Articles | Volume 15, issue 2
https://doi.org/10.5194/os-15-361-2019
https://doi.org/10.5194/os-15-361-2019
Research article
 | 
10 Apr 2019
Research article |  | 10 Apr 2019

Wave boundary layer model in SWAN revisited

Jianting Du, Rodolfo Bolaños, Xiaoli Guo Larsén, and Mark Kelly

Related authors

Modelling wind farm effects in HARMONIE–AROME (cycle 43.2.2) – Part 1: Implementation and evaluation
Jana Fischereit, Henrik Vedel, Xiaoli Guo Larsén, Natalie E. Theeuwes, Gregor Giebel, and Eigil Kaas
Geosci. Model Dev., 17, 2855–2875, https://doi.org/10.5194/gmd-17-2855-2024,https://doi.org/10.5194/gmd-17-2855-2024, 2024
Short summary
A simple RANS inflow model of the neutral and stable atmospheric boundary layer applied to wind turbine wake simulations
Maarten Paul van der Laan, Mark Kelly, Mads Baungaard, and Antariksh Dicholkar
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2024-23,https://doi.org/10.5194/wes-2024-23, 2024
Preprint under review for WES
Short summary
Tropical cyclone low-level wind speed, shear, and veer: sensitivity to the boundary layer parameterization in WRF
Sara Müller, Xiaoli Guo Larsén, and David Verelst
Wind Energ. Sci. Discuss., https://doi.org/10.5194/wes-2023-71,https://doi.org/10.5194/wes-2023-71, 2023
Revised manuscript accepted for WES
Short summary
From shear to veer: theory, statistics, and practical application
Mark Kelly and Maarten Paul van der Laan
Wind Energ. Sci., 8, 975–998, https://doi.org/10.5194/wes-8-975-2023,https://doi.org/10.5194/wes-8-975-2023, 2023
Short summary
A new RANS-based wind farm parameterization and inflow model for wind farm cluster modeling
Maarten Paul van der Laan, Oscar García-Santiago, Mark Kelly, Alexander Meyer Forsting, Camille Dubreuil-Boisclair, Knut Sponheim Seim, Marc Imberger, Alfredo Peña, Niels Nørmark Sørensen, and Pierre-Elouan Réthoré
Wind Energ. Sci., 8, 819–848, https://doi.org/10.5194/wes-8-819-2023,https://doi.org/10.5194/wes-8-819-2023, 2023
Short summary

Related subject area

Approach: Numerical Models | Depth range: Surface | Geographical range: Shelf Seas | Phenomena: Surface Waves
Predicting ocean waves along the US east coast during energetic winter storms: sensitivity to whitecapping parameterizations
Mohammad Nabi Allahdadi, Ruoying He, and Vincent S. Neary
Ocean Sci., 15, 691–715, https://doi.org/10.5194/os-15-691-2019,https://doi.org/10.5194/os-15-691-2019, 2019
Short summary
Coupling of wave and circulation models in coastal–ocean predicting systems: a case study for the German Bight
Joanna Staneva, Kathrin Wahle, Heinz Günther, and Emil Stanev
Ocean Sci., 12, 797–806, https://doi.org/10.5194/os-12-797-2016,https://doi.org/10.5194/os-12-797-2016, 2016
Short summary

Cited articles

Alves, J. H. G. M. and Banner, M. L.: Performance of a Saturation-Based Dissipation-Rate Source Term in Modeling the Fetch-Limited Evolution of Wind Waves, J. Phys. Oceanogr., 33, 1274–1298, https://doi.org/10.1175/1520-0485(2003)033<1274:POASDS>2.0.CO;2, 2003. a
Ardhuin, F.: Dissipation parameterizations in spectral wave models and general suggestions for improving on today's wave models Fabrice Ardhuine, in: ECMWF Workshop on Ocean Waves, June, 113–124, 2012. a, b
Ardhuin, F. and Roland, A.: Coastal wave reflection, directional spread, and seismoacoustic noise sources, J. Geophys. Res.-Oceans, 117, 1–16, https://doi.org/10.1029/2011JC007832, 2012. a
Ardhuin, F., Rogers, E., Babanin, A. V., Filipot, J.-F., Magne, R., Roland, A., van der Westhuysen, A., Queffeulou, P., Lefevre, J.-M., Aouf, L., and Collard, F.: Semiempirical Dissipation Source Functions for Ocean Waves, Part I: Definition, Calibration, and Validation, J. Phys. Oceanogr., 40, 1917–1941, https://doi.org/10.1175/2010JPO4324.1, 2010. a, b, c, d, e
Ardhuin, F., Roland, A., Dumas, F., Bennis, A.-C., Sentchev, A., Forget, P., Wolf, J., Girard, F., Osuna, P., and Benoit, M.: Numerical wave modelling in conditions with strong currents: dissipation, refraction and relative wind, J. Phys. Oceanogr., 42, https://doi.org/10.1175/JPO-D-11-0220.1, 2012. a
Download
Short summary
Ocean surface waves generated by wind and dissipated by white capping are two important physics processes for numerical wave simulations. In this study, a new pair of wind–wave generation and dissipation source functions is implemented in the wave model SWAN, and it shows better performance in real wave simulations during two North Sea storms. The new source functions can be further used in other wave models for both academic and engineering purposes.