Articles | Volume 15, issue 2
https://doi.org/10.5194/os-15-235-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/os-15-235-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Measurements of air–sea gas transfer velocities in the Baltic Sea
Leila Nagel
previously at: Institute of Environmental Physics, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
Kerstin E. Krall
CORRESPONDING AUTHOR
Institute of Environmental Physics, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
Bernd Jähne
Institute of Environmental Physics, Heidelberg University, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany
Heidelberg Collaboratory for Image Processing, Heidelberg University, Berliner Straße 43, 69120 Heidelberg, Germany
Related authors
No articles found.
Kerstin E. Krall, Andrew W. Smith, Naohisa Takagaki, and Bernd Jähne
Ocean Sci., 15, 1783–1799, https://doi.org/10.5194/os-15-1783-2019, https://doi.org/10.5194/os-15-1783-2019, 2019
Short summary
Short summary
We measured the transfer of 12 gases between air and sea at very high wind speeds in two different wind-wave tank labs with fresh water, simulated seawater and seawater. We separated the transfer across the water surface from the transfer through the surface of bubbles. At high winds, the transfer through the free water surface increases very strongly and bubbles become important but only for gases which are very weakly soluble in water. On the ocean, bubbles might be important at lower winds.
D. Kiefhaber, C. J. Zappa, and B. Jähne
Ocean Sci. Discuss., https://doi.org/10.5194/osd-12-1291-2015, https://doi.org/10.5194/osd-12-1291-2015, 2015
Revised manuscript has not been submitted
E. Mesarchaki, C. Kräuter, K. E. Krall, M. Bopp, F. Helleis, J. Williams, and B. Jähne
Ocean Sci., 11, 121–138, https://doi.org/10.5194/os-11-121-2015, https://doi.org/10.5194/os-11-121-2015, 2015
Short summary
Short summary
Our article presents successful gas exchange measurements obtained in a large-scale wind-wave tank. The adopted box model methodology, experimental produce and instrumentation are described in detail. For the first time, parallel measurements of total transfer velocities for 14 individual gases within a wide range of solubility have been achieved. Various wind speed conditions and the effect of surfactant layers have been investigated providing exciting results.
L. Nagel, K. E. Krall, and B. Jähne
Ocean Sci., 11, 111–120, https://doi.org/10.5194/os-11-111-2015, https://doi.org/10.5194/os-11-111-2015, 2015
Short summary
Short summary
A comparative study of simultaneous heat and gas exchange measurements was performed in the large annular Heidelberg Air-Sea Interaction Facility, the Aeolotron, under homogeneous water surface conditions, including the measurement of the Schmidt number exponent. Provided the Schmidt number exponent is known and that the heated patch is large enough to reach the thermal equilibrium, it is possible to scale heat transfer velocities measured by active thermography to gas transfer velocities.
K. E. Krall and B. Jähne
Ocean Sci., 10, 257–265, https://doi.org/10.5194/os-10-257-2014, https://doi.org/10.5194/os-10-257-2014, 2014
Cited articles
Asher, W. E., Jessup, A. T., and Atmane, M. A.: Oceanic application of the
active controlled flux technique for measuring air-sea transfer velocities of
heat and gases, J. Geophys. Res., 109, C08S12, https://doi.org/10.1029/2003JC001862,
2004. a
Atmane, M. A., Asher, W., and Jessup, A. T.: On the use of the active infrared
technique to infer heat and gas transfer velocities at the air-water free
surface, J. Geophys. Res., 109, C08S14, https://doi.org/10.1029/2003JC001805, 2004. a
Bell, T. G., De Bruyn, W., Miller, S. D., Ward, B., Christensen, K. H., and
Saltzman, E. S.: Air-sea dimethylsulfide (DMS) gas transfer in the North
Atlantic: evidence for limited interfacial gas exchange at high wind speed,
Atmos. Chem. Phys., 13, 11073–11087,
https://doi.org/10.5194/acp-13-11073-2013, 2013. a, b
Bell, T. G., De Bruyn, W., Marandino, C. A., Miller, S. D., Law, C. S.,
Smith, M. J., and Saltzman, E. S.: Dimethylsulfide gas transfer coefficients
from algal blooms in the Southern Ocean, Atmos. Chem. Phys., 15, 1783–1794,
https://doi.org/10.5194/acp-15-1783-2015, 2015. a, b
Brockmann, U. H., Hühnerfuss, H., Kattner, G., Broecker, H.-C., and
Hentzschel, G.: Artificial surface films in the sea area near Sylt, Limnol. Oceanogr., 27, 1050–1058,
https://doi.org/10.4319/lo.1982.27.6.1050, 1982. a
Broecker, H. C., Siems, W., and Petermann, J.: The influence of wind on CO2
exchange in a wind wave tunnel, including the effects of monolayers, J. Mar. Res., 36, 595–610, 1978. a
Broecker, W. S., Ledwell, J. R., Takahashi, T., Weiss, R., Merlivat, L.,
Memery, L., Jähne, B., and Münnich, K. O.: Isotopic versus
micrometeorologic ocean CO2 fluxes: A serious conflict, J. Geophys.
Res., 91, 10517–10528, https://doi.org/10.1029/JC091iC09p10517, 1986. a
Coantic, M.: A model of gas transfer across air–water interfaces with
capillary waves, J. Geophys. Res., 91, 3925–3943,
https://doi.org/10.1029/JC091iC03p03925, 1986. a
Crosswell, J. R.: Bubble Clouds in Coastal Waters and Their Role in Air-Water
Gas Exchange of CO2, Journal of Marine Science and Engineering, 3, 866–890,
https://doi.org/10.3390/jmse3030866, 2015. a
Csanady, G. T.: The role of breaking wavelets in air-sea gas transfer, J.
Geophys. Res., 95, 749–759, https://doi.org/10.1029/JC095iC01p00749, 1990. a
Deacon, E. L.: Gas transfer to and across an air-water interface, Tellus, 29,
363–374, https://doi.org/10.3402/tellusa.v29i4.11368, 1977. a, b
Edson, J. B., Jampana, V., Weller, R. A., Bigorre, S. P., Plueddemann, A. J.,
Fairall, C. W., Miller, S. D., Mahrt, L., Vickers, D., and Hersbach, H.: On
the exchange of momentum over the open ocean, J. Phys. Oceanogr., 43,
1589–1610, https://doi.org/10.1175/JPO-D-12-0173.1, 2013. a, b
Esters, L., Landwehr, S., Sutherland, G., Bell, T. G., Christensen, K. H.,
Saltzman, E. S., Miller, S. D., and Ward, B.: Parameterizing air-sea gas
transfer velocity with dissipation, J. Geophys. Res., 122, 3041–3056,
https://doi.org/10.1002/2016JC012088, 2017. a
Frew, N., Bock, E., Schimpf, U., Hara, T., Haussecker, H., Edson, J., McGillis,
W., Nelson, R., McKenna, S., Uz, B., and Jähne, B.: Air-sea gas transfer:
Its dependence on wind stress, small-scale roughness, and surface films, J.
Geophys. Res., 109, C08S17, https://doi.org/10.1029/2003JC002131, 2004. a, b
Frew, N. M., Goldman, J. C., Denett, M. R., and Johnson, A. S.: Impact of
phytoplankton-generated surfactants on air-sea gas-exchange, J. Geophys.
Res., 95, 3337–3352, https://doi.org/10.1029/JC095iC03p03337, 1990. a, b
Frew, N. M., Bock, E. J., McGillis, W. R., Karachintsev, A. V., Hara, T.,
Münsterer, T., and Jähne, B.: Variation of air–water gas transfer with
wind stress and surface viscoelasticity, in: Air-water Gas Transfer, Selected
Papers from the Third International Symposium on Air-Water Gas Transfer,
edited by: Jähne, B. and Monahan, E. C., 529–541, AEON, Hanau,
https://doi.org/10.5281/zenodo.10405, 1995. a
Garbe, C. S., Rutgersson, A., Boutin, J., Delille, B., Fairall, C. W., Gruber,
N., Hare, J., Ho, D., Johnson, M., de Leeuw, G., Nightingale, P., Pettersson,
H., Piskozub, J., Sahlee, E., Tsai, W., Ward, B., Woolf, D. K., and Zappa,
C.: Transfer across the air-sea interface, in: Ocean-Atmosphere Interactions
of Gases and Particles, edited by: Liss, P. S. and Johnson, M. T., 55–112, Springer, Heidelberg, https://doi.org/10.1007/978-3-642-25643-1_2,
2014. a
Goldman, J. C., Dennet, M. R., and Frew, N. M.: Surfactant effects on air-sea
gas exchange under turbulent conditions, Deep-Sea Res, 35, 1953–1970,
https://doi.org/10.1016/0198-0149(88)90119-7, 1988. a
Harrison, E. L., Veron, F., Ho, D. T., Reid, M. C., Orton, P., and McGillis,
W. R.: Nonlinear interaction between rain- and wind-induced air-water gas
exchange, J. Geophys. Res.-Oceans, 117, C03034, https://doi.org/10.1029/2011JC007693, 2012. a
Ho, D. T., Wanninkhof, R., Schlosser, P., Ullman, D. S., Hebert, D., and
Sullivan, K. F.: Toward a universal relationship between wind speed and gas
exchange: Gas transfer velocities measured with 3He∕SF6 during the Southern
Ocean Gas Exchange Experiment, J. Geophys. Res., 116, C00F04,
https://doi.org/10.1029/2010JC006854, 2011. a, b, c, d, e, f, g, h, i
Jessup, A. T., Asher, W. E., Atmane, M., Phadnis, K., Zappa, C. J., and Loewen,
M. R.: Evidence for complete and partial surface renewal at an air-water
interface, Geophys. Res. Lett., 36, 1–5, https://doi.org/10.1029/2009GL038986, 2009. a
Jähne, B.: Trockene Deposition von Gasen über Wasser
(Gasaustausch), in: Austausch von Luftverunreinigungen an der Grenzfläche
Atmosphäre/Erdoberfläche, Zwischenbericht für das Umweltbundesamt zum
Teilprojekt 1: Deposition von Gasen, BleV-R-64.284-2, edited by: Flothmann,
D., Battelle Institut, Frankfurt, https://doi.org/10.5281/zenodo.10278, 1982. a
Jähne, B., Münnich, K. O., and Siegenthaler, U.: Measurements of gas exchange
and momentum transfer in a circular wind-water tunnel, Tellus, 31, 321–329,
https://doi.org/10.1111/j.2153-3490.1979.tb00911.x, 1979. a, b
Jähne, B., Münnich, K. O., Bösinger, R., Dutzi, A., Huber, W., and Libner,
P.: On the parameters influencing air-water gas exchange, J. Geophys. Res.,
92, 1937–1950, https://doi.org/10.1029/JC092iC02p01937, 1987. a, b, c
Jähne, B., Libner, P., Fischer, R., Billen, T., and Plate, E. J.:
Investigating the transfer process across the free aqueous boundary layer by
the controlled flux method, Tellus, 41, 177–195,
https://doi.org/10.3402/tellusb.v41i2.15068, 1989. a, b, c
Krall, K. E.: Laboratory Investigations of Air-Sea Gas Transfer under a Wide
Range of Water Surface Conditions, Dissertation, Institut für Umweltphysik,
Fakultät für Physik und Astronomie, Univ. Heidelberg, Heidelberg,
Germany, https://doi.org/10.11588/heidok.00014392, 2013. a, b, c, d, e, f, g, h, i
Kräuter, C.: Visualization of air-water gas exchange, Dissertation, Institut
für Umweltphysik, Fakultät für Physik und Astronomie, Univ.
Heidelberg, Heidelberg, Germany, https://doi.org/10.11588/heidok.00018209, 2015. a
Kräuter, C., Trofimova, D., Kiefhaber, D., Krah, N., and Jähne, B.: High
resolution 2-D fluorescence imaging of the mass boundary layer thickness at
free water surfaces, J. Europ. Opt. Soc. Rap. Public., 9, 14016,
https://doi.org/10.2971/jeos.2014.14016, 2014. a
Kromer, B. and Roether, W.: Field measurements of air-sea gas exchange by the
radon deficit method during JASIN 1978 and FGGE 1979, Meteor
Forschungsergebnisse, Deutsche Forschungsgemeinschaft, Reihe A/B, Gebrüder Bornträger, Berlin, Stuttgart, Germany, 24, 55–76,
https://doi.org/10.1594/PANGAEA.604844, 1983. a, b
Kunz, J. and Jähne, B.: Investigating small scale air-sea exchange processes
via thermography, Front. Mech. Eng., 4, 4, https://doi.org/10.3389/fmech.2018.00004,
2018. a, b, c, d
Lee, R. J. and Saylor, J. R.: The effect of a surfactant monolayer on oxygen
transfer across an air/water interface during mixed convection, Int. J. Heat
Mass Tran., 53, 3405–3413,
https://doi.org/10.1016/j.ijheatmasstransfer.2010.03.037, 2010. a
Liss, P. S.: Processes of gas exchange across an air–water interface, Deep-Sea
Res., 20, 221–238, https://doi.org/10.1016/0011-7471(73)90013-2, 1973. a
Liss, P. S. and Merlivat, L.: Air-sea gas exchange rates: Introduction and
synthesis, in: The Role of Air-Sea Exchange in Geochemical Cycling, edited
by: Buat-Menard, P., 113–129, Reidel, Boston, MA,
https://doi.org/10.1007/978-94-009-4738-2_5, 1986. a
McKenna, S. P. and Bock, E. J.: Physicochemical effects of the marine
microlayer on air-sea gas transport, in: Marine Surface Films: Chemical
Characteristics, Influence on Air-Sea Interactions, and Remote Sensing,
edited by: Gade, M., Hühnerfuss, H., and Korenowski, G. M., 77–91,
Springer Berlin Heidelberg, Germany, https://doi.org/10.1007/3-540-33271-5_9, 2006. a
McKenna, S. P. and McGillis, W. R.: The role of free-surface turbulence and
surfactants in air-water gas transfer, Int. J. Heat Mass Tran., 47,
539–553, https://doi.org/10.1016/j.ijheatmasstransfer.2003.06.001, 2004. a
Mesarchaki, E., Kräuter, C., Krall, K. E., Bopp, M., Helleis, F., Williams,
J., and Jähne, B.: Measuring air–sea gas-exchange velocities in a
large-scale annular wind–wave tank, Ocean Sci., 11, 121–138,
https://doi.org/10.5194/os-11-121-2015, 2015. a, b
Nagel, L.: Active Thermography to Investigate Small-Scale Air-Water Transport
Processes in the Laboratory and the Field, Dissertation, Institut für
Umweltphysik, Fakultät für Chemie und Geowissenschaften, Univ.
Heidelberg, Heidelberg, Germany, https://doi.org/10.11588/heidok.00016831, 2014. a, b
Nagel, L., Krall, K. E., and Jähne, B.: Comparative heat and gas exchange
measurements in the Heidelberg Aeolotron, a large annular wind-wave tank,
Ocean Sci., 11, 111–120, https://doi.org/10.5194/os-11-111-2015, 2015. a, b
Nightingale, P. D., Malin, G., Law, C. S., Watson, A. J., Liss, P. S.,
Liddicoat, M. I., Boutin, J., and Upstill-Goddard, R. C.: In situ evaluation
of air-sea gas exchange parameterization using novel conservation and
volatile tracers, Global Biogeochem. Cy, 14, 373–387,
https://doi.org/10.1029/1999GB900091, 2000. a
Pereira, R., Ashton, I., Sabbaghzadeh, B., Shutler, J. D., and Upstill-Goddard,
R. C.: Reduced air–sea CO2 exchange in the Atlantic Ocean due to biological
surfactants, Nat. Geosci., 11, 492–496,
https://doi.org/10.1038/s41561-018-0136-2, 2018. a
Richter, K. and Jähne, B.: A laboratory study of the Schmidt number
dependency of air-water gas transfer, in: Gas Transfer at Water Surfaces
2010, edited by: Komori, S., McGillis, W., and Kurose, R., Kyoto Univ. Press, Kyoto, Japan, 322–332,
https://doi.org/10.5281/zenodo.14955, 2011. a, b
Roether, W. and Kromer, B.: Optimum application of the radon deficit method to
obtain air–sea gas exchange rates, in: Gas transfer at water surfaces,
edited by: Brutsaert, W. and Jirka, G. H., 447–457, Reidel, Hingham, MA,
https://doi.org/10.1007/978-94-017-1660-4_41, 1984. a
Rutgersson, A., Norman, M., Schneider, B., Pettersson, H., and Sahlée, E.:
The annual cycle of carbon-dioxide and parameters influencing the air-sea
carbon exchange in the Baltic Proper, J. Marine Syst., 74, 381–394,
https://doi.org/10.1016/j.jmarsys.2008.02.005, 2008. a, b, c, d
Rutgersson, A., Smedman, A., and Sahlée, E.: Oceanic convective mixing and
the
impact on air-sea gas transfer velocity, Geophys. Res. Lett., 38, L02602,
https://doi.org/10.1029/2010GL045581, 2011. a
Sabbaghzadeh, B., Upstill-Goddard, R. C., Beale, R., Pereira, R., and
Nightingale, P. D.: The Atlantic Ocean surface microlayer from 50 ∘N to 50 ∘S is
ubiquitously enriched in surfactants at wind speeds up to 13 m s−1,
Geophys. Res. Lett., 44, 2852–2858, https://doi.org/10.1002/2017GL072988,
2017GL072988, 2017. a, b
Salter, M., Upstill-Goddard, R., Nightingale, P., Archer, S., Blomquist, B.,
Ho, D., Huebert, B., Schlosser, P., and Yang, M.: Impact of an artificial
surfactant release on air-sea gas fluxes during Deep Ocean Gas
Exchange Experiment II, J. Geophys. Res., 116, C11016,
https://doi.org/10.1029/2011JC007023, 2011. a, b
Schimpf, U., Nagel, L., and Jähne, B.: The 2009 SOPRAN active thermography
pilot experiment in the Baltic Sea, in: Gas Transfer at Water Surfaces 2010,
edited by: Komori, S., McGillis, W., and Kurose, R., Kyoto Univ. Press, Kyoto, Japan, 358–367,
https://doi.org/10.5281/zenodo.14956, 2011. a, b, c
Schmidt, R.: Cruise Report of Alkor Cruise 336, available at: https://www2.bsh.de/aktdat/dod/fahrtergebnis/2009/20100107.htm
(last access: 4 March 2019), 2009. a
Schmidt, R. and Schneider, B.: The effect of surface films on the air–sea gas
exchange in the Baltic Sea, Mar. Chem., 126, 56–62,
https://doi.org/10.1016/j.marchem.2011.03.007, 2011. a, b
Schneider, B.: Cruise Report of Alkor Cruise 356, available at: https://www2.bsh.de/aktdat/dod/fahrtergebnis/2010/20110109.htm
(last access: 4 March 2019), 2010. a
Toba, Y. and Koga, M.: A parameter describing overall conditions of wave
breaking, whitecapping, sea-spray production, and wind stress, in: Oceanic
Whitecaps and Their Role in Air-Sea Exchange Processes, 37–47, D. Reidel
Publishing Company, Springer, Dordrecht, https://doi.org/10.1007/978-94-009-4668-2_4, 1986. a
Wanninkhof, R.: Relationship between wind speed and gas exchange over the
ocean, J. Geophys. Res., 97, 7373–7382, https://doi.org/10.1029/92JC00188, 1992.
a, b
Wanninkhof, R. and McGillis, W. R.: A cubic relationship between gas transfer
and wind speed., Geophys. Res. Lett., 26, 1889–1892,
https://doi.org/10.1029/1999GL900363, 1999. a
Wanninkhof, R., Asher, W. E., Ho, D. T., Sweeney, C., and McGillis, W. R.:
Advances in quantifying air-sea gas exchange and environmental forcing, Annu.
Rev. Mar. Sci., 1, 213–244, https://doi.org/10.1146/annurev.marine.010908.163742,
2009. a
Woolf, D., Leifer, I., Nightingale, P., Rhee, T., Bowyer, P., Caulliez, G.,
de Leeuw, G., Larsen, S., Liddicoat, M., Baker, J., and Andreae, M.:
Modelling of bubble-mediated gas transfer: Fundamental principles and a
laboratory test, J. Marine Syst., 66, 71–91,
https://doi.org/10.1016/j.jmarsys.2006.02.011, 2007. a
Woolf, D. K.: Parametrization of gas transfer velocities and
sea-state-dependent wave breaking, Tellus B, 57, 87–94,
https://doi.org/10.1111/j.1600-0889.2005.00139.x, 2005. a, b
Wurl, O., Miller, L., and Vagle, S.: Production and fate of transparent
exopolymer particles in the ocean, J. Geophys. Res., 116, C00H13,
https://doi.org/10.1029/2011JC007342, 2011. a
Zappa, C., Ho, D., McGillis, W., Banner, M., Dacey, J. W. H., Bliven, L., Ma,
B., and Nystuen, J.: Rain-induced turbulence and air-sea gas transfer, J.
Geophys. Res., 114, C07009, https://doi.org/10.1029/2008JC005008, 2009. a
Zappa, C. J., Asher, W. E., Jessup, A. T., Klinke, J., and Long, S. R.:
Microbreaking and the enhancement of air-water transfer velocity, J. Geophys.
Res., 109, C08S16, https://doi.org/10.1029/2003JC001897, 2004. a
Zhao, D., Toba, Y., Suzuki, Y., and Komori, S.: Effect of wind waves on air-sea
gas exchange: proposal of an overall CO2 transfer velocity formula as a
function of breaking-wave parameter, Tellus, 55B, 478–487,
https://doi.org/10.1034/j.1600-0889.2003.00055.x, 2003. a, b