Articles | Volume 15, issue 2
https://doi.org/10.5194/os-15-361-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/os-15-361-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Wave boundary layer model in SWAN revisited
Department of Wind Energy, Technical University of Denmark, Risø, Campus, Roskilde, Denmark
First Institute of Oceanography, Ministry of Natural Resources of China, Qingdao, China
Laboratory for Regional Oceanography and Numerical Modeling, Qingdao National Laboratory for
Marine Science and Technology, Qingdao, China
Rodolfo Bolaños
DHI, Agern Allé 5, Hørsholm, Denmark
Xiaoli Guo Larsén
Department of Wind Energy, Technical University of Denmark, Risø, Campus, Roskilde, Denmark
Mark Kelly
Department of Wind Energy, Technical University of Denmark, Risø, Campus, Roskilde, Denmark
Related authors
No articles found.
Maarten Paul van der Laan, Mark Kelly, Mads Baungaard, Antariksh Dicholkar, and Emily Louise Hodgson
Wind Energ. Sci., 9, 1985–2000, https://doi.org/10.5194/wes-9-1985-2024, https://doi.org/10.5194/wes-9-1985-2024, 2024
Short summary
Short summary
Wind turbines are increasing in size and operate more frequently above the atmospheric surface layer, which requires improved inflow models for numerical simulations of turbine interaction. In this work, a novel steady-state model of the atmospheric boundary layer (ABL) is introduced. Numerical wind turbine flow simulations subjected to shallow and tall ABLs are conducted, and the proposed model shows improved performance compared to other state-of-the-art steady-state models.
Mark Kelly
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-69, https://doi.org/10.5194/wes-2024-69, 2024
Preprint under review for WES
Short summary
Short summary
Industrial standards for wind turbine design are based on 10-minute statistics of wind speed at turbine hub-height, treating fluctuations as turbulence. But recent work shows the effect of strong transients is described by flow accelerations. We devise a method to measure the accelerations turbines encounter; the extremes offshore defy 10-minute statistics, due to various phenomena beyond turbulence. These findings are translated into a recipe supporting statistical turbine design.
Sara Müller, Xiaoli Guo Larsén, and David Robert Verelst
Wind Energ. Sci., 9, 1153–1171, https://doi.org/10.5194/wes-9-1153-2024, https://doi.org/10.5194/wes-9-1153-2024, 2024
Short summary
Short summary
Tropical cyclone winds are challenging for wind turbines. We analyze a tropical cyclone before landfall in a mesoscale model. The simulated wind speeds and storm structure are sensitive to the boundary parametrization. However, independent of the boundary layer parametrization, the median change in wind speed and wind direction with height is small relative to wind turbine design standards. Strong spatial organization of wind shear and veer along the rainbands may increase wind turbine loads.
Jana Fischereit, Henrik Vedel, Xiaoli Guo Larsén, Natalie E. Theeuwes, Gregor Giebel, and Eigil Kaas
Geosci. Model Dev., 17, 2855–2875, https://doi.org/10.5194/gmd-17-2855-2024, https://doi.org/10.5194/gmd-17-2855-2024, 2024
Short summary
Short summary
Wind farms impact local wind and turbulence. To incorporate these effects in weather forecasting, the explicit wake parameterization (EWP) is added to the forecasting model HARMONIE–AROME. We evaluate EWP using flight data above and downstream of wind farms, comparing it with an alternative wind farm parameterization and another weather model. Results affirm the correct implementation of EWP, emphasizing the necessity of accounting for wind farm effects in accurate weather forecasting.
Mark Kelly and Maarten Paul van der Laan
Wind Energ. Sci., 8, 975–998, https://doi.org/10.5194/wes-8-975-2023, https://doi.org/10.5194/wes-8-975-2023, 2023
Short summary
Short summary
The turning of the wind with height, which is known as veer, can affect wind turbine performance. Thus far meteorology has only given idealized descriptions of veer, which has not yet been related in a way readily usable for wind energy. Here we derive equations for veer in terms of meteorological quantities and provide practically usable forms in terms of measurable shear (change in wind speed with height). Flow simulations and measurements at turbine heights support these developments.
Maarten Paul van der Laan, Oscar García-Santiago, Mark Kelly, Alexander Meyer Forsting, Camille Dubreuil-Boisclair, Knut Sponheim Seim, Marc Imberger, Alfredo Peña, Niels Nørmark Sørensen, and Pierre-Elouan Réthoré
Wind Energ. Sci., 8, 819–848, https://doi.org/10.5194/wes-8-819-2023, https://doi.org/10.5194/wes-8-819-2023, 2023
Short summary
Short summary
Offshore wind farms are more commonly installed in wind farm clusters, where wind farm interaction can lead to energy losses. In this work, an efficient numerical method is presented that can be used to estimate these energy losses. The novel method is verified with higher-fidelity numerical models and validated with measurements of an existing wind farm cluster.
Maarten Paul van der Laan, Mads Baungaard, and Mark Kelly
Wind Energ. Sci., 8, 247–254, https://doi.org/10.5194/wes-8-247-2023, https://doi.org/10.5194/wes-8-247-2023, 2023
Short summary
Short summary
Understanding wind turbine wake recovery is important to mitigate energy losses in wind farms. Wake recovery is often assumed or explained to be dependent on the first-order derivative of velocity. In this work we show that wind turbine wakes recover mainly due to the second-order derivative of the velocity, which transport momentum from the freestream towards the wake center. The wake recovery mechanisms and results of a high-fidelity numerical simulation are illustrated using a simple model.
Xiaoli Guo Larsén, Marc Imberger, Ásta Hannesdóttir, and Andrea N. Hahmann
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2022-102, https://doi.org/10.5194/wes-2022-102, 2023
Revised manuscript not accepted
Short summary
Short summary
We study how climate change will impact extreme winds and choice of turbine class. We use data from 18 CMIP6 members from a historic and a future period to access the change in the extreme winds. The analysis shows an overall increase in the extreme winds in the North Sea and the southern Baltic Sea, but a decrease over the Scandinavian Peninsula and most of the Baltic Sea. The analysis is inconclusive to whether higher or lower classes of turbines will be installed in the future.
Xiaoli Guo Larsén and Søren Ott
Wind Energ. Sci., 7, 2457–2468, https://doi.org/10.5194/wes-7-2457-2022, https://doi.org/10.5194/wes-7-2457-2022, 2022
Short summary
Short summary
A method is developed for calculating the extreme wind in tropical-cyclone-affected water areas. The method is based on the spectral correction method that fills in the missing wind variability to the modeled time series, guided by best track data. The paper provides a detailed recipe for applying the method and the 50-year winds of equivalent 10 min temporal resolution from 10 to 150 m in several tropical-cyclone-affected regions.
Mads Baungaard, Stefan Wallin, Maarten Paul van der Laan, and Mark Kelly
Wind Energ. Sci., 7, 1975–2002, https://doi.org/10.5194/wes-7-1975-2022, https://doi.org/10.5194/wes-7-1975-2022, 2022
Short summary
Short summary
Wind turbine wakes in the neutral atmospheric surface layer are simulated with Reynolds-averaged Navier–Stokes (RANS) using an explicit algebraic Reynolds stress model. Contrary to standard two-equation turbulence models, it can predict turbulence anisotropy and complex physical phenomena like secondary motions. For the cases considered, it improves Reynolds stress, turbulence intensity, and velocity deficit predictions, although a more top-hat-shaped profile is observed for the latter.
Jana Fischereit, Kurt Schaldemose Hansen, Xiaoli Guo Larsén, Maarten Paul van der Laan, Pierre-Elouan Réthoré, and Juan Pablo Murcia Leon
Wind Energ. Sci., 7, 1069–1091, https://doi.org/10.5194/wes-7-1069-2022, https://doi.org/10.5194/wes-7-1069-2022, 2022
Short summary
Short summary
Wind turbines extract kinetic energy from the flow to create electricity. This induces a wake of reduced wind speed downstream of a turbine and consequently downstream of a wind farm. Different types of numerical models have been developed to calculate this effect. In this study, we compared models of different complexity, together with measurements over two wind farms. We found that higher-fidelity models perform better and the considered rapid models cannot fully capture the wake effect.
Mads Baungaard, Maarten Paul van der Laan, and Mark Kelly
Wind Energ. Sci., 7, 783–800, https://doi.org/10.5194/wes-7-783-2022, https://doi.org/10.5194/wes-7-783-2022, 2022
Short summary
Short summary
Wind turbine wakes are dependent on the atmospheric conditions, and it is therefore important to be able to simulate in various different atmospheric conditions. This paper concerns the specific case of an unstable atmospheric surface layer, which is the lower part of the typical daytime atmospheric boundary layer. A simple flow model is suggested and tested for a range of single-wake scenarios, and it shows promising results for velocity deficit predictions.
Anna Rutgersson, Erik Kjellström, Jari Haapala, Martin Stendel, Irina Danilovich, Martin Drews, Kirsti Jylhä, Pentti Kujala, Xiaoli Guo Larsén, Kirsten Halsnæs, Ilari Lehtonen, Anna Luomaranta, Erik Nilsson, Taru Olsson, Jani Särkkä, Laura Tuomi, and Norbert Wasmund
Earth Syst. Dynam., 13, 251–301, https://doi.org/10.5194/esd-13-251-2022, https://doi.org/10.5194/esd-13-251-2022, 2022
Short summary
Short summary
A natural hazard is a naturally occurring extreme event with a negative effect on people, society, or the environment; major events in the study area include wind storms, extreme waves, high and low sea level, ice ridging, heavy precipitation, sea-effect snowfall, river floods, heat waves, ice seasons, and drought. In the future, an increase in sea level, extreme precipitation, heat waves, and phytoplankton blooms is expected, and a decrease in cold spells and severe ice winters is anticipated.
Marcus Reckermann, Anders Omstedt, Tarmo Soomere, Juris Aigars, Naveed Akhtar, Magdalena Bełdowska, Jacek Bełdowski, Tom Cronin, Michał Czub, Margit Eero, Kari Petri Hyytiäinen, Jukka-Pekka Jalkanen, Anders Kiessling, Erik Kjellström, Karol Kuliński, Xiaoli Guo Larsén, Michelle McCrackin, H. E. Markus Meier, Sonja Oberbeckmann, Kevin Parnell, Cristian Pons-Seres de Brauwer, Anneli Poska, Jarkko Saarinen, Beata Szymczycha, Emma Undeman, Anders Wörman, and Eduardo Zorita
Earth Syst. Dynam., 13, 1–80, https://doi.org/10.5194/esd-13-1-2022, https://doi.org/10.5194/esd-13-1-2022, 2022
Short summary
Short summary
As part of the Baltic Earth Assessment Reports (BEAR), we present an inventory and discussion of different human-induced factors and processes affecting the environment of the Baltic Sea region and their interrelations. Some are naturally occurring and modified by human activities, others are completely human-induced, and they are all interrelated to different degrees. The findings from this study can largely be transferred to other comparable marginal and coastal seas in the world.
Marc Imberger, Xiaoli Guo Larsén, and Neil Davis
Adv. Geosci., 56, 77–87, https://doi.org/10.5194/adgeo-56-77-2021, https://doi.org/10.5194/adgeo-56-77-2021, 2021
Short summary
Short summary
Events like mid-latitude storms with their high winds have an impact on wind energy production and forecasting of such events is crucial. This study investigates the capabilities of a global weather prediction model MPAS and looks at how key parameters like storm intensity, arrival time and duration are represented compared to measurements and traditional methods. It is found that storm intensity is represented well while model drifts negatively influence estimation of arrival time and duration.
Mark Kelly, Søren Juhl Andersen, and Ásta Hannesdóttir
Wind Energ. Sci., 6, 1227–1245, https://doi.org/10.5194/wes-6-1227-2021, https://doi.org/10.5194/wes-6-1227-2021, 2021
Short summary
Short summary
Via 11 years of measurements, we made a representative ensemble of wind ramps in terms of acceleration, mean speed, and shear. Constrained turbulence and large-eddy simulations were coupled to an aeroelastic model for each ensemble member. Ramp acceleration was found to dominate the maxima of thrust-associated loads, with a ramp-induced increase of 45 %–50 % plus ~ 3 % per 0.1 m/s2 of bulk ramp acceleration magnitude. The LES indicates that the ramps (and such loads) persist through the farm.
Xiaoli G. Larsén and Jana Fischereit
Geosci. Model Dev., 14, 3141–3158, https://doi.org/10.5194/gmd-14-3141-2021, https://doi.org/10.5194/gmd-14-3141-2021, 2021
Short summary
Short summary
For the first time, turbulent kinetic energy (TKE) calculated from the explicit wake parameterization (EWP) in WRF is examined using high-frequency measurements over a wind farm and compared with that calculated using the Fitch et al. (2012) scheme. We examined the effect of farm-induced TKE advection in connection with the Fitch scheme. Through a case study with a low-level jet (LLJ), we analyzed the key features of LLJs and raised the issue of interaction between wind farms and LLJs.
Maarten Paul van der Laan, Mark Kelly, and Mads Baungaard
Wind Energ. Sci., 6, 777–790, https://doi.org/10.5194/wes-6-777-2021, https://doi.org/10.5194/wes-6-777-2021, 2021
Short summary
Short summary
Wind farms operate in the atmospheric boundary layer, and their performance is strongly dependent on the atmospheric conditions. We propose a simple model of the atmospheric boundary layer that can be used as an inflow model for wind farm simulations for isolating a number of atmospheric effects – namely, the change in wind direction with height and atmospheric boundary layer depth. In addition, the simple model is shown to be consistent with two similarity theories.
Andrey Sogachev, Dalibor Cavar, Mark Kelly, Ebba Dellwik, Tobias Klaas, and Paul Kühn
Adv. Sci. Res., 17, 53–61, https://doi.org/10.5194/asr-17-53-2020, https://doi.org/10.5194/asr-17-53-2020, 2020
Short summary
Short summary
Recently an objective method was suggested to translate realistic vegetation characteristics into spatially varying values of effective roughness. This parameter allows prediction of wind flow over vegetation using models, without incorporating local drag forces in each grid volume of a three-dimensional model domain. Results of the flow simulations over different forested sites show that an approach based on a roughness representation of forest is appropriate only for the flat terrain.
Maarten Paul van der Laan, Mark Kelly, Rogier Floors, and Alfredo Peña
Wind Energ. Sci., 5, 355–374, https://doi.org/10.5194/wes-5-355-2020, https://doi.org/10.5194/wes-5-355-2020, 2020
Short summary
Short summary
The design of wind turbines and wind farms can be improved by increasing the accuracy of the inflow models representing the atmospheric boundary layer (ABL). In this work we employ numerical simulations of the idealized ABL, which can represent the mean effects of Coriolis and buoyancy forces and surface roughness. We find a new model-based similarity that provides a better understanding of the idealized ABL. In addition, we extend the model to include effects of convective buoyancy forces.
Ásta Hannesdóttir and Mark Kelly
Wind Energ. Sci., 4, 385–396, https://doi.org/10.5194/wes-4-385-2019, https://doi.org/10.5194/wes-4-385-2019, 2019
Short summary
Short summary
The wind turbine safety standard includes a coherent gust model with a wind speed increase and direction change of 10 s. With the increasing rotor size of modern wind turbines this model is criticized for being uniform across these large rotors. In this study we investigate measurements of coherent gusts with a ramp-like increase in wind speed. We define a new method for ramp detection and characterization and compare it with the coherent gust model from the wind turbine safety standard.
Ásta Hannesdóttir, Mark Kelly, and Nikolay Dimitrov
Wind Energ. Sci., 4, 325–342, https://doi.org/10.5194/wes-4-325-2019, https://doi.org/10.5194/wes-4-325-2019, 2019
Short summary
Short summary
We investigate large wind speed fluctuations from a 10-year period at the Danish coastal site Høvsøre. The most extreme fluctuations are not turbulent but due to larger-scale weather phenomena. We find how these fluctuations impact wind turbines using simulations. The results are then compared to an extreme turbulence model described in the wind turbine safety standards, and it is found that the loads on the different turbine components are not the same as what the standard describes.
Maarten Paul van der Laan, Søren Juhl Andersen, Néstor Ramos García, Nikolas Angelou, Georg Raimund Pirrung, Søren Ott, Mikael Sjöholm, Kim Hylling Sørensen, Julio Xavier Vianna Neto, Mark Kelly, Torben Krogh Mikkelsen, and Gunner Christian Larsen
Wind Energ. Sci., 4, 251–271, https://doi.org/10.5194/wes-4-251-2019, https://doi.org/10.5194/wes-4-251-2019, 2019
Short summary
Short summary
Over the past few decades, single-rotor wind turbines have increased in size with the blades being extended toward lengths of 100 m. An alternative upscaling of turbines can be achieved by using multi-rotor wind turbines. In this article, measurements and numerical simulations of a utility-scale four-rotor wind turbine show that rotor interaction leads to increased energy production and faster wake recovery; these findings may allow for the design of wind farms with improved energy production.
Nikolay Dimitrov, Mark C. Kelly, Andrea Vignaroli, and Jacob Berg
Wind Energ. Sci., 3, 767–790, https://doi.org/10.5194/wes-3-767-2018, https://doi.org/10.5194/wes-3-767-2018, 2018
Short summary
Short summary
Wind energy site suitability assessment procedures often require estimating the loads a wind turbine will be subject to when installed. The estimation is often time-consuming and requires several iterations. We have developed a procedure for quick and accurate estimation of site-specific wind turbine loads. Our approach employs computationally efficient parametric models that are calibrated to high-fidelity load simulations. The result is a significant reduction in computation efforts.
Mark Kelly
Wind Energ. Sci., 3, 533–543, https://doi.org/10.5194/wes-3-533-2018, https://doi.org/10.5194/wes-3-533-2018, 2018
Short summary
Short summary
This paper shows how a definitive part of the commonly used Mann (1994) atmospheric turbulence model (its so-called eddy lifetime) implies that the model parameters can be directly related to typical measurements in wind energy projects. Most importantly, the characteristic turbulence length scale is found in terms of commonly measured (10 min mean) quantities (shear and standard deviation of wind speed); this estimator is found to give useful results, over different sites and flow regimes.
Mark Kelly and Hans E. Jørgensen
Wind Energ. Sci., 2, 189–209, https://doi.org/10.5194/wes-2-189-2017, https://doi.org/10.5194/wes-2-189-2017, 2017
Short summary
Short summary
Here we give a basic form for uncertainty in mean wind speed predicted at one site via measurements taken at another site due to uncertainty in surface roughness when using industry-standard European Wind Atlas (e.g., WAsP) method. We also provide an approximate power-curve form and method to further estimate uncertainty in turbine energy production; this is also useful in AEP estimates. Some implications are also discussed, e.g., prediction over forest or with mesoscale model output.
Related subject area
Approach: Numerical Models | Depth range: Surface | Geographical range: Shelf Seas | Phenomena: Surface Waves
Predicting ocean waves along the US east coast during energetic winter storms: sensitivity to whitecapping parameterizations
Coupling of wave and circulation models in coastal–ocean predicting systems: a case study for the German Bight
Mohammad Nabi Allahdadi, Ruoying He, and Vincent S. Neary
Ocean Sci., 15, 691–715, https://doi.org/10.5194/os-15-691-2019, https://doi.org/10.5194/os-15-691-2019, 2019
Short summary
Short summary
Dissipation of ocean waves due to whitecapping is one of the most important processes that affect generation of gravity waves by wind. Different behavior of traditional approaches used for quantifying whitecapping dissipation under different wave conditions has always been a challenge to choose the most appropriate approach for a given area. The present paper examines the performance of two popular whitecapping approaches incorporated in SWAN during the winter storms along the US east coast.
Joanna Staneva, Kathrin Wahle, Heinz Günther, and Emil Stanev
Ocean Sci., 12, 797–806, https://doi.org/10.5194/os-12-797-2016, https://doi.org/10.5194/os-12-797-2016, 2016
Short summary
Short summary
This study addresses the impact of coupling between wind wave and circulation models on the quality of coastal ocean predicting systems. This topic reflects the increased interest in operational oceanography to reduce prediction errors of state estimates at coastal scales. The improved skill of the coupled forecasts compared to the non-coupled ones, in particular during extreme events, justifies the further enhancements of coastal operational systems by including wind wave models.
Cited articles
Alves, J. H. G. M. and Banner, M. L.: Performance of a Saturation-Based
Dissipation-Rate Source Term in Modeling the Fetch-Limited Evolution of Wind
Waves, J. Phys. Oceanogr., 33, 1274–1298, https://doi.org/10.1175/1520-0485(2003)033<1274:POASDS>2.0.CO;2, 2003. a
Ardhuin, F. and Roland, A.: Coastal wave reflection, directional spread, and
seismoacoustic noise sources, J. Geophys. Res.-Oceans, 117,
1–16, https://doi.org/10.1029/2011JC007832, 2012. a
Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J.-F., Magne, R., Roland, A.,
van der Westhuysen, A., Queffeulou, P., Lefevre, J.-M., Aouf, L., and
Collard, F.: Semiempirical Dissipation Source Functions for Ocean Waves, Part I: Definition,
Calibration, and Validation, J. Phys. Oceanogr., 40, 1917–1941, https://doi.org/10.1175/2010JPO4324.1, 2010. a, b, c, d, e
Ardhuin, F., Roland, A., Dumas, F., Bennis, A.-C., Sentchev, A., Forget, P.,
Wolf, J., Girard, F., Osuna, P., and Benoit, M.: Numerical wave modelling in
conditions with strong currents: dissipation, refraction and relative wind,
J. Phys. Oceanogr., 42, https://doi.org/10.1175/JPO-D-11-0220.1, 2012. a
Babanin, A. V. and Young, I. R.: Two-phase behaviour of the spectral
dissipation of wind waves, in: Proc. Ocean Waves Measurements and Analysis,
Fifth Intern, Symposium WAVES2005, December 2016, 2005. a
Babanin, A. V., Tsagareli, K. N., Young, I. R., and Walker, D. J.: Numerical
Investigation of Spectral Evolution of Wind Waves, Part II: Dissipation Term
and Evolution Tests, J. Phys. Oceanogr., 40, 667–683,
https://doi.org/10.1175/2009JPO4370.1, 2010. a, b
Banner, M. L. and Morison, R. P.: Refined source terms in wind wave models
with explicit wave breaking prediction, Part I: Model framework and
validation against field data, Ocean Model., 33, 177–189,
https://doi.org/10.1016/j.ocemod.2010.01.002, 2010. a
Battjes, J. A. and Janssen, J. P. F. M.: Energy loss and set-up due to
breaking of random waves, in: Proceedings of 16th International Conference
on Coast. Eng., New York, American Society of Civil Engineers, 569–587, https://doi.org/10.1017/CBO9781107415324.004, 1978. a, b
Bolaños, R.: D3.3 Metocean Conditions and Wave Modelling, Tech. Rep.
November, available at: http://orbit.dtu.dk/files/155595377/D3p3_final.pdf (last access: 10 April 2017), 2016. a
Bolaños, R. and Rørbæk, K.: D3.1 Metocean Buoy Deployment,
Tech. Rep. November, available at: http://orbit.dtu.dk/files/155595376/D3p1_final.pdf, (last access: 10 April 2017), 2016. a
Bolaños, R., Larsén, X. G., Petersen, O., Nielsen, J., Kelly, M.,
Kofoed-Hansen, H., Du, J., Sørensen, O., Larsen, S., Hahmann, A., and
Badger, M.: Coupling atmospherere and waves for coastal wind turbine
design, Proceedings of the Coast. Eng. Conference, 1–11 January 2014, 2014. a
Booij, N., Ris, R., and Holthuijsen, L.: A third-generation wave model for
coastal regions, I-Model description and validation, J. Geophys. Res., 104, 7649–7666, https://doi.org/10.1029/98JC02622, 1999. a, b
Cavaleri, L.: Wave Modeling-Missing the Peaks, J. Phys. Oceanogr., 39, 2757–2778, https://doi.org/10.1175/2009JPO4067.1, 2009. a
Cavaleri, L., Alves, J. H. G. M., Ardhuin, F., Babanin, A., Banner, M.,
Belibassakis, K., Benoit, M., Donelan, M., Groeneweg, J., Herbers, T. H. C.,
Hwang, P., Janssen, P. A. E. M., Janssen, T., Lavrenov, I. V., Magne, R.,
Monbaliu, J., Onorato, M., Polnikov, V., Resio, D., Rogers, W. E., Sheremet,
A., McKee Smith, J., Tolman, H. L., van Vledder, G., Wolf, J., and Young,
I.: Wave modelling – The state of the art, Prog. Oceanogr., 75,
603–674, https://doi.org/10.1016/j.pocean.2007.05.005, 2007. a
Donelan, M. A., Hamilton, J., and Hui, W. H.: Directional Spectra of
Wind-Generated Waves, Philos. T. R. Soc. Lond., 315, 509–562,
https://doi.org/10.1098/rsta.1985.0054, 1985. a, b, c
Du, J.: Coupling atmospheric and ocean wave models for storm simulation,
Ph.D. thesis, Technical University of Denmark, https://doi.org/10.11581/DTU:00000020, 136 pp., 2017. a, b
Floors, R., Hahmann, A., Peña, A., and Karagali, I.: Estimating
near-shore wind resources E-Report DTU Wind Energy, Vol. 0116, available at:
http://orbit.dtu.dk/files/126992882/final.pdf (last access: 10 April 2017),
2016a. a
Floors, R., Peña, A., Lea, G., Vasiljevic, N., Simon, E., and Courtney,
M.: The RUNE experiment-A database of remote-sensing observations of
near-shore winds, Remote Sens., 8, https://doi.org/10.3390/rs8110884,
2016c. a
Hasselmann, K.: On the spectral dissipation of ocean waves due to white
capping, Bound-Lay. Meteorol., 6, 107–127, https://doi.org/10.1007/BF00232479,
1974. a
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E.,
Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P.,
Meerburg, A., Muller, P., Olbers, D. J., Richter, K., Sell, W., and Walden,
H.: Measurements of Wind-Wave Growth and Swell Decay during the Joint North
Sea Wave Project (JONSWAP), Ergänzungsheft zur Deutschen Hydrographischen
Zeitschrift Reihe, A8, p. 95, 2710264, 1973. a, b, c, d, e, f, g
Hua, F. and Yuan, Y.: Theoretical Study of Breaking Wave Spectrum and its
Application, in: Breaking Waves, Springer Berlin Heidelberg,
Berlin, Heidelberg, 277–282, https://doi.org/10.1007/978-3-642-84847-6-30, 1992. a
Larsén, X. G., Du, J., Bolaños, R., and Larsen, S.: On the impact
of wind on the development of wave field during storm Britta, Ocean
Dynam., 67, 1407–1427, https://doi.org/10.1007/s10236-017-1100-1, 2017. a, b
Leckler, F., Ardhuin, F., Filipot, J. F., and Mironov, A.: Dissipation source
terms and whitecap statistics, Ocean Model., 70, 62–74,
https://doi.org/10.1016/j.ocemod.2013.03.007, 2013. a
Longuet-Higgins, M. S.: On Wave Breaking and the Equilibrium Spectrum of
Wind-Generated Waves, P. Roy. Soc. A-Math. Phy., 310, 151–159,
https://doi.org/10.1098/rspa.1969.0069, 1969. a
Melville, W. K. and Matusov, P.: Distribution of breaking waves at the ocean
surface., Nature, 417, 58–63, https://doi.org/10.1038/417058a, 2002. a
Miles, J. W.: On the generation of surface waves by shear flows, Part 2,
J. Fluid Mech., 3, 568–582, https://doi.org/10.1017/S0022112059000830,
1957. a, b, c
Phillips, O. M.: Spectral and statistical properties of the equilibrium range
in wind-generated gravity waves, J. Fluid Mech., 156, 505–531,
https://doi.org/10.1017/S0022112085002221, 1985. a, b, c
Polnikov, V. G.: On a description of a wind-wave energy dissipation function,
in: The Air-Sea Interface: Radio and Acoustic Sensing, Turbulence and
Wave Dynamics, edited by: Donelan, M. A., Hui, W. H., and Plant, W. J.,
Rosenstiel School of Marine and Atmospheric Science, University of
Miami, 277–282, 1993. a
Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer,
D., Hou, Y., Chuang, H., Iredell, M., Ek, M., Meng, J., Yang, R., Mendez, M.
P., van den Dool, H., Zhang, Q., Wang, W., Chen, M., and Becker, E.: NCEP
Climate Forecast System Version 2 (CFSv2) Selected Hourly Time-Series
Products. Research Data Archive at the National Center for Atmospheric
Research, Computational and Information Systems Laboratory, updated monthly,
https://doi.org/10.5065/D6N877VB, last access: 17 November 2016, 2011. a
Snyder, R. L., Dobson, F. W., Elliott, J. A., and Long, R. B.: Array
measurements of atmospheric pressure fluctuations above surface gravity
waves, J. Fluid Mech., 102, 1–59, https://doi.org/10.1017/S0022112081002528,
1981. a, b
Sørensen, O. R., Kofoed-Hansen, H., Rugbjerg, M., and Sørensen, L. S.: A
third-generation spectral wave model using an unstructured finite volume
technique, Proceedings of the 29th Intern. Conf. on Coastal Eng., 1, 894–906, https://doi.org/10.1142/9789812701916-0071,
2005. a
SWAN: Swan Scientific and Technical Documentation, SWAN Cycle III, Version 41.01, 1–132, 2014. a
Tolman, H. L. and Chalikov, D.: Source Terms in a Third-Generation Wind Wave
Model, 26, https://doi.org/10.1175/1520-0485(1996)026<2497:STIATG>2.0.CO;2, 1996. a
van der Westhuysen, A. J., Zijlema, M., and Battjes, J. A.: Nonlinear
saturation-based whitecapping dissipation in SWAN for deep and shallow
water, Coast. Eng., 54, 151–170,
https://doi.org/10.1016/j.coastaleng.2006.08.006, 2007. a, b
Young, I. R. and Babanin, A. V.: Spectral Distribution of Energy Dissipation
of Wind-Generated Waves due to Dominant Wave Breaking, J. Phys. Oceanogr., 36, 376–394, https://doi.org/10.1175/JPO2859.1, 2006a. a, b
Young, I. R., Banner, M. L., Donelan, M. A., Babanin, A. V., Melville, W. K.,
Veron, F., and McCormick, C.: An integrated system for the study of
wind-wave source terms in finite-depth water, J. Atmos. Ocean. Tech., 22, 814–831, https://doi.org/10.1175/JTECH1726.1, 2005. a
Yuan, Y., Tung, C. C., and Huang, N. E.: Statistical Characteristics of
Breaking Waves, in: Wave Dynamics and Radio Probing of the Ocean Surface,
Springer US, Boston, MA, 265–272, https://doi.org/10.1007/978-1-4684-8980-4-18,
1986. a
Zieger, S., Babanin, A. V., Erick Rogers, W., and Young, I. R.:
Observation-based source terms in the third-generation wave model
WAVEWATCH, Ocean Model., 96, 2–25, https://doi.org/10.1016/j.ocemod.2015.07.014,
2015. a
Zijlema, M., Van Vledder, G. P., and Holthuijsen, L. H.: Bottom friction and
wind drag for wave models, Coast. Eng., 65, 19–26,
https://doi.org/10.1016/j.coastaleng.2012.03.002, 2012. a, b
Short summary
Ocean surface waves generated by wind and dissipated by white capping are two important physics processes for numerical wave simulations. In this study, a new pair of wind–wave generation and dissipation source functions is implemented in the wave model SWAN, and it shows better performance in real wave simulations during two North Sea storms. The new source functions can be further used in other wave models for both academic and engineering purposes.
Ocean surface waves generated by wind and dissipated by white capping are two important physics...