkiviadis Kalampokis, Manolis Ntoumas, Manos Pettas, George Petihakis, and Vassilis Zervakis
Ocean Sci., 14, 783–800, https://doi.org/10.5194/os-14-783-2018, https://doi.org/10.5194/os-14-783-2018, 2018
Short summary
Short summary
Zooplankton and fishes found below a depth of 200 m may perform a vertical migration to the surface waters. The migration patterns (from 400 m to the surface) of four groups of organisms were studied in the deep (1500 m) eastern Mediterranean (Cretan Sea) for 2.5 years. The lunar cycle, daylight duration, cloudiness and presence of predators and prey explain their migration variability. This phenomenon is important as it constitutes an active transport of organic matter over large distances.
Elizabeth T. Küsel, Tessa Munoz, Martin Siderius, David K. Mellinger, and Sara Heimlich
Ocean Sci., 13, 273–288, https://doi.org/10.5194/os-13-273-2017, https://doi.org/10.5194/os-13-273-2017, 2017
Short summary
Short summary
An ocean glider was tested during the REP14-MED experiment off the western coast of the island of Sardinia as a platform for recording sounds produced by whales and dolphins using two sensors. Sperm whale clicks as well as dolphin clicks and whistles were identified in the recordings. Automatically detected sperm whale clicks were used to estimate animal tracks. Such information is useful for marine mammal density estimation studies that use passive acoustics.
A. Olita, S. Sparnocchia, S. Cusí, L. Fazioli, R. Sorgente, J. Tintoré, and A. Ribotti
Ocean Sci., 10, 657–666, https://doi.org/10.5194/os-10-657-2014, https://doi.org/10.5194/os-10-657-2014, 2014
Cited articles
Alcaraz, M.: Vertical distribution of zooplankton biomass during summer
stratification in the Western Mediterranean, Proc. 19th Eur. Mar. Biol. Symp., 9
135–143, 1985.
Andersen, V., François, F., Sardou, J., Picheral, M., Scotto, M., and
Nival, P.: Vertical distributions of macroplankton and micronekton in the
Ligurian and Tyrrhenian Seas (northwestern Mediterranean), Oceanol. Acta,
21, 655–676, https://doi.org/10.1016/S0399-1784(98)90007-X, 1998.
Angel, M. V.: The thermocline as an ecological boundary, Sarsia, 34, 229–312,
1968.
Aracri, S., Borghini, M., Canesso, D., Chiggiato, J., Durante, S.,
Schroeder, K., Sparnocchia, S., Vetrano, A., Honda, T., Kitawaza, Y.,
Kawahara, H., and Nakamura, T.: Trials of an autonomous profiling buoy
system, J. Oper. Oceanogr., 9, 176–184, https://doi.org/10.1080/1755876X.2015.1115631,
2016.
Astraldi, M. and Gasparini, G. P.: The seasonal characteristics of the
circulation in the north Mediterranean basin and their relationship with the
atmospheric- climatic conditions, J. Geophys. Res., 97, 9531–9540,
https://doi.org/10.1029/92JC00114, 1992.
Bakun, A. and Agostini, V. N.: Seasonal patterns of wind-induced
upwelling/downwelling in the Mediterranean Sea, Sci. Mar., 65, 243–257, 2001.
Bozzano, R., Fanelli, E., Pensieri, S., Picco, P., and Schiano, M. E.: Temporal
variations of zooplankton biomass in the Ligurian Sea inferred from long time series
of ADCP data, Ocean Sci., 10, 93–105, https://doi.org/10.5194/os-10-93-2014, 2014.
Brierley, A. S., Brandon, M. A., and Watkins, J. L.: An assessment of the utility
of an acoustic Doppler current profiler for biomass estimation, Deep-Sea Res. Pt. I, 45, 1555–1573, 1998.
Champalbert, G.: Characteristics of zooplankton standing stock and
communities in the Western Mediterranean Sea: Relations to hydrology, Sci.
Mar., 60, 97–113, 1996.
Chu, D., Stanton, T. K., and Wiebe, P. H.: Frequency dependence of sound
backscattering from live individual zooplankton, ICES J. Mar. Sci., 49,
97–106, https://doi.org/10.1093/icesjms/49.1.97, 1992.
Clarke, G.: Factors affecting the vertical distribution of copepods, Ecol.
Monogr., 4, 530–540, https://doi.org/10.2307/1961656, 1934.
CMEMS: Mediterranean Sea – High Resolution and Ultra High Resolution L3S Sea
Surface Temperature, available at: http://marine.copernicus.eu/services-portfolio/access-to-
products/?option=com_csw&view=details&product_id=SST_MED_SST_L3S_NRT_OBSERVATIONS_010_012, last
access: 20 May 2019.
D'Ortenzio, F. and Ribera d'Alcalà, M.: On the trophic regimes of the Mediterranean
Sea: a satellite analysis, Biogeosciences, 6, 139–148, https://doi.org/10.5194/bg-6-139-2009, 2009.
Deines, K. L.: Backscatter estimation using Broadband acoustic Doppler
current profilers, in Proceedings of the IEEE Sixth Working Conference on
Current Measurement, San Diego, CA, USA, 249–253, 1999.
Estrada, M.: Deep phytoplankton and chlorophyll maxima in the Western
Mediterranean, In: Mediterranean Marine Ecosystems, edited by:
Moraitou-Apostolopoulou, M. and Kiortsis, V., Springer, Boston, MA, 247–277,
https://doi.org/10.1007/978-1-4899-2248-9_12, 1985.
Eyden, D.: Specific gravity as a factor in the vertical distribution of
plankton, Biol. Rev. Camb. Philos. Soc., 1, 49–55,
https://doi.org/10.1111/j.1469-185X.1923.tb00531.x, 1923.
Fisher, F. H. and Simmons, V. P.: Sound absorption in sea water, J. Acoust.
Soc. Am., 62, 558–564, https://doi.org/10.1121/1.381574, 1977.
Flagg, C. N. and Smith, S. L.: On the use of the acoustic Doppler current
profiler to measure zooplankton abundance, Deep-Sea Res., 36, 455–474, https://doi.org/10.1016/0198-0149(89)90047-2, 1989.
Gibbons, M. J.: Vertical migration and feeding of Euphausia lucens at two 72
h stations in the southern Benguela upwelling region, Mar. Biol. Int. J.
Life Ocean. Coast. Waters, 116, 257–258, https://doi.org/10.1007/BF00350016, 1993.
Häfker, N. S., Meyer, B., Last, K. S., Pond, D. W., Hüppe, L., and
Teschke, M.: Circadian Clock Involvement in Zooplankton Diel Vertical
Migration, Curr. Biol., 27, 2194–2201, https://doi.org/10.1016/j.cub.2017.06.025, 2017.
Haney, J. F.: Diel patterns of zooplankton behavior, Bull. Mar. Sci., 43,
583–603, 1988.
Hardy, A. C.: Some problems of pelagic life, in: Essays in marine biology
being the Richard Elmhirst Memorial Lectures, edited by: Marshall, S. M.,
and Orr, A. P., Oliver and Boyd, Edinburgh, UK, 101–121, 1953.
Hardy, A. C. and Gunther, E. R.: The plankton of the South Georgia whaling
grounds and adjacent waters, 1926–1927, Discovery Rept., 11, 1–456, 1935.
Hays, G. C.: A review of the adaptive significance and ecosystem
consequences of zooplankton diel vertical migrations, Hydrobiologia, 503,
163–170, https://doi.org/10.1023/B:HYDR.0000008476.23617.b0, 2003.
Hays, G. C., Harris, R. P., and Head, R. N.: The vertical nitrogen flux
caused by zooplankton diel vertical migration, Mar. Ecol. Prog. Ser., 160,
57–62, https://doi.org/10.3354/meps160057, 1997.
Heywood, K. J.: Diel vertical migration of zooplankton in the northeast
Atlantic, J. Plankton Res., 18, 163–184, https://doi.org/10.1093/plankt/18.2.163, 1996.
Huggett, J. A. and Richardson, A. J.: A review of the biology and ecology of
Calanus agulhensis off South Africa, ICES J. Mar. Sci., 57, 1834–1849,
https://doi.org/10.1006/jmsc.2000.0977, 2000.
Iida, K., Mukai, T., and Hwang, D. J.: Relationship between acoustic
backscattering strength and density of zooplankton in the sound-scattering
layer, ICES J. Mar. Sci., 53, 507–512, https://doi.org/10.1006/jmsc.1996.0073, 1996.
IOC, SCOR and IAPSO: The international thermodynamic equation of seawater –
2010: Calculation and use of thermodynamic properties, Intergovernmental
Oceanographic Commission, Manuals and Guides No. 56, UNESCO (English),
available at: http://unesdoc.unesco.org/images/0018/001881/188170e.pdf (last access: 20 May 2019), 196 pp., 2010.
Jiang, S., Dickey, T. D., Steinberg, D. K., and Madin, L. P.: Temporal
variability of zooplankton biomass from ADCP backscatter time series data at
the Bermuda Testbed Mooring site, Deep-Sea Res. Pt. I, 54,
608–636, https://doi.org/10.1016/j.dsr.2006.12.011, 2007.
Longhurst, A. R. and Glen Harrison, W.: The biological pump: Profiles of
plankton production and consumption in the upper ocean, Prog. Oceanogr., 22,
47–123, https://doi.org/10.1016/0079-6611(89)90010-4, 1989.
Madin, L. P., Horgan, E. F., and Steinberg, D. K.: Zooplankton at the Bermuda
Atlantic Time-series Study (BATS) station: Diel, seasonal and interannual
variation in biomass, 1994–1998, Deep-Sea Res. Pt. II, 48, 2063–2082, https://doi.org/10.1016/S0967-0645(00)00171-5, 2001.
Marchese, C., Lazzara, L., Pieri, M., Massi, L., Nuccio, C., Santini, C. and
Maselli, F.: Analysis of Chlorophyll a and Primary Production Dynamics in
North Tyrrhenian and Ligurian Coastal-Neritic and Oceanic Waters, J. Coast.
Res., 31, 690–701, https://doi.org/10.2112/JCOASTRES-D-13-00210.1, 2015.
Mauchline, J.: The Biology of Calanoid Copepods, Adv. Mar. Biol., 33, 1–710, 1998.
McGehee, D. E., Demer, D. A., and Warren, J. D.: Zooplankton in the Ligurian
Sea: Part I. Characterization of their dispersion, relative abundance and
environment during summer 1999, J. Plankton Res., 26, 1409–1418,
https://doi.org/10.1093/plankt/fbh132, 2004.
Millot, C. and Taupier-Letage, I: Circulation in the Mediterranean Sea, in: The
Mediterranean Sea. Handbook of Environmental Chemistry, edited by: Saliot
A., Springer, Berlin, Heidelberg Germany, 29–66, https://doi.org/10.1007/b107143, 2005.
Moriarty, R., Buitenhuis, E. T., Le Quéré, C., and Gosselin, M.-P.: Distribution of
known macrozooplankton abundance and biomass in the global ocean, Earth Syst. Sci. Data,
5, 241–257, https://doi.org/10.5194/essd-5-241-2013, 2013.
Neverman, D. and Wurtsbaugh, W. A.: The thermoregulatory function of diel
vertical migration for a juvenile fish, Cottus extensus, Oecologia, 98,
247–256, https://doi.org/10.1007/BF00324211, 1994.
Pearre, S.: Eat and run? The
hunger/satiation hypothesis in vertical migration: History, evidence and
consequences, Biol. Rev. Camb. Philos. Soc., 78, 1–79,
https://doi.org/10.1017/S146479310200595X, 2003.
Pinca, S. and Dallot, S.: Meso- and macrozooplankton composition patterns
related to hydrodynamic structures in the Ligurian Sea (Trophos-2
experiment, April–June 1986), Mar. Ecol. Prog. Ser., 126, 49–65,
https://doi.org/10.3354/meps126049, 1995.
Pinot, J. M. and Jansá, J.: Time variability of acoustic backscatter
from zooplankton in the Ibiza Channel (western Mediterranean), Deep-Sea Res. Pt. I, 48, 1651–1670,
https://doi.org/10.1016/S0967-0637(00)00095-9, 2001.
Potiris, E., Frangoulis, C., Kalampokis, A., Ntoumas, M., Pettas, M., Petihakis, G., and
Zervakis, V.: Acoustic Doppler current profiler observations of migration patternsof zooplankton
in the Cretan Sea, Ocean Sci., 14, 783–800, https://doi.org/10.5194/os-14-783-2018, 2018.
Richards, S. A., Possingham, H. P., and Noye, J.: Diel vertical migration:
Modelling light-mediated mechanisms, J. Plankton Res., 18, 2299–2222,
https://doi.org/10.1093/plankt/18.12.2199, 1996.
Ringelberg, J.: Diel Vertical Migration of Zooplankton in Lakes and Oceans:
causal explanations and adaptative significances, Springer Science, Business Media B.V., 1–356, https://doi.org/10.1007/978-90-481-3093-1, 2010.
Sardou, J., Etienne, M., and Andersen, V.: Seasonal abundance and vertical
distributions of macroplankton and micronekton in the Northwestern
Mediterranean Sea, Oceanol. Acta, 19, 645–656, 1996.
Schnetzer, A. and Steinberg, D. K.: Active transport of particulate organic
carbon and nitrogen by vertically migrating zooplankton in the Sargasso Sea,
Mar. Ecol. Prog. Ser., 234, 71–84, https://doi.org/10.3354/meps234071, 2002.
Schroeder, K., Millot, C., Bengara, L., Ben Ismail, S., Bensi, M., Borghini,
M., Budillon, G., Cardin, V., Coppola, L., Curtil, C., Drago, A., El Moumni,
B., Font, J., Fuda, J. L., García-Lafuente, J., Gasparini, G. P.,
Kontoyiannis, H., Lefevre, D., Puig, P., Raimbault, P., Rougier, G., Salat,
J., Sammari, C., Sánchez Garrido, J. C., Sanchez-Roman, A., Sparnocchia,
S., Tamburini, C., Taupier-Letage, I., Theocharis, A., Vargas-Yáñez,
M., and Vetrano, A.: Long-term monitoring programme of the hydrological
variability in the Mediterranean Sea: a first overview of the HYDROCHANGES
network, Ocean Sci., 9, 301–324, https://doi.org/10.5194/os-9-301-2013,
2013.
Scotto di Carlo, B., Ianora, A., Fresi, E., and Hure, J.: Vertical zonation
patterns for Mediterranean copepods from the surface to 3000 m at a fixed
station in the Tyrrhenian Sea, J. Plankton Res., 6, 1031–1056, 1984.
Siokou-Frangou, I., Christaki, U., Mazzocchi, M. G., Montresor, M., Ribera
d'Alcalé, M., Vaqué, D., and Zingone, A.: Plankton in the open
Mediterranean Sea: a review, Biogeosciences, 7, 1543–1586,
https://doi.org/10.5194/bg-7-1543-2010, 2010.
Stuart, V. and Verheye, H. M.: Diel migration and feeding patterns of the
chaetognath , Sagitta jriderici, off the west coast of South Africa, J. Mar.
Res., 49, 493–515, https://doi.org/10.1357/002224091784995819, 1991.
Tarling, G. A., Matthews, J. B. L., David, P., Guerin, O., and Buchholz, F.:
The swarm dynamics of northern krill (Meganyctiphanes norvegica) and
pteropods (Cavolinia inflexa) during vertical migration in the Ligurian Sea
observed by an acoustic Doppler current profiler, Deep-Sea Res. Pt. I, 48,
1671–1686, https://doi.org/10.1016/S0967-0637(00)00105-9, 2001.
Tarling, G. A., Jarvis, T., Emsley, S. M., Matthews, J. B. L.: Midnight
sinking behaviour in Calanus finmarchicus: a response to satiation or krill
predation?, Mar. Ecol. Prog. Ser., 240, 183–194, 2002.
Teledyne RD Instruments: Acoustic Doppler Current Profiler principles of
operation a practical primer, P/N 951-6069-00, 2011.
Thomson, R. E. and Emery, W. J.: Data Analysis Methods in Physical
Oceanography, Elsevier Science, 1–728, 2014.
Truscott, J. E. and Brindley, J.: Ocean plankton populations as excitable
media, Bull. Math. Biol., 56, 981–988, https://doi.org/10.1007/BF02458277, 1994.
Ursella, L., Cardin, V., Batistić, M., Garić, R., and Gačić,
M.: Evidence of zooplankton vertical migration from continuous Southern
Adriatic buoy current-meter records, Prog. Oceanogr., 167, 78–96,
https://doi.org/10.1016/j.pocean.2018.07.004, 2018.
Valle-Levinson, A., Castro, L., Cáceres, M., and Pizarro, O.: Twilight
vertical migrations of zooplankton in a Chilean fjord, Prog. Oceanogr., 129,
114–124, https://doi.org/10.1016/j.pocean.2014.03.008, 2014.
van Haren, H.: Monthly periodicity in acoustic reflections and vertical
motions in the deep ocean, Geophys. Res. Lett., 34, L12603,
https://doi.org/10.1029/2007GL029947, 2007.
van Haren, H.: Internal wave – zooplankton interactions in the Alboran Sea
(W-Mediterranean), J. Plankton Res., 36, 1124–1134,
https://doi.org/10.1093/plankt/fbu031, 2014.
van Haren, H. and Compton, T. J.: Diel Vertical Migration in Deep Sea
Plankton Is Finely Tuned to Latitudinal and Seasonal Day Length, PLOS ONE, 8,
e64435, https://doi.org/10.1371/journal.pone.0064435, 2013.
Vinogradov, M. E.: Some Problems of Vertical Distribution of Meso- and
Macroplankton in the Ocean, Adv. Mar. Biol., 32, 1–97,
https://doi.org/10.1016/S0065-2881(08)60015-2, 1997.
Volpe, G., Santoleri, R., Vellucci, V., Ribera d'Alcalà, M., Marullo, S.
and D'Ortenzio, F.: The colour of the Mediterranean Sea: Global versus
regional bio-optical algorithms evaluation and implication for satellite
chlorophyll estimates, Remote Sens. Environ., 107, 625–638,
https://doi.org/10.1016/j.rse.2006.10.017, 2007.
Warren, J. D., Demer, D. A., Mcgehee, D. E., Mento, R. D. I., and Fabrizio
Borsani, J.: Zooplankton in the Ligurian Sea: Part II, Exploration of their
physical and biological forcing functions during summer 2000, J. Plankton
Res., 26, 1419–1427, https://doi.org/10.1093/plankt/fbh129, 2004.
Wormuth, J. H., Ressler, P. H., Cady, R. B., and Harris, E. J.: Zooplankton
and Micronekton in Cyclones and Anticyclones in the Northeast Gulf of Mexico,
Gulf of Mexico Science, 18, 23–34, 2000.
Zaret, T. M. and Suffern, J. S.: Vertical migration in zooplankton as a
predator avoidance mechanism, Limnol. Oceanogr., 21, 804–813,
https://doi.org/10.4319/lo.1976.21.6.0804, 1976.
Short summary
Diel vertical migration (DVM) is a survival strategy adopted by zooplankton that was investigated in the Corsica Channel using acoustic data from April 2014 to November 2016. The principal aim of the study is to characterize migratory patterns and biomass temporal evolution along the water column. In addition, net samples were taken during summer 2015 at the same location. During the investigated period, zooplankton had a well-defined daily and seasonal cycle, with peaks in late winter.
Diel vertical migration (DVM) is a survival strategy adopted by zooplankton that was...